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Abstract Intracellular transport is the basis for the transfer of matter, energy, and information in cells and is crit-
ical to many cellular functions. Within the nonequilibrium environment of living cells, the transport be-
haviours are far from the traditional motion in liquid but are more complex and active. With the ad-
vantage of high spatial and temporal resolution, the single-particle tracking (SPT) method is widely
utilized and has achieved great advances in revealing intracellular transport dynamics. This review de-
scribes intracellular transport from a physical perspective and classifies it into two modes: diffusive
motion and directed motion. The biological functions and physical mechanisms for these two transport
modes are introduced. Next, we review the principle of SPT and its advances in two aspects of intracel-
lular transport. Finally, we discuss the prospect of near infrared SPT in exploring the in vivo intracellu-

lar transport dynamics.
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INTRODUCTION

Intracellular transport dynamics are critical to many
cellular functions, such as cell proliferation, motility,
and death (Mogre et al. 2020). Almost all biochemical
reactions in the cell rely on the intracellular transport
of biomolecules. Proteins synthesized in ribosomes
usually undergo transportation from the perinuclear
regions to the peripheral sites in the cell or are secreted
outside the cell membrane (Schwarz and Blower 2016).
As the energy unit in cells, ATP is produced in the
mitochondria and transported to different sites within
the cell for consumption. External signals received by
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the cell membrane usually need to be transmitted to
the nucleus to initiate transcriptional responses. In
short, intracellular transport is the basis for the
transfer of matter, energy, and information.

The living cell is a nonequilibrium system in which
many energy-consuming reactions give rise to complex
and active transport behaviours (Gallet et al. 2009;
Wilhelm 2008). In addition, macromolecule crowding
and spatial heterogeneity have significant impacts on
intracellular transport. As such, molecule transport
dynamics in living cells is far from traditional motion in
liquid. According to the motion type, transport in
eukaryotic cells can be divided into random diffusion
and directed transport from a physical perspective
(Fig. 1).

Exploring the dynamics of intracellular transport
requires advanced technologies. In recent decades, the
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Fig. 1 Schematic of intracellular transport. In cytoplasm, the diffusion of vesicles and bio-macromolecules, and the directed motion of
vesicles driven by motor proteins along microtubules. In nucleus, the diffusion of the transcription factors

development of noninvasive techniques for visualizing
dynamic processes in living cells has greatly promoted
our understanding of intracellular transport, including
fluorescence recovery after photobleaching (FRAP)
(Lippincott-Schwartz et al. 2003; Reits and Neefjes
2001) and fluorescence correlation spectroscopy (FCS)
(Bulseco and Wolf 2007; Elson 2011; Haustein and
Schwille 2007; Kim et al. 2007; Tudor et al. 2007;
Vukojevic et al. 2007). However, the above techniques
provide ensemble average results, lacking the
spatiotemporal dynamics of individual molecules.
Single-particle tracking (SPT) enables us to visualize
individual molecules in living cells, locate single
molecules with nanoscale precision, and measure their
individual transport dynamics as a function of time. In
terms of the spatiotemporal information from single
molecule trajectories, we can further probe the
heterogeneous environment within the cell. Many
advances have been made in the study of intracellular
transport dynamics through SPT (Balint et al 2013;
Cognet et al. 2014; Ge et al. 2021; Hui et al. 2017; Jiang
et al. 2020; Kusumi et al. 2014; Li et al. 2015b, 2016b,
2018a; von Diezmann et al. 2017; Xu et al. 2021).
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This review is organized as follows. First, we
introduce the biological functions of intracellular
transport. Next, we describe two types of intracellular
transport and their physical mechanisms. Then, we
concentrate on the fundamental principle of SPT
technology, including imaging and data analysis. After
that, we focus on the applications of SPT in intracellular
studies. Finally, we discuss future studies of
intracellular transport dynamics, especially strategies
for developing in vivo SPT methods.

BIOLOGICAL MEANING OF INTRACELLULAR
TRANSPORT

Matter translocation

Matter translocation plays an important role in
maintaining the physiological functions of cells. The
secretions synthesized by cells are transported from
intracellular to extracellular space. For example,
synthesized proteins are translocated from perinuclear
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to peripheral sites or eventually secreted outside the
cell membrane. In eukaryotes, proteins are first
synthesized in ribosomes attached to the rough
endoplasmic reticulum (ER) (Schwarz and Blower
2016). Then, after further modifications in the Golgi
(Orci et al. 2000), proteins are transported in vesicles
to the plasma membrane or secreted into the
extracellular ~ matrix. = Conversely, extracellular
biomolecules that enter the membrane undergo
intracellular transport in the cytoplasm. For example,
extracellular small molecules such as amino acids cross
the cell membrane by diffusion, while macromolecules
such as growth factors, membrane proteins, and lipids
pass through the cell membrane via endocytosis and
are then translocated within the cell (Basturea 2019).
Viruses, such as influenza, enter the cell through
endocytosis and undergo intracellular transport to
their destinations (Lakadamyali et al. 2003).

In cells, diffusion is the major mechanism for matter
translocations. However, the diffusion coefficients of
large cargos such as the vesicles in oocytes and
lysosomes in epithelial cells are only 0.003 and
0.071 um?/s, respectively (Bandyopadhyay et al. 2014;
Drechsler et al. 2017; Koslover et al. 2016). At such
slow diffusion rates, it would take several hours for the
large cargos to cross the cell. To be more efficient, cells
utilize motor-driven active transport, which is essential
in eukaryotic cells (De Matteis and Luini 2008). For
example, in neurons which can be up over 1-metre long,
axon cargos are transported along microtubules by
motor proteins, including kinesin and dynein
(Mudrakola et al. 2009).

Energy transfer

Energy is stored in the form of ATP or nutrients such as
carbohydrates and fats, playing indispensable roles in
intracellular metabolism and various life activities.
Small molecules such as ATP and glucose are rapidly
transported within the cell by diffusion, with diffusion
rates of approximately 145 and 200 pm? /s, respectively
(Riley et al. 1999; Vendelin et al. 2000). Due to the low
efficiency of diffusion in large-scale transport, actively
directed transport prevails in large cells. For example,
in individual hyphae, nutrients such as N-rich amino
acids are translocated by both diffusion and vesicle
transport; however, in the mycelial network, vesicle
transport dominates (Fricker et al. 2017, 2008).

Signal transduction
When the cell membrane senses and receives signals

from the extracellular environment, the signals in the
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form of active small molecules are usually transmitted
to the nucleus, in which certain transcriptional
regulation takes place to trigger cellular responses.
Intracellular signal transduction involves the diffusion
of activated proteins from the cell membrane to
cytoplasmic targets or other cellular sites. For example,
MEK kinase is activated at the membrane and then
diffuses into the cytoplasm to activate downstream
kinases (Kholodenko et al. 2000). In addition, vesicle
transport driven by motor proteins is an efficient
alternative. A typical example is the internalization and
endocytic trafficking of nerve growth factors in
neuronal signalling pathways (Harrington and Ginty
2013). Besides, the cellular mechanotransduction as a
growing area is also related to the intracellular
transport (He et al. 2020; Liu et al. 2019; Wang et al.
2020).

PHYSICAL MECHANISMS OF INTRACELLULAR
TRANSPORT

To achieve various functional goals of intracellular
transport, eukaryotic cells mainly rely on two
mechanisms: random diffusion and directed transport.
The diffusion is driven by the combination of thermal
and intracellular active fluctuations, whereas the
directed transport is driven by motor proteins along
the cytoskeletons (Fig. 1). Both of them are influenced
by the intracellular ATP levels and macromolecule
crowding.

Diffusion

The irregular motion of mesoscale particles suspended
in a solvent is named Brownian motion and was first
found by Robert Brown in 1826, who observed the
continuously agitating motion of pollen grains under a
light microscope (Brown 1828). Brownian motion is
caused by the thermal fluctuations of water molecules.
The diffusion coefficient, which represents the range of
motion, increases with temperature. The time required
for translocation by diffusion is proportional to the
square of the distance. Moreover, the diffusion
coefficient decreases with particle size or medium
viscosity. Although diffusion is nondirectional, it works
well for transporting small molecules over short
distances (Di Rienzo et al. 2014).

However, intracellular diffusion is different from that
observed in dilute solutions (Gregor et al. 2005;
Jacobson and Wojcieszyn 1984; Lubyphelps et al
1987). In some cases, the diffusive motion within the
cell appears to be random, although the diffusion rate is
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much greater than the expected diffusion in solutions
(Bursac et al. 2005; Lau et al. 2003). This suggests that
other factors contribute to intracellular diffusion in
addition to thermal fluctuations. The internal
environment of living cells obviously deviates from the
equilibrium state, in which many active processes
consuming energy exist. Therefore, unlike thermal
diffusion in an equilibrium system, the amplitude of
diffusive motion in cells is additionally driven by active
fluctuations, leading to randomly diffusive motions
with increased diffusion rates (Brangwynne et al. 2009;
Fakhri et al. 2014; Guo et al. 2014).

Individual molecule trajectories in living cells show
nonlinear mean square displacement (MSD) as a
function of time, which suggests anomalous diffusion
(Saxton and Jacobson 1997; Wieser and Schutz 2008).
This anomalous diffusion is attributed to the
interactions between molecules and the surrounding
intracellular environment, caused by the broad
distribution of jump times or jump lengths, or the
strong correlations (Bouchaud and Georges 1990). In
most cases, the motion of macromolecules and
organelles in the cytoplasm is subdiffusion (Hoffman et
al. 2006; Li et al. 2016a; Shen et al 2016; Tolic-
Norrelykke et al. 2004; Yamada et al. 2000) due to
viscoelastic properties and the crowded environment
in the cytoplasm (Hofling and Franosch 2013; Luby-
Phelps 2000; Shen et al. 2021; Wang et al. 2013; Weber
etal 2010).

In addition, the distribution of individual step sizes of
small molecules in the cytoplasm shows a Laplace
distribution, which is different from the desired
Gaussian distribution in a uniform medium (Fodor et al.
2015; Gal et al. 2013; He et al. 2016; Lampo et al. 2017).
The Laplace distribution is attributed to the wide
distribution of diffusivities for individual particles in
inhomogeneous environments (Luo and Yi 2018). Such
a non-Gaussian distribution indicates the spatial
heterogeneity of biomolecule motion in the cytoplasm
(Chechkin et al. 2017; Duits et al. 2009). It should be
noted that subdiffusion does not necessarily imply a non-
Gaussian  distribution. For example, fractional
Brownian motion is anomalous diffusion but appears as
a Gaussian distribution. In contrast, some normal
diffusion can exhibit a non-Gaussian distribution
(Chechkin et al. 2017; Wang et al. 2012).

Directed motion
In the crowded environment of cells, the diffusion of
large molecules and vesicles is physically constrained

and is not sufficiently effective for long-distance
transport. In this case, directed transport, which relies
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on motor proteins that hydrolyse ATP and drag the
cargos along the cytoskeleton, is more applicable
(Brown and Sivak 2020).

Cytoskeletons and molecular motors are essential for
directed transport. Cytoskeletons, including
microtubules and microfilaments (F-actin), are
involved in intracellular transport. Microtubules, the
structural backbone of the cytoskeleton, are long
hollow tubes with a diameter of 22-25 nm composed of
13 parallel protofilaments. Microtubules are highly
dynamic and polarized, alternating between phases of
growth and shrinkage (de Forges et al 2012).
Microtubules provide the path for the long-range
transport of organelles and membranes. Kinesin and
dynein are motor proteins that transport along
microtubules (Kikushima et al. 2013; Ross et al. 2008).
In general, kinesins move towards the plus ends of
microtubules from the perinucleus to the periphery
(Duan et al. 2012; Hirokawa et al. 2009), whereas
dynein drives retrograde movements towards the
minus ends of microtubules from the periphery to the
perinucleus (Cianfrocco et al. 2015; Reck-Peterson et al.
2018).

Another important cytoskeleton is the microfilament,
which is a solid fibre with a diameter of 4-7 nm
distributed beneath cell membranes and in the
cytoplasm. Actin filaments are short and polarized.
They usually form a randomly oriented network with a
mesh size of approximately 50 nm (Barlan et al. 2013).
Myosin motors mainly contribute to localized
movements of cargo in a short range along actin
filaments.

Directed motion has two major advantages. One is to
transport intracellular cargo over relatively long
distances. For example, in the axons of neurons, the
distance can be up to one metre (Hirokawa et al. 2010).
Another advantage is that the direction and speed
transport dynamics can be well controlled by the cells
(Burute and Kapitein 2019). For example, the ratio
between kinesin and dynein can affect the direction of
cargo transport, which has already been shown by in
vitro experiments (Hendricks et al. 2010). A cargo can
be driven by multiple motors which cooperate or
compete with each other. When the same motors carry
cargo, they may share the load and improve
performance (Reis et al. 2012). When two different
motor proteins attach to a cargo, it may be driven in
two directions: if only one motor is active, it determines
the cargo's direction of movement; if both motors are
active, they will pull in opposite directions, with the
stronger determining the direction of transport (Barlan
et al. 2013; Gennerich et al. 2007; Hancock 2014;
Hendricks et al. 2010; McLaughlin et al. 2016; Muller et
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al. 2008).

PRINCIPLE OF SINGLE PARTICLE TRACKING

Advanced optical techniques have been applied to
explore and understand transport dynamics within the
intracellular world. One of the common techniques is
fluorescence recovery after photobleaching (FRAP). In
FRAP experiments, fluorescent molecules in a small
given area are first photobleached by a focused laser
beam with high intensity. Then, surrounding
unbleached fluorescent molecules diffuse into the
photobleached area resulting in fluorescence recovery
(Lippincott-Schwartz et al. 2003; Reits and Neefjes
2001). The recovery of the fluorescence intensities is
calculated to obtain the molecular diffusivity. Another
technique is fluorescence correlation spectroscopy
(FCS), which records the fluctuation of fluorescence
intensity in a small, illuminated volume. The diffusion
coefficient can be determined from the autocorrelation
function of the fluorescence intensities (Bulseco and
Wolf 2007; Elson 2011; Haustein and Schwille 2007;
Kim et al. 2007; Peng et al. 2020; Tudor et al. 2007;
Vukojevic et al. 2007).

In contrast to the above ensemble-averaged
methods, SPT provides a new perspective of single
molecule motion and a better understanding of
intracellular transport dynamics. SPT provides
spatiotemporal information about the movement of a
single biomolecule, which helps to accurately measure
different types of biomolecule transport in cells and
understand its complexity. In SPT experiments, probes
are used to label the molecules of interest, observe
their movements under appropriate optical
instruments, and analyse their trajectories to explore
the intracellular transport dynamics.

Probes

In experiments, the biomolecules first need to be
labelled with proper probes, which enables observation
and analysis of single-particle motion under
microscopy. The probes must have good
biocompatibilities with no harmful effects on cell
activities. Moreover, the physical properties of the
probes are of vital importance, and the probe cannot be
so large that it impacts the original motion of
biomolecules. To ensure that long trajectories can be
followed, the probe should be photostable for long-
term imaging.

Researchers have used gold particles (Kusumi et al
1993), organic dyes (Schmidt et al. 1996), fluorescent
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proteins (lino et al. 2001), and quantum dots (QDs)
(Dahan et al 2003) to label particles of interest
(Fig. 2A). In 1993, Kusumi et al. labelled receptors on
the cell membrane with 40-nm gold particles and
observed the diffusive motion of the receptors (Kusumi
et al. 1993). However, gold particles cannot be used in
multiple-colour imaging.

In recent years, QDs have been considered ideal
probes with excellent optical properties and
biocompatibilities for in vivo and in vitro imaging
(Dubertret et al. 2002; Larson et al. 2003; Zhou et al.
2015). In 2003, QDs were first used to label glycine
receptors on the cell membrane (Dahan et al. 2003).
QDs with narrow and symmetric emission spectra have
strongly size-dependent emission wavelengths so that
they can achieve multicolour SPTs (Zhou et al. 2015).
Compared with other probes, QDs are quite photostable
for long-term imaging. Although the application scope
of QDs is very wide, their fluorescence intermittency
(blinking) leads to incomplete molecular motion
trajectories (Li et al 2015c; Nirmal et al 1996),
bringing certain difficulties to data processing.

Optical implementations

Fluorescence microscopy is indispensable to image
probes and track their movements. In traditional
epifluorescence microscopy (Epi), the laser penetrates
the cell vertically. Since all probes across the cell are
excited, the overall fluorescence within the cell imposes
a strong background on the single probes of interest,
making the signal-to-noise ratio relatively low.

To improve the signal-to-noise ratio, total internal
reflection fluorescence (TIRF) microscopy was
invented to selectively excite fluorescent molecules
close to the cover glass (<200 nm) (Axelrod 1981).
TIRF is applied to visualize single molecule
fluorescence near a surface (Khan et al. 2000; Lu et al.
2018; Sako et al. 2000; Vale et al. 1996; Wu et al. 2020)
and especially to observe the diffusive motion of
molecules on the cell membrane (Axelrod 2001). It is
also used to track secretory granules in secretory
processes (Reits and Neefjes 2001; Steyer and Almers
1999; Tsuboi et al. 2001; Zenisek et al. 2000).

Due to the observation depth, TIRF is limited to
studying the cell membrane. To observe fluorescent
molecules in cells, researchers further invented highly
inclined and laminated optical sheet microscopy (HILO)
(Tokunaga et al. 2008). The main difference between
HILO and TIRF is the incident angle of the excitation
light (Fig. 2B). In the HILO microscope, the excitation
light no longer wundergoes total reflection but
penetrates and exits close to the interface, forming a
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tion of trajectories. D MSD plots of different motion

thin layer of excitation light that illuminates the middle
layer of the cell (Toomre and Bewersdorf 2010).

Data analysis
Trajectory

In SPT experiments, every probe is observed as a bright
submicron spot described by the point spread function
(PSF) due to the diffraction limit. We obtain an accurate
position of the probe through Gaussian fitting. By
linking the same particle’s different positions in
consecutive  images, particle trajectories are
constructed (Fig. 2C). Both time and space information
from the trajectories provide an opportunity to
understand the characteristics of particle motion and
further explore intracellular transport dynamics.
Several algorithms are available (Cheezum et al. 2001;
Chetverikov and Verestoy 1999; Sbalzarini and
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Koumoutsakos 2005; Tinevez et al. 2017; Vallotton et
al. 2003) to help researchers obtain the trajectory of
particles conveniently and efficiently.

Mean square displacement
To analyse the motion, the MSD of the trajectories is

generally calculated:
< AP (mAD) > = < (r(t+ mAf — r(1))? >

where r(t) is the displacement, At is the time interval,
and < - > is the average. Time-averaged MSD is:

1 M-m
< AP (mAL) >74 = mzizl [r(t+ mAD) — r (D)]?

where M is the total time length of the trajectory. The
ensemble-averaged MSD is:

< AP (mAD) >4 = %ZN: Lri(mAn = r:(0)1

© The Author(s) 2021



Intracellular transport dynamics revealed by single-particle tracking

REVIEW

where i is the ID of each particle, and N is the total
number of all particles. The two MSDs help us
understand the motion of target particles, but their
results are not always consistent. With increasing At,
the MSD tends to show an upward trend, which can be
described by a remarkable power-law curve MSD ~At”.
The value of a depends on the motion type of the
particle: a = 1 corresponds to Brownian motion, a < 1
refers to subdiffusion, and a > 1 refers to superdiffusion
(Fig. 2D).

The diffusion rates are determined from the linear
fitting of MSD:

< Ar? (A1) > = 2dDAt

where D is the diffusion coefficient of particles, and d
represents the dimensionality of space (Dupont et al.
2013; Ning et al. 2019).

Spatial distribution of intracellular diffusion

To describe the spatial heterogeneity of intracellular
dynamics, one must focus on the trajectory within a
specific spatial range. First, the cell is divided into
different grids. Second, the segments of trajectories
within a distance threshold to each grid node are
chosen. Third, the ensemble-time-averaged MSD is
calculated with the trajectory segments, and then the
local diffusion rate is calculated by linear fitting of the
first three points of the MSD. Fourth, with the diffusion
rate at each grid node, the diffusion map of the cell is
plotted. The parameters of grid size and distance
threshold determine the final resolution of the diffusion
map (Fig. 3A).

Extraction of the directed-motion segments

The typical trajectory of vesicle transport in cells
consists of directed and diffusive motions. To extract
the segments of directed motion, analysis of both the
local MSD and directional persistence is applied to
identify the local motion state of single particles in a
time window. Compared with the MSD of a whole
trajectory, the local MSD uses the particle positions
around the time point of interest. Similarly, MSD can be
fitted with MSD,,.; = AAt%, where a represents the
nonlinear relationship of MSD with time. To further
describe the direction information of particle motion,

. . . 1
the local directional persistence < cosB> = — E cosp;
n

is applied, where f3; represents the change in angle
between adjacent steps along the trajectory (Li et al
2012a, 2018a). For a perfect unidirectional motion,
<cosf> = 1. The thresholds of a« and <cosf> can be set to
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judge whether the segments belong to the directional
motion. Note that these parameters should be selected
according to the experimental conditions. Further
control experiments should be performed by
eliminating all directed motion with cytoskeleton-
disrupting drugs (Fig. 3C).

SPT APPLICATIONS IN INTRACELLULAR
TRANSPORT

Intracellular transport is the basis of many cellular
functions, so it is important to understand the
mechanisms of intracellular transport dynamics. In
recent decades, due to its high spatial and temporal
resolution, SPT has been widely employed to explore
intracellular transport and proven to be a powerful and
effective tool for measuring intracellular dynamics
(Manzo and Garcia-Parajo 2015; Wang et al. 2021). SPT
was first applied to study the biomolecule dynamics on
the cell membrane, since the TIRF microscopy enables
the single-molecule imaging on cell basal membranes
with a high signal-to-noise ratio. Moreover, labelling of
on-membrane biomolecules by fluorescence probes is
relatively easy to achieve. Later on, with the
improvements of HILO and 3D imaging techniques and
the new generations of fluorescence probes, the SPT
studies in the cytoplasm of living cells have been
greatly promoted. Recently, the investigations are
moving deeper into the nucleus. Despite that the
complex intranuclear environment with dense
chromatins has brought more difficulties to the
labelling and tracking of single molecules, new methods
of SPT are being developed. Here, although many
advances have been made in SPT of intracellular
transport, we can only introduce some representative
studies in this review.

Diffusion
Diffusion on the membrane

The membrane of living cells separates the internal and
external environment of the cell. Cell membranes not
only maintain the intracellular environment of stable
cell metabolism but also regulate the exchange of
substances between the intracellular and extracellular
spaces. The cell membrane is mainly composed of fluid
phospholipids and proteins that can move laterally
(Jacobson et al. 2019). Moreover, the presence of the
cytoskeleton beneath the membrane, lipid rafts, and
other factors on the membrane may affect biomolecule
motions.
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SPT has contributed to important progress in studies
of cell membrane dynamics. In 1993, Kusumi et al. used
SPT to observe for the first time different movements of
receptors on the cell membrane, including stationary
mode, simple Brownian diffusion, directed diffusion,
and confined diffusion (Kusumi et al. 1993). In 1994,
Ghosh et al. observed anomalous diffusion of individual
low-density lipoprotein receptors (LDL-Rs) on cell
membranes (Ghosh and Webb 1994). Similar
phenomena were further observed for other
transmembrane receptors, including glycine receptor
(GlyR) (Dahan et al. 2003), G-protein-coupled receptor
(GPCR) (Calebiro et al. 2013), epidermal growth factor

420 | October 2021 | Volume 7 | Issue 5

receptor (EGFR) (Chung et al. 2010), and acetylcholine
receptors (AChRs) (He et al 2016), which are
attributed to molecular crowding and membrane
heterogeneity (Kusumi et al. 2005; Owen et al. 2009;
Saxton and Jacobson 1997). Moreover, Lippert et al.
found that Wnt3A proteins bind to and diffuse on the
plasma membrane of living cells without any receptor
binding (Lippert et al. 2017).

The diffusive dynamics of lipids have also been
studied by SPT. In 1996, Schmidt et al. applied SPT to
analyse the movement of individual lipid molecules in
an artificial membrane (Schmidt et al 1996). It was
further discovered by SPT that phospholipids undergo
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hop diffusion due to the compartmentalization of cell
membranes (Fujiwara et al. 2002, 2016; Lagerholm et
al. 2017).

It is worth mentioning that in addition to receptors
and lipids, the diffusion of viruses and particles on
membranes has been investigated by SPT. In 2005,
Ewers et al. studied the lateral mobility of murine
polyoma virus-like particles (VLPs) on cell membranes
and artificial lipid bilayers using SPT (Ewers et al. 2005).
Recently, a motion-pattern transition of single
nanoparticles on the membrane was revealed (Ge et al.
2021).

Diffusion in the cytoplasm

With the development of SPT technology, it has been
widely used to study the diffusion of intracellular
molecules. Due to the viscoelastic properties of the
cytoplasm and the presence of organelles, diffusion in
the cytoplasm is quite complex. In 2013, Tabei et al
observed anomalous diffusion of insulin particles
within the cell (Tabei et al. 2013). In 2015, Li et al
introduced a new method based on SPT to rapidly map
intracellular diffusion, revealing heterogeneous and
compartmentalized diffusion resulting from restriction
of the endoplasmic reticulum (ER) (Fig. 34, 3B) (Li et al
2015b). In 2018, Zhao et al. further characterized the
highly spatiotemporal heterogeneity dynamics of
lysosomes in cells (Zhao et al. 2018). With the 3D SPT
technique, it was recently found that intracellular
diffusion is anisotropic quasi-2D rather than isotropic
3D in adherent cells (Chen 2020; Jiang et al. 2020). Han
et al. used the diffusive dynamics of fluorescence beads
to explore the intracellular dynamics between benign
and malignant breast cancer cells (Han et al. 2020). The
combination of SPT and superresolution microscopy
enables the study of dynamics in organelles, such as the
diffusion properties of proteins in mitochondria
(Appelhans et al. 2012).

Diffusion in the nucleus

SPT also has applications in probing diffusive dynamics
in the nucleus. In 2005, the Gratton lab tracked
interphase chromatin dynamics using a two-photon
excitation microscope, showing that chromatin in the
nucleus undergoes confined diffusion and diffusional
jumps (Levi et al 2005). Moreover, individual
telomeres in the nucleus of eukaryotic cells were found
to exhibit anomalous diffusion on a short timescale and
normal diffusion on a long timescale (Bronstein et al.
2009). The use of reflected light-sheet microscopy in
combination with SPT improves the signal-to-noise
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ratio and enables the measurement of the diffusive
dynamics of individual transcription factors in the
nucleus (Gebhardt et al. 2013). Another work studied
the diffusive dynamics of transcription factors and
found the influence of nuclear architecture on gene
regulation (Izeddin et al 2014). In addition, the
diffusion of microinjected viral ribonucleoprotein in the
nucleus has been studied (Babcock et al. 2004).

Directed motion
Vesicle trafficking

Endocytic receptor transport is a complex and dynamic
process. The transport of endocytic vesicles contains
directed motion driven by motor proteins along the
cytoskeleton. Endocytic transport after internalization
of the QD-ligand-receptor complex in real time has
been revealed (Liang et al. 2007; Lidke et al. 2004,
2005; Rajan et al 2008). Furthermore, the
unidirectional and discontinuous transport of nerve
growth factors in axons has been shown (Cui et al
2007). In 2012, a study on EGFR endocytic trafficking
found that paclitaxel altered the transport dynamics of
endocytic vesicles by interfering with microtubule
structures (Li et al. 2012b). In 2018, a study showed
that the intracellular transport of endocytic vesicles is
accelerated in the early stages of apoptosis due to
increased intracellular ATP concentrations. Accelerated
transport was demonstrated to be necessary for
apoptotic progression (Li et al. 2018a) (Fig. 3C, 3D).

In addition to the translational motion, the rotation
of single particles also provides important dynamic
information. For example, the rotation of gold nanorods
during endocytosis and subsequent intracellular
transport was clearly shown (Chen et al. 2017; Xu et al.
2021). Moreover, the rotation of endosomes during
neuronal axonal transport was observed by nanorods
(Kaplan et al. 2018). In addition, endocytic transport of
aptamer-drug conjugates was also characterized by SPT
(Lvetal 2019).

Viral infection

Viral infection is a complex process involving many
steps and complex interactions with different
subcellular structures (Cheng and Ghany 2020). After
entering the cells by endocytosis, the intracellular
transport of a single virus to its destinations is critical
for viral duplication and other functions. SPT has
significantly  contributed to the mechanistic
understanding of the viral infection process
(Brandenburg and Zhuang 2007; Liu et al. 2020b). In
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2003, the Zhuang laboratory tracked individual labelled
influenza viruses in living cells and determined the
internalization and endocytic transport of influenza
viruses (Lakadamyali et al. 2003). The intracellular
transport of a single virus mainly involves three
processes: actin-dependent motion at the periphery of
the cell, directed transport by dynein to the perinuclear
region, and microtubule-dependent intermittent
movement in the perinuclear region. SPT has also been
used to elucidate the entry and internalization
pathways of other viruses, such as poliovirus
(Brandenburg et al. 2007).

Other directed transport

In addition to the directed transport of vesicles and
viruses mentioned above, SPT has been used to uncover
the directed transport of other intracellular
components. In 2006, Courty et al. characterized the in
vivo dynamics of individual kinesin motors labelled by
QDs (Courty et al. 2006). In 2012, Coppola et al. used
3D-SPT to elucidate the dynamics of cationic liposome-
DNA complexes in living cells and found that the
complex mainly undergoes directed motion, in which
microtubules play important roles (Coppola et al
2012). In 2017, Katrukha et al. utilized QDs to analyse
the role of cytoskeletal modulation in both passive and
active intracellular transport (Katrukha et al. 2017). In
2018, a novel type of membraneless organelle named
cytoophidium was found to show directed transport in
fission yeasts, which is attributed to the myosin V with
actin filaments (Li et al. 2018Db).

PERSPECTIVES

In this review, we first introduced the biological
functions and physical mechanisms of intracellular
transport and then briefly reviewed SPT technology
and its applications in studying intracellular transport.
In the future, more efforts should be made to elucidate
the functional roles of intracellular transport dynamics,
bridging the gap between physical behaviours and
biological functions. As intracellular transport
dynamics provide the physical basis for the transfer of
matter, energy, and information, which is crucial for
cellular activities and functions, cells can regulate their

functions by alternating intracellular transport
dynamics. For example, intracellular transport
dynamics are tightly correlated with apoptotic

progression (Li et al. 2018a). Moreover, the functions of
diffusion in biochemical reactions and cellular activities
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remain to be elucidated (Brangwynne et al. 2009).
Since SPT has been used to reveal the infection
mechanisms of the influenza virus at the single-
molecule level, it is expected that SPT will help us to
understand COVID-19 infection in the future, which
may contribute to designing specific drugs targeting the
invasion and intracellular transport of COVID-19 (Ding
etal 2021; Shi 2020).

SPT has promoted the study of intracellular
transport dynamics, but there are still some challenges.
To date, most SPT studies on intracellular dynamics
have been carried out at the cellular level in vitro;
however, the environment in Petri dishes is quite
different from that in real tissue (Li et al 2021;
Pampaloni et al. 2007), and the characteristics and
functions of cells in 3D tissue remain to be investigated
in the future (Han et al 2020; Jiang et al 2021).
Therefore, SPT technology in 3D tissue imaging in vivo
is of great significance and has profound prospects. To
observe tissues, new 3D imaging techniques are
needed. Lattice light-sheet microscopy (LLSM)
technology is an effective method for observing deep
tissue (Li et al. 2015a; Liu et al. 2018) and provides
high spatial-temporal resolution for observing the
subcellular dynamics within cells or tissues. In addition
to microscope developments, new probes are also
needed. Compared with visible light, a fluorescent
probe with near-infrared (NIR) emission can achieve
deeper penetration and better imaging quality, which is
suited for live tissue imaging (Cai et al. 2019; Dai et al
2021; Li et al. 2019; Smith et al. 2009). Single-walled
carbon nanotubes (SWCNTs) have unique intrinsic
fluorescence emission in the second NIR window
(1000-1700 nm), which makes them candidate
fluorescent probes for SPT in deep tissue (Bachilo et al
2002; Hong et al. 2015; Welsher et al. 2009). In brain
tissue, SWCNTs have been tracked to reveal the
nanoscale organizational structure of the extracellular
space (Godin et al 2017). In addition, QDs in NIR
emission are another promising probe for SPTs in deep
tissue (Cassette et al. 2013; Liu et al. 2020a; Zhou et al.
2015). Recently, a new kind of QD emitting at 1600 nm
allowed in vivo confocal 3D imaging of tumour
vasculatures in mice at a depth of 1.2 mm (Zhang et al
2018). Although SPT in real tissue is still challenging, it
is believed that with the development of optical
microscopy and NIR probes, SPT will extend the study
of intracellular transport dynamics in vivo, with
promising applications in biophysical studies and
biomedical diagnosis.
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