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Abstract Microbiota-host interaction has attracted more and more attentions in recent years. The association
between microbiota and host health is largely attributed to its influence on host immune system.
Microbial-derived antigens and metabolites play a critical role in shaping the host immune system,
including regulating its development, activation, and function. However, during various diseases the
microbiota-host communication is frequently found to be disordered. In particular, gut microbiota
dysbiosis associated with or led to the occurrence and progression of infectious diseases, autoimmune
diseases, metabolic diseases, and neurological diseases. Pathogenic microbes and their metabolites dis-
turb the protective function of immune system, and lead to disordered immune responses that usually
correlate with disease exacerbation. In the other hand, the immune system also regulates microbiota
composition to keep host homeostasis. Here, we will discuss the current advances of our knowledge
about the interactions between microbiota and host immune system during health and diseases.
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INTRODUCTION which lack the microbiota exhibit a dramatic deficiency
of immune function, especially in the gut (Gensollen et
al. 2016). Mucosal surface and skin are interfaces for

the microbiota-immune system interplay. After birth,

Microbiome refers to bacteria, fungi, and virus that
colonize in our body. During the past few years, our

knowledge about gut microbiota, especially the bacteria
component, has developed largely. The estimated
bacteria colonized in the gut can reach to 100 trillion,
more than 10 times of the human cell number.
Moreover, metagenome of the gut microbiota is even
more abundant. These complexities account for the
crucial but also complicated role of gut microbiota
during health and diseases.

Growing evidence suggests that the hosts are
affected by gut microbiota largely through its impact on
immune system. In supporting, germ-free (GF) mice
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the development of immune system and microbiota
colonization concurrently occurs, enabling a close
interaction between them (Belkaid et al. 2017).
Mechanically, microbial-derived antigens or active
metabolites usually play critical roles in regulating the
development, activation and function of immune
system.

In this review, we will summarize the current
knowledge about microbiota and host immune system
interaction. In addition, occurrence or progression of
many diseases are frequently associated with
disordered microbiota and immune responses. So, we
will further discuss how the disrupted microbiota-host
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interaction is correlated with diseases. In particular, we
highlight the following aspects: (1) the role of
microbiota as well as microbial-derived antigens and
metabolites in shaping the innate and adaptive immune
systems; (2) the correlation of disordered
microbiota-immune system interaction with various
diseases; (3) the impact of host immunity on microbiota
composition and tissue homeostasis.

MICROBIOTA FACILITATES THE SHAPING OF
IMMUNE SYSTEM

Immune system development

Microbiota-immune system interaction happens as
early as during delivery in genital tract. After then, the
infant body is quickly colonized by microbiota. The
composition of microbiota in various tissues experience
dynamic changes, associated with the physiological and
environmental changes during growth. Meanwhile, the
postnatal period is also critical for immune system
development. As reported, microbial-derived antigens
and metabolites play essential roles in regulating the
development of immune system such as formation of
lymphoid structures and education of immune cells
(Gensollen et al. 2016).

Lymphoid structure formation

Gut-associated lymphoid tissues (GALTs) form the
largest immune network in our body. They are essential
in maintaining gut homeostasis. GALTs include
secondary lymphoid organs such as mesenteric lymph
nodes (mLNs) and Peyer’s patches (PPs), as well as
tertiary lymphoid organs such as cryptopatches (CPs)
and isolated lymphoid follicles (ILFs). Gut microbiota
plays a critical role in the development and maturation
of GALTs. Besides, it also regulates the development of
other mucosa-associated lymphoid tissues (MALTS)
and peripheral lymphoid organs. The germ-free mice
exhibited an obvious deficiency of immune system,
including decreased immune cells, disorganized
structure of secondary lymphoid organs, and reduction
and immaturation of tertiary lymphoid structures.
Microbiota transplantation could significantly recover
the development and maturation of GALTSs.
Furthermore, a recent study suggested that a specific
bacterial polysaccharide (PSA) from Bacteroides fragilis
could also efficiently restore the number of CD4" T
cells, indicating that microbial metabolites played a
crucial role in promoting the development and

© The Author(s) 2021

maturation of immune system (Oerlemans et al. 2021).
The formation of secondary and tertiary lymphoid
organs needs a particular type of immune cells, termed
lymphoid tissue inducer (LTi). Lymphotoxin-f3
generated by these cells plays an essential role in
lymphoid organogenesis (Upadhyay et al. 2014). The
LTi activation is regulated by upstream cytokines,
mainly including IL-23 and IL-1f. They are secreted by
dendritic cells, macrophages, and gut epithelial cells
under the stimulation of microbiome. The lymphotoxin
signal induces an inflammatory environment in local
tissue and promotes chemokine production. It leads to
lymphocyte recruitment to tertiary lymphoid organs to
promote the structure maturation (Upadhyay et al.
2014). Once matured, these lymphoid structures are
more prominent in promoting tissue homeostasis and
regulating immune responses. Therefore, microbiota is
critical for the development and maturation of
lymphoid structures.

T cell development

T cell development happens in thymus. Self-antigen
expression on thymic epithelial cells (TECs) is
important in generating the TCR repertoire and central
tolerance. Thus, microbial antigens were thought to be
absent in T cell development. However, a recent study
revealed that intestinal microbiota colonization in early
life could induce the expansion of microbiota-specific T
cells in thymus (Zegarra-Ruiz et al. 2021). The
intestinal dendritic cells migrated from gut to thymus,
and they delivered microbial antigens for the
generation of microbial antigen specific T cells. After
development, these microbial antigen specific T cells
migrated to the gut. There they encounter the
microbial-derived antigens again and further
differentiated to effector cells. This process was critical
in regulating the gut homeostasis.

Innate immunity

The communication between gut microbiota and host is
largely relayed on innate immune system. As well
known, dendritic cells and macrophages in the gut
epithelium can sense pathogen-associated molecular
patterns (PAMPs) on the microbiome. Then, they are
activated and transduce the gut microbial signals to
other immune cells. In steady state, their activation
leads to an immune tolerance to gut commensals or a
resistance to pathogenic microbes. In this part, we will
also introduce some other recently studied innate
immune cells.
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Dendritic cells

The Dendritic cells (DCs) population consists of
classical DC (cDC), plasmacytoid DC (pDC) and
monocyte-derived DC (Sun et al. 2020). They play a
critical role in maintaining tolerance to gut commensals
and resistance against pathogenic microbes. Gut
homing DCs can process microbial antigens and present
their peptides on MHC molecules to induce activation of
microbial specific adaptive immune cells. Microbial
derived metabolites also affect the DC function. Retinoic
acid (RA) is a vitamin A metabolite. It plays an
important role in gut-tropic pre-mucosal dendritic cell
(pre-uDC) generation. It upregulates integrin oyf3;
expression on the pre-uDC, which benefits their homing
toward intestine (Zeng et al. 2013). In addition, RA
promotes differentiation of pre-uDC into ¢DC1 and
cDC2. Deficiency of RA will result in a reduction of
cDC2, as well as phenotype changes of cDC1 and cDC2
(Zeng et al. 2016). DCs were also reported to be
regulated by vitamin D. DCs treated with 1,25(0H),D;,
the active form of vitamin D, or vitamin D analogs
showed resistance to maturation under inflammatory
stimuli (Aranow 2011). 1,25(0H),D; inhibited the
expression of MHC-II and costimulatory molecules on
DCs. Moreover, 1,25(0H),D; promoted DCs to secret
anti-inflammatory cytokine IL-10, which induced Treg
differentiation (Aranow 2011; Martens et al. 2020).
Short-chain fatty acids (SCFAs) refer to fatty acids with
less than six carbons, predominantly including acetic
acid, propionic acid, and butyric acid. They are
generated through the bacterial fermentation of dietary
fibers. SCFA is another critical microbial metabolite for
DCs. Acetate, butyrate, and propionate could inhibit the
expression of costimulatory molecules (CD80, CD86
and CD40) on DCs. They also repressed the production
of several pro-inflammatory chemokines and cytokines
(Iraporda et al. 2015; Nastasi et al. 2015). SCFAs
treated DC displayed a strong Treg-inducing activity,
promoting Foxp3 expression in naive CD4" T cells
(Arpaia et al. 2013). Therefore, the microbiota and
microbial metabolites are necessary to regulate the
maturation and function of DCs.

Macrophages

Macrophages play important roles in maintaining tissue
homeostasis. They recognize foreign pathogens by
pattern recognition molecules such as TLR4, and then
are activated to eliminate the invading pathogens
(Swanson et al. 2020). Under distinct stimuli,
macrophages are polarized to classical (“M1”) or
alternative (“M2”) activated subtypes. They play pro- or
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anti-inflammatory roles respectively. Microbiota-
derived metabolites also affect the macrophages
function. For example, lipopolysaccharides (LPS) from
gram-negative bacteria could be recognized by TLR4 on
macrophages and promoted them to produce
inflammatory cytokines (Correa-Oliveira et al. 2016;
Fujihara et al. 2003). The LPS also converted
macrophages from an M2 phenotype to the M1
phenotype. In opposite, short chain fatty acid facilitated
M2 polarization. Propionic acid is normally generated
by the gut flora in colon. They inhibited the production
of pro-inflammatory cytokines and chemokines from
macrophages (Al-Lahham et al. 2012). Another SCFA
butyrate was reported to suppress LPS-mediated
macrophages migration (Maa et al. 2010). Particularly
in the gut, macrophages are divided into a “resident”
and an “inflammatory” subset (Bain et al. 2013). The
resident macrophages secret anti-inflammatory
cytokine IL-10 and thus promote Treg cell expansion
(Isidro et al. 2016). On the other hand, the
inflammatory macrophages express high levels of CD14
and secret pro-inflammatory cytokines (Bain et al.
2013). The gut microbiota-generated butyrate
suppressed the inflammatory macrophages through
inhibiting histone deacetylation or NF-kB activation
(Chang et al. 2014). In addition, it also facilitated anti-
inflammatory activity of macrophages by promoting IL-
10 secretion (Singh et al. 2014). Vitamin D also
regulates the macrophage function. 1,25(0H),D;,
increased the antimicrobial activity of macrophages by
promoting the production of defensin 2 and cathelicidin
antimicrobial peptide (CAMP) (Bellan et al. 2020). In
brief, the microbiota and microbial metabolites play
important roles in regulating the migration and
function of macrophages.

Innate lymphoid cells

As mentioned above, the lymphoid organogenesis is
regulated by LTi, which are classified into an innate
lymphoid cell (ILC) population. The ILC is a recently
defined component of the innate immune system. ILCs
play an essential role in regulating tissue homeostasis.
According to their functional features, the ILCs are
divided into three subgroups. The group 1 ILC (ILC1) is
prominent in secreting IFN-y and TNF-a. The group 2
ILC (ILC2) mainly expresses IL-5, IL-13, and certain IL-
4. And, the group 3 ILC (ILC3), including a NCR" ILC3
subset and a CCR6" LTi subset, are prominent in
generating IL-22 and IL-17A (Spits et al. 2013; Vivier et
al. 2018).

Microbiota is critical in regulating ILCs. In germ-free
mice, the activity of NK cells, which belong to ILC1, was
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significantly reduced in non-mucosal tissues. This led to
a severe defect in their antiviral immunity. Further
investigation revealed that phagocytes in the germ-free
mice failed to express several inflammatory response-
related genes that were essential to prime NK cells
(Ganal et al. 2012). The lack of microbial colonization in
germ-free mice also impaired NCR" ILC3 development,
and reduced their production of IL-22 (Negi et al.
2019). Transferring microbiota of SPF mice to the
germ-free mice efficiently recovered the expression of
IL-22 from ILC3, confirming that microbiota regulated
ILC3 activation (Reynders et al. 2011). Mechanically,
microbiome colonization promotes IL-23 production in
the gut which was essential for the ILC3 function.
Besides, segmented filamentous bacteria (SFB), a
particular commensal, was sufficient to promote 1L-22
production from ILC3 (Sano et al. 2015).

An important manner that microbiota affects the
development and function of ILCs is through microbial-
derived metabolites. For instance, SCFAs could bind to
“metabolite-sensitive” G protein-coupled receptors
(GPCRs) on immune cells and transduce regulatory
signals to them (Koh et al. 2016; Tan et al. 2017). The
NCR" ILC3 expressed a butyrate receptor GPR109a.
Once engaged by butyric acid that concentrated in
terminal ileal Peyer’s patches, it was activated and
suppressed the cell amplification. In consistent,
antibiotic treatment restored the butyric acid caused
ILC3 deficit. This process finally benefited effector T
cell activation in Peyer’s patches through repressing
GM-CSF production from the NCR* ILC3 (Kim et al
2017). In contrast, the ILC3 in colon lamina propria
expressed another SCFA-sensitive G protein coupled
receptor, Ffar2 (or GPR43). Ffar2 agonists selectively
promoted the proliferation and effector function of
ILC3. In addition, deletion of FfarZ reduced
proliferation and IL-22 production of ILC3. These
deficits further affected intestinal epithelial cells,
leading to reduced expression of mucus-related
proteins and antimicrobial peptides, as well as an
impaired intestinal epithelial junction (Chun et al
2019). Together, the impact of SCFAs on ILC3s needs to
be clarified carefully. The other active microbial
metabolites are aromatic hydrocarbons. Aromatic
hydrocarbon receptor (AhR) is a critical transcriptional
regulator of ILC3. In Ahr deficient mice, the number of
intestinal ILC3 dramatically reduced, leading to
significant defects of CPs and ILFs. The Ahr deficient
ILC3 also showed reduced expression of c-Kit, IL-7R, as
well as anti-apoptotic genes Bcl2 and Bcl2l1 that
correlated with the deficit (Zelante et al. 2013). Several
microbial metabolites could work as the AhR agonists.
For example, Lactobacillus metabolize tryptophan to
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indole-3-aldehyde to serve as an AhR ligand (Zelante et
al. 2013). After engaged with its ligand, the AhR
translocates from cytoplasm to nucleus, where it pairs
with AhR nuclear translocater (ARNT or HIF-1f) and
binds to exogenous response elements (XRE) in the
genome to regulate the expression of several important
downstream genes as just mentioned (McIntosh et al.
2010). AhR also enhanced the IL-22 expression, which
in turn helped to maintain the diversity of gut
microbiota and facilitated the resistance to pathogenic
microbes such as Candida albicans (Zelante et al. 2013).
Besides SCFAs and aromatic hydrocarbons, our
knowledge about active microbial metabolites is still
expanding along with the comprehensive studies of
microbiota. In brief, microbiota and particularly the
active microbial metabolites are essential for the
development, proliferation, and function of ILCs, and
thus regulate the gut homeostasis.

INKT

Invariant NKT (iNKT) cell is a distinct component of the
immune system and is also crucial in regulating gut
homeostasis. It exhibits innate immunity features as
indicated by rapid cytokine releasing after stimulation.
The iNKT expresses an invariant TCR. The TCR a chain
is formed by rearrangement of Val4 and Jal8 gene
fragments, and it pairs with a limited set of V(3 chains.
This specific invariant TCR recognizes glycolipid
antigens presented by a non-polymorphic MHC class I
molecule CD1d (Cianferoni 2013). The development
and function of iNKT cells are also affected by
microbiota. In mice from different animal facilities, the
iNKT cells showed distinct cytokine expression features
and a variation of a VB7 expressing subpopulation.
These phenotypes were attributed to the difference of
microbiota composition. In addition, splenic iNKT cells
from germ-free mice exhibited an immature phenotype
and a decreased reactivity to a-galactosylceramide
antigen. However, once exposed to Sphingomonas by
gavage, the iNKT cell maturation was completely
rescued (Wingender et al. 2012). In contrast to the
splenic iNKT defects, in colon lamina propria and lungs
of germ-free mice the mucosal iNKT were found to be
accumulated, correlated with a CXCL16 mediated
recruitment (Olszak et al. 2012). The accumulation of
iNKT cells caused a higher morbidity during
inflammatory bowel disease (IBD), as well as an
increased incidence of allergic asthma. Colonization of
conventional microbiota in newborn germ-free mice
could efficiently protect the mucosal iNKT
accumulation (Olszak et al. 2012). Moreover,
glycosphingolipids generated from Bacteries fragilis
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could also reduce the iNKT cells in colon, and thus
protected the mice from oxazolone-induced colitis (An
et al. 2014). Therefore, the microbiota and microbial
metabolites are necessary to regulate the maturation,
proliferation and recruitment of iNKT cells in different
tissues.

Adaptive immunity

Adaptive immune system comprises of T and B cells.
The T cell population is further divided into CD4" T
helper cells (Th), CD8" cytotoxic T cells, and
CD4'Foxp3” regulatory T cells (Treg). Immature B cells
and naive T are generated in bone marrow and thymus.
Microbiota, and microbial antigens or metabolites, also
substantially regulate the development, differentiation
and activation of adaptive immune system.

Th1 and Th2

CD4" T cells are further divided into different subsets
with distinct effector functions. Among them, Th1 and
Th2 are critical in maintaining host homeostasis. The
impact of microorganisms on Th1 and Th2 balance was
described as early as in 1980s in a hygiene hypothesis.
In consistent, people also found a tilted Th2 response in
germ-free mice, which was reversed by administrating
the mice with polysaccharide A (PSA) from B. fragilis
(van Olst et al. 2021). In another study, Bifidobacterium
longum strain W11 (strain B. longum W11) also
significantly increased Thl cytokine production.
However, other B. longum strains, NCIMB 8809 and
BIF53, turned to reduce the Th1 response (Cheng et al.
2019a). In opposite, B. adolescentis treatment increased
Th2 cell number and Th2 responses in colon lamina
propria of mice (Kim et al. 2021). So, the impact of
different microbes on the Th1 and Th2 balance and the
underlaying mechanisms still require comprehensive
studies. A latest research showed that the bacterial
metabolite butyrate benefited the polarization of Thl
through inhibiting histone deacetylase (HDAC) activity
(Chen et al. 2019). Germ-free mice treated with
butyrate also enhanced the expression of Th1 signature
genes, T-bet and IFN-y (Kespohl et al. 2017). In brief,
the balance of Th1l and Th2 responses is substantially

affected by microbiota and microbial-derived
metabolites.
Th17

Microbiota also affects the differentiation and function
of Th17 cells. In germ-free mice, the Th17 cells were
absent in intestine (Longman et al. 2013). But once
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colonized with standardized mouse microbiota or a
particular SFB bacterium, the Th17 deficiency could be
efficiently rescued. The SFB colonization also helped to
protect mice from Citrobacter rodentium infection,
through enhancing the Th17 differentiation (Gensollen
et al. 2016). The SFB antigen specific CD4" T cells
preferentially differentiated towards Th17. Even during
a co-infection of SFB and Listeria monocytogenes, most
SFB-specific T cells were found as Th17, whereas most
L. monocytogenes-specific T cells were Th1, suggesting
that the bacterial antigens were critical in determining
the fate of effector Th cells (Longman et al. 2013).
Colonization of SFB to ileal epithelium stimulated
reactive oxygen species (ROS) generation, which
promoted IL-1B expression and thus facilitated the
Th17 differentiation (Ravindran et al. 2016; Tschopp et
al. 2010). Besides, SFB also induced serum amyloid A 1
and 2 (SAA1/2) in terminal ileum to promote the
polarization of Th17 and their IL-17A production
(Ravindran et al. 2016; Sano et al. 2015). Mechanically,
the SAA induced IL-23 production from dendritic cells,
which was critical for the activation and survival of
Th17 (Wingender et al. 2012). Other microbes, like
Bifidobacterium, also affected the Th17 polarization,
but the underlying mechanisms still need further
studies (Tan et al. 2016; Tanabe 2013).

Microbial metabolites also regulate the Th17
differentiation. For example, adenosine 5’-triphosphate
(ATP) derived from microbiota stimulated a unique
group of CD70™#"CD11¢"°Y immune cells in intestinal
lamina propria to produce IL-6 and IL-23p19, leading to
a promoted Th17 differentiation (Basso et al. 2009).
Microbial derived AhR ligands also enhanced the
differentiation and activation of Th17 (Baricza et al.
2016). The impact of another microbial metabolite
SCFA on Th17 cells is diverse. While acetate increased
Th17 response during C. rodentium infection (Cheng et
al. 2019a), butyrate inhibited the differentiation and
function of Th17 by suppressing expression of RORyt,
RORa and IL-17 (Chen et al. 2019). Another microbial
metabolite, PSA from B. fragilis, also inhibited the
differentiation and function of Th17 through affecting
DCs (Jiang et al. 2017; Round et al. 2011; Round et al.
2010). The gut microbiota transforms bile acids into
many biologically active molecules which also showed
impacts on T cell differentiation. As reported in a latest
study, 3-OxoLCA, a derivative of lithocholic acid (LCA),
directly inhibited the differentiation of Th17 cells
through binding to RORyt (Hang et al. 2019). Together,
these microbial metabolites are essential in regulating
the differentiation and effector function of Th17
cells.
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Treg

Treg cells play a crucial role in maintaining the host
tolerance to commensals. They were also significantly
reduced in the colon of germ-free mice. Whereas
standardized microbiota or certain colonies of
Clostridium could efficiently restore the Treg deficiency
(Atarashi et al. 2011; Sefik et al. 2015). Clostridium was
the most abundant Gram-positive spore bacteria in the
gut (Momose et al. 2009). Among them, Clostridium IV
and XIVa were enriched in cecum and proximal colon.
There they generated SCFAs and induced gut epithelial
cells to secret TGF-B1, both of which could stabilize
peripheral Treg and promote their regulatory function
(Atarashietal. 2011, 2013).

Microbiota derived metabolites are also involved in
regulating the Treg cell differentiation, stabilization and
function. Butyrate promoted the differentiation and
stabilization of Treg through inhibiting the activity of
HDAC and thus increasing histone H3 acetylation at the
enhancer region of Foxp3 (Furusawa et al. 2013). PSA
from B. fragilis promoted Treg differentiation and IL-10
expression through activating TLR2 signal in Treg
(Round et al. 2010). And, isoalloLCA, a specific bile acid
derivate generated by gut commensals, upregulated the
expression of Foxp3 and facilitated the differentiation of
Treg by inducing mitochondrial reactive oxygen species
(mitoROS) (Hang et al. 2019). Therefore, gut microbiota
and microbial metabolites are required for appropriate
differentiation and function of Treg.

CD8’ T cells

Microbiota and microbial metabolites also regulate
cytotoxic CD8* T cells. For example, microbial-derived
butyrate could increase the Id2 expression in CD8" T
cells, which promoted their antitumor efficiency
through an IL-12 signal (He et al. 2021). In another
instance, bacterial infection increased systemic acetate
level in serum. Once uptake by memory CD8" T cells,
the acetate promoted glycolysis in the cells and boosted
arapid recall response (Balmer et al. 2016).

B cells

B cells provide a particularly immune protection
through producing antibodies. B cell development in
germ-free mice was normal, however, their antibody
production was distinct to B cells in SPF mice. In
consistent with the hygiene hypothesis, the proportion
of IgE" B cells in Peyer’s patches and mesenteric lymph
nodes of germ-free mice was increased after weaning.
These changes led to an over-reaction to oral
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administration-induced systemic allergy. Colonizing
young germ-free mice with conventional microbes
recovered the IgE to normal level, suggesting that
intestinal microbiota negatively regulated the IgE
production (Cahenzli et al. 2013). In addition, the
conventional microbiota colonization also restored IgA
and IgG1 production in germ-free mice (Hapfelmeier et
al. 2010). Besides, butyrate also regulated the B cell
function. It induced an IL-10-producing B cell
population by regulating circadian-clock-related genes
(Kim et al. 2021).

In summary, the development and function of innate
and adaptive immune cells are broadly regulated by
microbiota. Mechanically, microbial-derived antigens or
particular metabolites are found to affect the antigen
presentation, signaling transduction, or transcriptional
regulation in innate or adaptive immune cells (Fig. 1).
Hence, a proper colonization of microbiome after birth
is necessary for the normal development and education
of host immunity.

HOST-MICROBIOTA INTERACTIONS IN DISEASES

In opposite to the fundamental role in promoting host
immunity and tissue homeostasis, the microbiota also
associates with many diseases through disturbing the
protective function of immune system. In the following
part, we will discuss how microbiota and microbial
metabolites influence the susceptibility of host to
various diseases, such as infectious diseases,
autoimmune diseases, and metabolic diseases.

Infectious diseases

Gastrointestinal infection is a global health concern. A
major human diarrheal pathogen is Vibrio cholerae,
which affects millions of people annually (Clemens et al.
2017). A previous study demonstrated that a few innate
immunity-associated molecules, including NF-«B,
MAPK and TLRs, were activated during early V.
cholerae infection (Bourque et al. 2018). However, the
intestinal disruption would still last for over a month,
which might protect the host from a secondary
infection by V. cholera or other pathogens.
Metagenomic studies revealed an obvious difference
between the microbiota in V. cholera infected patients
and that in healthy people (Alavi et al. 2020). Further
studies indicated that Blautia obeum abundance
significantly correlated with V. cholerae resistance
(Alavi et al. 2020). Together, the protection against V.
cholerae infection was provided by both a long lasting
immune response and the abundance of particular
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Fig. 1 Microbiota helps to shape the immune system. A Both microbes and their metabolites regulate ILC3. SFB colonization promotes
the production of IL-22 from ILC3 in an IL-23-dependent manner. Butyric acid negatively regulates the NCR" ILC3. Whereas, SCFAs se-
lectively promote the proliferation and effector function of colonic ILC3 through binding to GPR43. The Ahr ligand generated from mi-
crobes also regulates ILC3 number and their IL-22 production. B B. fragilis reduces the number of iNKT cells in the gut. C Microbes and
their metabolites affect Th1 response. Bifidobacterium influences the Th1 cytokine production. L. monocytogenes induces the Th1 differ-
entiation. Also, a microbial metabolite, butyrate, benefits the Th1 polarization. D Microbes and their metabolites regulate the differenti-
ation and effector function of Th17. SFB facilitates the differentiation of Th17 through promoting ROS and SAA production from the ileal
epithelial cells. The SAA also benefits the activation and survival of Th17 by stimulating IL-23 production from dendritic cells. The ATP
derived from microbiota also stimulates the differentiation of Th17 cells. SCFAs, such as butyrate, inhibits the polarization of Th17 cells,
however, acetate promotes the Th17 responses. B. fragilis produced PSA inhibits the differentiation of Th17. The AhR ligands enhance
the IL-22 secretion from Th17. E Microbes and their metabolites regulate Treg differentiation and function. Clostridium generates
SCFAs, and induces the epithelial cells to produce TGF-f1. Both SCFAs and TGF-B1 can stabilize peripheral Treg and promote their func-
tion. The PSA produced by B. fragilis promotes the differentiation of Treg cells and their IL-10 expression. The butyrate promotes the
differentiation of Treg. F Conventional microbiota deletion reduces the IgA secretion from B cells
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commensals such as B. obeum. Helicobacter pylori is
another pathogen commonly associated with the
initiation and progression of peptic ulcers and stomach
cancer (Pucutek et al. 2018). In a latest research, H.
pylori infection was found to induce a quick stomach
infiltration of ILC2 (Satoh-Takayama et al. 2020). IL-5
produced by ILC2 promoted IgA expression from B
cells, which then coated on the H. pylori and helped
with its clearance. Taking advantage of culture-
independent next-generation sequencing (NGS)
technology, we are now able to gain more knowledge
about the microbial communities (metagenomics) and
their involvements in the incidence or progression of
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infectious diseases (Tay et al. 2016). However, further
studies about the underlying mechanisms of
microbe-microbe or microbe-host interactions are still
needed to get a comprehensive understanding of these
infectious diseases.

Autoimmune diseases

Autoimmune diseases, such as multiple sclerosis (MS),
rheumatoid arthritis (RA), and inflammatory bowel
disease (IBD), affect approximately 10% of the world
population (Gawalko et al. 2020). MS is the most
common demyelinating disorder. There were about 1.6
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to 1.95 million MS patients in 2017 in the world
(Brownlee et al. 2017). Microbiota is found to correlate
with MS incidence. In a study of spontaneous brain
autoimmunity with transgenic mice model, microbiota
from MS patient induced a significantly higher
incidence of brain autoimmunity in the mice than that
from his/her healthy-twin. In consistence, IL-10
production from the immune cells of the mice receiving
the MS-twin microbiota was significantly reduced
(Berer et al. 2017). Microbial metabolites, such as PSA
derived from B. fragilis, was able to induce the
differentiation of CD4" T cells to IL-10 producing Tregs
(Round et al. 2010, 2011). In addition, mice colonized
with B. fragilis showed a significant recovery from EAE,
another mouse model of MS (Ochoa-Repéraz et al
2010a). Also, oral administration of PSA protected EAE
through a TLR-2-dependent manner (Ochoa-Reparaz et
al. 2010b; Wang et al. 2014). Thus, the application of B.
fragilis or PSA may provide a promise for the MS
patients in future. SCFAs are also involved in the MS
occurrence. The abundance of SCFA-producing bacteria
in the MS patients was decreased. And, propionic acid
(PA) in their serum and feces was also reduced. These
reductions caused an imbalance between Treg and
Th17, and increased the severity of the disease. PA
supplementation to EAE mice enhanced their Treg
function, and thus delayed the disease progression
(Duscha et al. 2020). The microbiota-host interaction
in human, however, is sometimes distinct with that in
mice. For example, in mice the B. fragilis had an obvious
anti-inflammatory function, but in human it led to
inflammation. The impact of microbiota on
autoimmune patients was also influenced by their
genetic backgrounds, dietary habits and lifestyles
(Yurkovetskiy et al. 2015). Thus the precise
mechanisms by which microbiota affects the pathology
of autoimmunity in human patients still need further
investigation.

Metabolic diseases

Metabolic diseases such as type 2 diabetes,
cardiovascular diseases, and fatty liver diseases are
frequently concurrent with obesity. There are over 1.9
billion obese people in the world. The occurrence of
metabolic diseases in obese people is frequently
correlated with their microbiota dysbiosis (Han et al.
2014; Tang et al. 2017; Wang et al. 2011) and chronic
inflammation (Saltiel et al. 2017). During obesity, gut
microbiota alteration is usually observed, including
changes of specific microbial populations and reduction
of microbial gene richness (MGR) (Muscogiuri et al.
2019). One important evidence correlating the
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microbiota alteration to obesity was that fecal
microbiota from obese donor mice was sufficient to
cause obesity in recipient mice.

Microbial-derived metabolites also contribute to
obesity as well as metabolic diseases. The gut barrier
consists of physical, biological and immunological
components, normally protects pathogenic microbial
metabolites from the host (Wells et al. 2017). For
example, goblets, a type of specialized gut epithelial
cells, secret mucus and particular glycoprotein mucins
to form a mucus layer against enteric bacteria or
pathogen invasion (Derrien et al. 2010). Thus,
microbial metabolites such as lipopolysaccharide (LPS)
can hardly enter the circulation through gut barrier in
normal conditions. Ever if there is very few LPS
leakage, it would be quickly cleaned by immune system
or degraded in liver via detoxification (Huang et al.
2016). However, obesity or diabetes will lead to a
reduced mucus thickness in mice (Everard et al. 2013;
Li et al. 2016) and human (Chassaing et al. 2017),
which correlated inversely with body mass index (BMI),
blood glucose levels and glycosylated hemoglobin. The
thin mucus layer increased the leakage of LPS to
circulation, resulting to augmented plasma LPS. In the
situation of obesity, plasma LPS level was at least
doubled (Lassenius et al. 2011). The increased plasma
LPS led to a metabolic endotoxemia and a systemic
inflammation (Fuke et al. 2019), which finally caused
insulin resistance and various metabolic diseases.
Therefore, the microbiota and its impact on the
immune system should be considered in future for
various metabolic diseases (Sittipo et al. 2018).

Neurological diseases

Gut microbiota also plays a critical role during neuron
system development. Microglia cells in brain perform a
canonical myeloid cell function, including phagocytosis
and initiating pro-inflammatory responses (Nayak et al.
2014). It was found that germ-free mice were less
resistant to LPS stimulation and LCMV infection
(Matcovitch-Natan et al. 2016). Transcriptome analysis
suggested that the microglia from the mice exhibited an
immature phenotype that caused impaired immune
responses. Microbial recolonization partially restored
the defect, indicating that microbiota was involved in
regulating the maturation and function of microglia
(Erny et al. 2015). Also, microbiota was found involved
in the incidence and recovery of CNS injury. In a mouse
model of middle cerebral artery occlusion (MCAO)-
induced ischemic brain injury, intestinal bacteria
promoted infiltration of IL-17° y8T cells and their
responses in the brain, resulting to a CNS injury.
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However, once the mice were treated with amoxicillin
and clavulanic acid, they showed a reduced infarct
volume and an improved sensorimotor function. This
neuroprotective effect was related to decrease IL-17"
YOT cell infiltration in meninges (Benakis et al. 2016).
Nonetheless, other antibiotics, such as ciprofloxacin
and metronidazole, turned to reduce the mice survival
following MCAO, indicating that different microbial
species had distinct impacts on the brain injury (Winek
et al. 2016). Therefore, both microbiota and immune
system were implicated in neurologic pathologies
(Dinan et al. 2017), however, further studies about the
underlying mechanisms are still needed to clarify how
particular microbes and specific immune cells
cooperate to regulate CNS function.

In brief, microbial dysbiosis correlates with many
diseases (Fig. 2). Gut microbiota is frequently found to
be disturbed in infectious diseases such as H. pylori
induced peptic ulcers. Microbiota also contributes to
the occurrence of autoimmune diseases, including
multiple  sclerosis, rheumatoid arthritis, and
inflammatory bowel disease. Moreover, as a cause of
chronic inflammation, the microbiota is involved in the
incidence of metabolic diseases and neurological
diseases. Manipulating the microbiota alteration in

these diseases may serve as a potential therapeutic
strategy in future.

IMMUNE SYSTEM REGULATES MICROBIOTA
COMPOSITION AND GUT HOMEOSTASIS

While microbiota helps to shape the host immune
system, the host immunity also regulates microbiota
composition and gut homeostasis in reverse.
Gastrointestinal tract includes a mucus layer, an
epithelial layer, and a lamina propria layer. The mucus
and epithelial layers serve as a chemical barrier and a
physical barrier, which protect the gut flora in the
lumen from the host cells. Whereas, the lamina propria
that contains numerous immune cells such as T cells, B
cells, ILCs, macrophages, DCs, and intraepithelial
lymphocytes (IELs), mainly plays an immune barrier
function (Allaire et al. 2018).

The immune barrier is critical in regulating gut
microbiota composition and maintaining gut
homeostasis. For example, IL-22 produced by ILC3 and
Th17 cells induced gut epithelial cells to generate
essential regulators for microbiota, including
antimicrobial peptides (B-defensins, RegllIf, Regllly),

Microbiota

Immune system

57
Gastrointestinal tract Adipose tissue Central nerve system
Infection Obesity CNS injury
Ulcer & Diarrhea Insulin resistance Autoimmune diseases

Fig. 2 The host-microbiota interaction in diseases. Microbiota and their metabolites regulate the development and function of the im-
mune system, and thus influence diseases in multiple tissues. In the gastrointestinal tract, the microbiota dysbiosis causes infectious dis-
eases, and the host shows symptoms of ulcer and diarrhea. In the adipose tissue, the microbiota contributes to metabolic diseases, such
as obesity and insulin resistance. In the central nerve system, the microbiota involves in the incidence and recovery of CNS injury and

autoimmune diseases
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calcineurin (S100A8, S100A9) and lipoprotein 2 (Parks
et al. 2015). Antimicrobial peptides directly killed or
inhibited the growth of microbes. Calprotectin formed
by S100A8 and S100A9 heterodimer could sequester
zinc and manganese, preventing microbes from these
nutrients. And, lipocalin-2 bound to siderophore
enterochelin to limit iron availability in the gut (Cheng
et al. 2019b). IL-22 also induced epithelial cells to
secrete high levels of mucus-related molecules,
including Mucl, Muc3, Mucl0, and Mucl3, which
prevented gut microorganisms from transmitting
across the epithelial barrier during steady state and
inflammation (Sonnenberg et al. 2011). Furthermore,
IL-22  could wupregulate al,2-Fucosyltransferase-2
(Fut2) expression in gut epithelial cells, which
eventually increased fucosylation of gut epithelium.
Once shedded to gut lumen, the fucose residue could
serve as dietary carbohydrates for commensals, and
thus competitively promoted microbial balance
(Pickard et al. 2014). Besides IL-22, other cytokines,
like IL-17F, produced by Th17 and ILC3 also promoted
the production of antimicrobial peptides in the
epithelial cells (Domingues et al. 2020).

Th and ILC activation induce tissue inflammation to
suppress pathogenic microbes in the gut. IELs, mainly
including af” and y8* T cells, locate between epithelial
cells. They played a critical role in protecting epithelial
damage and preventing microbial transmission through
producing inflammatory cytokines, such as IFN-y and
keratinocyte growth factors (KGF) (Olivares-Villagomez
et al. 2018). Treg cells are the other crucial regulators in
the gut which help to suppress inflammation and
maintain immune tolerance. IL-10 produced by Treg has
a critical immune suppressive function. The IL-10 and
Treg were indispensable for repressing pro-
inflammatory T cells in mice infected by H. hepaticus,
and thus protect epithelial damage (Takeshi Tanoue
2010).

Besides T cells and ILCs, other immune cells also
involved in regulating the microbiota composition and
gut homeostasis. DCs and macrophages are responsible
for the identification and clearance of pathogenic
bacteria. DCs could protrude their synapses through
intestinal epithelium to the gut lumen to sense
pathogenic microbes such as Salmonella and E. coli, and
then initiated both innate and adaptive immune
responses against the pathogens (Liu et al. 2018).
Secretory IgA (sIgA) produced by B cell also had a crucial
role in regulating microbiota composition through
coating on colitogenic bacteria and promoting their
clearance (Palm et al. 2014).

In summary, immune cells are indispensable in
regulating the microbiota composition and gut
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homeostasis (Fig. 3). DCs directly sense the microbiota
in gut lumen and transduce the microbial signals to
other immune cells, like ILC3 and Th17. They then
produced IL-22 to regulate epithelial cells to secret
microbial regulators, preventing pathogenic bacteria
from invasion. B cells produced sIgA also helps to clear
colitogenic bacteria. Meanwhile, IELs and Treg protect
the epithelium from damages. In brief, these immune
cells, epithelial cells, microbiota interplays suppress
pathogenic bacteria from adhering to the surface of the
intestinal mucosa, help to balance the composition of
microbiota, and protect the host from infectious or
inflammatory diseases.

CONCLUSIONS AND PERSPECTIVES

As discussed above, microbiota and immune system
mutually interact with each other. The microbiota
shapes the development and function of both innate
and adaptive immune systems. But in various disease
conditions, it also affects protective immune functions
leading to disease occurrence or progression. In
reverse, the immune system also regulates the balance
of microbiota, keeping the host tolerance to
commensals but promoting the clearance of pathogenic
microbes. This microbiota-immune system interplay is
critical in maintaining host homeostasis. For future
application, fecal microbial transplantation seems to be
a promising therapeutic strategy for certain patients.
However, our knowledge about the precise
mechanisms underlying the communication between
microbiota and local or systemic immunity is still quite
limited currently. Further investigations correlating the
microbiota alterations in health and diseases with host
immunity changes are required to promote the clinical
application of microbiota. The microbial community
also consists of viruses, fungi, and protozoan. Their
interplay with the host immunity and roles in health
and diseases are still quite elusive, and thus are not
involved in this review. But certain recent studies
indicate that they should never be omitted.
Furthermore, integration of ecological, genomic,
microbiological and immunological approaches is also
required in the future microbiota studies.

While increased evidences link most human diseases
with gut microbiota dysbiosis, whether this disorder is
a cause or a consequence is still largely unclear. Human
microbiota-associated rodent models are frequently
used to study the relationship between the alerted
microbiota and the occurrence of relative diseases.
However, it should also be aware that numerous human
gut microbes were unable to colonize in recipient
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Fig. 3 Immune system regulates the microbiota. A Microbiota is regulated by ILC3 and Th17 cells. The ILC3 and Th17 cells inhibit the
growth of microbiota through producing IL-22 and inducing epithelial cells to secrete -defensins, antimicrobial peptides and calcineu-
rin. The IL-22 also induces epithelial cells to secrete mucin, and thus represses the transmission of gut bacteria. In addition, the IL-22
upregulates Fut2 expression in the epithelial cells, and increases the fucosylation on their surface, which benefits the proliferation of
commensals in the gut. B IELs protect the damage of epithelial cells through producing cytokines such as IFN-y and keratinocyte growth
factors (KGF). C Treg cells repress the damage of epithelium by secreting IL-10. D DCs protrude their synapses through the intestinal
epithelium to the gut lumen to sense the microbiota. E B cells produce secretory IgA (sIgA) to the gut lumen. The sIgA coats on the coli-

togenic bacteria to help with their clearance

animals (Zhang et al. 2017). Also, genetic alteration,
dietary habits, and lifestyles of those patients with gut
dysbiosis may be critical for the disease phenotypes,
but they are usually difficult to be recapitulated in
experimental animals (Arrieta et al. 2016). Thus, more
suitable tools for microbial and immunological
investigations are still needed in the future.
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