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Abstract 

The basic idea behind the use of 3-dimensional (3D) tools in biomedical research is the assumption that the structures 
under study will perform at the best in vitro if cultivated in an environment that is as similar as possible to their natural 
in vivo embedding. Tissue slicing fulfills this premise optimally: it is an accessible, unexpensive, imaging-friendly, and 
technically rather simple procedure which largely preserves the extracellular matrix and includes all or at least most 
supportive cell types in the correct tissue architecture with little cellular damage. Vibrating microtomes (vibratomes) 
can further improve the quality of the generated slices because of the lateral, saw-like movement of the blade, which 
significantly reduces tissue pulling or tearing compared to a straight cut. In spite of its obvious advantages, vibrating 
microtome slices are rather underrepresented in the current discussion on 3D tools, which is dominated by methods 
as organoids, organ-on-chip and bioprinting. Here, we review the development of vibrating microtome tissue slices, 
the major technical features underlying its application, as well as its current use and potential advances, such as a 
combination with novel microfluidic culture chambers. Once fully integrated into the 3D toolbox, tissue slices may 
significantly contribute to decrease the use of laboratory animals and is likely to have a strong impact on basic and 
translational research as well as drug screening.
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The dimensions of biomedical research tools
Researchers address their experimental questions by 
employing a variety of models, which lie on a wide spec-
trum in terms of tractability and physiological relevance. 
Animal studies, at one pole, provide valuable insights 
into the pathophysiology of most biological process in a 
(manipulable) systemic environment. On the downside, 
animal experiments can be expensive, time-consuming, 
technically challenging, and their translational value may 
be severely compromised by intrinsic species-specific dif-
ferences, not to mention the substantial ethical dilemma 
of causing animal pain or suffering. At the other end of 

the scale, simple two-dimensional cell culture systems 
are unbeatable in terms of convenience, accessibility, and 
readout throughput. Regrettably, they fail short in terms 
of physiological significance due to the lack of essential 
features typical for the in vivo situation, such as the pres-
ence of extracellular matrix (ECM) and proper spatial and 
signal-based interactions with other cells or tissues. It is 
therefore not surprising that massive effort has been put 
in developing experimental tools combining the advan-
tages (and avoiding as far as possible the drawbacks) of 
both approaches. Such tools, collectively designated as 
three-dimensional (3D) models, indeed provide a more 
natural culture environment, besides facilitating studies 
with the biological material of the relevant species, thus 
increasing the translational relevance of the study [1–3].

Current 3D models include a wide variety of 
approaches. In a simple form, primary cells or cell lines 
are guided towards 3D aggregates by providing a natu-
ral or synthetic scaffold. This basic principle, however, 
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can be expanded to create advanced and biologically rel-
evant multicellular spheroids [4]. Organoids, in contrast, 
are complex structures based on the long-term culture 
of stem cells or primary cells and ordered differentia-
tion of their progeny under the influence of a cocktail of 
growth factors and/or chemicals in order to recapitulate 
the structural and functional properties of multiple adult 
organs [5, 6]. Organ-on-chip models integrate mechani-
cal (such as shear or strain stress) and chemical (growth 
factors, cytokines) cues and include tailored sensing of 
the culture environment regarding aspects as medium 
flow rate, temperature, pH, partial pressure of gases, and 
mechanical forces, among many others [7–9]. Organ-on-
chip are a particularly promising strategy for assessing 
the safety and efficacy of chemicals and pharmaceuticals 
[10]; the devices can harbor simple (cell lines) or complex 
(organoids) biological structures [11], and can be designed 
to allow communication between cell types of different 
organs, in what has been called multiorgan chips. Another 
recent advance is bioprinting, in which 3D printing-like 
techniques are used to combine cells, growth factors, and/
or biomaterials to create 3D cell aggregates resembling 
tissues or organs [12, 13]. Due to ever improving cell cul-
ture conditions and chip manufacturing methods as well 
as a growing variety of printing techniques and an appar-
ently unlimited availability of suitable biological and scaf-
fold materials, the combination of 3D-based methods as 
organoids, organ-on-chip, tissue slices, and bioprinting 
(see Table  1  for a comparison of their main features), is 
likely to lastly bridge the gap between cell culture and a 
living organism [1, 14], significantly improving biomedical 
research and reducing the use of laboratory animals.

From Warburg’s shaving razor to precision‑cut 
tissue slices
Tissue slices are a 3D model par excellence [14] and have 
been extensively used to address numerous research 
questions, including the study of intermediate metabo-
lism in the liver or transport processes in the kidney. 
More recently, however, this method has been somewhat 
overshadowed by the general excitement around the 
organoid/organ-on-chip/bioprint trio [1–3]. Originally 
developed as an improvement of whole organ cultures, 
tissue slices have been in continuous use at least since the 
early 1900s, and thus decades before the establishment 
of the first cell line. Otto Warburg, for instance, gener-
ated tissue slices with a hand-guided razor blade for his 
Nobel prize-winning research on tumor metabolism 
[15]. Initially simple hand-held equipment, the devices 
improved over the decades to meet the need for uniform 
slice thickness, important for experiment reproducibility, 

and low sample waste when using small organs. A sim-
ple microtome for slice preparation from fresh tissue, 
described in 1944 [16], was followed by motor-driven 
[17] or hand-operated choppers [18], which reduced 
the time necessary for section preparation and did not 
require intensive training. A further improvement was 
the development of precision-cut tissue slices, namely 
the Krumdieck/Alabama [19] and later the Brendel/Vit-
ron [20] slicers. With these apparatuses, which have been 
continuously improved regarding precision and ease 
of operation, slices are produced by mechanically mov-
ing an immobilized tissue cylinder across a microtome 
blade; the slice thickness can be adjusted within a rather 
large range of ~ 100 to 1000 µm, and tissue slicing is very 
rapid, with one slice produced every 3 to 4  s [21–23]. 
Both apparatuses seem to produce slices of comparable 
quality, as demonstrated by direct comparison of rat liver 
slices [24].

Slices should be cut at a thickness permitting efficient 
gas and metabolite exchanges; in most studies this ranges 
between 100 and 400 µm (see also Tables 2 and 3). Slices 
made too thick may show ischemic injury in the slice 
core, while slices made too thin may have a large propor-
tion of damaged cells at their surface as compared to the 
total amount of healthy cells. Importantly, the thickness 
of precision-cut slices is much more constant, the num-
ber of damaged cells is greatly reduced, and the induction 
of immune responses is reduced compared to previous 
methods [25, 26]. Also, cultivation of such slices over 
prolonged periods (up to several weeks) has included dif-
ferent techniques, such as roller-tube cultures, culture on 
semipermeable membranes at the air–liquid interface, 
or embedding in 3D gels on culture dishes [27]. More 
recently, culture under continuous flow [28] or in micro-
fluidic chambers [29] was reported.

Several features contributed to a high popularity of 
“precision-cut slices”, including: a) the ECM and all 
or at least most supportive cell types are already pre-
sent in the correct tissue architecture; b) all cell types 
are isogenic; c) there is no enzymatic dissociation, thus 
preserving cell surface proteins (however, tissue dam-
age during slicing can induce immune responses); d) it 
is amenable for imaging; e) a large number of slices can 
usually be obtained from a single organ; f ) it is an acces-
sible, unexpensive and technically rather simple proce-
dure. Therefore, slice production and culture methods 
were next extensively improved and adapted to different 
requirements and became an essential part of the toolbox 
in most fields of biomedical research, including neuro-
science [96], lung [97] and liver [98] diseases, and host–
pathogen interactions [99].
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Table 2  Selection of studies culturing vibrating microtome-generated slices from different organs or tissues

Organ/
tissue

Species Slice
thickness

Culture time (max) Culture system features Purpose Ref

Brain rt 300 µm 8 weeks On insert, ALI, lentiviral infec-
tion

Protocol for creating hip-
pocampal slices

[30]

ms 110 µm 4 weeks On insert, different Co-
cultures

Protocol for co-cultures [31]

hu 250-350 µm 6 weeks On insert, submerged, Protocol for creating cortical 
slices

[32]

Spinal cord rt 350 µm 14 days On insert, ALI Model development [33]

Oculomotor nerve ms 400-450 µm 72 h On insert, submerged, Study of oculomotor nerve 
outgrowth

[34]

Retina ms, rt 40 – 170 µm 4 weeks Submerged, in a LumiCycle Study of circadian oscillations [35]

pg 250-300 µm 48 h Within a gelatine sandwich, 
submerged

Morphometry and viability of 
photorecetors

[36]

fs 150 µm 5 days On coverslips, agarose coated Method validation, interac-
tion among retinal cells

[37]

rt 125 µm 3 weeks Plasma clot technique for 
cultivation

Electrophysiological record-
ings (patch clamp)

[38]

Olfactory epithelium rt 400 µm 5 days On coated inserts, submerged Method for assessing 
olfactory development and 
function

[39]

Heart rt, ms, hu, pg, dg 100-400 µm 7 days ALI Model development [40]

hu, ms 380 µm 4 days In chip, dynamic, with sensors Shippable model for pre-
clinical drug testing and basic 
research

[41]

hu, pg 300 µm 6 days Submerged, electrical stimu-
lation,
media oxygenation

Model for drug testing and
gene therapy

[42]

ms 300 µm 6 days On insert, ALI Model for gene therapy, 
gene transfer efficiency, cell 
tropism, and toxicity

[43]

hu 400 µm 48 h On insert, ALI SARS-CoV-2 infection model [44]

hu 300 µm 14 days Submerged, application of 
pre- and afterload

Analysis of contraction force 
and kinetics

[45]

pg 400-500 µm 48 h On PDMS pillars, ALI, with/
without insert, static and 
dynamic

Study epicardial cell physiol-
ogy and activation

[46]

Lung ms 275 µm 5 days On insert, ALI Model for circadian timing in 
lung, role of Clara cells and 
glucocorticoids

[47]

hu, ms 500 µm, 300 µm 5 days Submerged, rolling, co-
culture with transfected 
fibroblasts

Multidimensional immuno-
labeling and 4D time-lapse 
imaging of vital slices

[48]

hu, ms 500 µm, 300 µm 14 days Submerged Wnt-induced repair, 4D con-
focal live tissue imaging

[49]

ms 150 µm 15 days Submerged Study of small airway smooth 
muscle contraction

[50]

rt 500 µm 12 h Stretcher to mimic breathing 
mechanic

Analysis of response to ciga-
rette smoke

[51]

pg, hm, ct 350 µm 4 days Submerged Check for susceptibility for 
SARS-CoV-2

[52]

ms 300 µm 4 days Submerged Study of pulmonary fibrosis 
disease mechanisms

[53]

Salivary gland hu 35 µm and 50 µm 14 days On insert, ALI Slice culture model develop-
ment

[54]

ms 50 µm 2 days Submerged Slice culture model develop-
ment with emphasis on 
imaging

[55]
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Vibrating microtomes enter the stage
In a recent survey, Dewyse and colleagues [98] report 
that while the majority of precision-cut liver slices is 
still generated with the Krumdieck or Brendel slic-
ers, vibrating blade microtomes are gaining popular-
ity. These devices were originally developed at Oxford 
Laboratories in California [100] and later marketed 
by different companies including Leica, currently the 
owner of the brand name “vibratome”. The hallmark of 
the apparatus is the lateral, saw-like movement of the 
blade as it progresses, which significantly reduces tissue 
pulling or tearing compared to a straight cut (Table 4). 
In a typical setup, fresh tissue samples (either tissue 
pieces or punch-generated tissue cores) are embedded 
in low gelling temperature agarose blocks (Fig. 1A) and 
attached with contact glue to a holder within the cut-
ting chamber of the vibratome (Fig.  1B). The holder is 
raised or lowered to adjust the thickness of the section 
as a sharp blade moves and cuts in a plane parallel to 
the sample’s surface. During cutting, both the sample 
and the blade edge are immersed in an aqueous buffer, 
resulting in the formation of free-floating sections, 
which can be immediately imaged, fixed and histologi-
cally processed, enzymatically dissociated for obtaining 

individual cell populations, or employed for cultivation 
and manipulation in vitro.

Finding the suitable vibratome settings for the tissue of 
interest and establishing a protocol for an optimal slicing 
procedure can be time-consuming. Factors to be consid-
ered are the rigidity or elasticity of the tissue itself, the 
type of supportive embedding material, and the settings 
of the instrument, including the desired slice thickness, 
the angle and amplitude of the blade, and its propul-
sion speed. The downstream processing of the slices also 
needs to be considered, as the dehydration associated to 
sample fixation can lead to shrinkage in slice thickness 
of over 50% [103]. While in principle any tissue can be 
sliced with this technique, samples that are very soft, 
contain hard components, or are rich in elastic elements 
are less suitable than homogeneous samples and may 
require extensive protocol improvement. Although some 
studies focused on the impact of specific device settings 
and the type of sample (fresh vs. fixed) on slice proper-
ties [104], or on the impact of the viscoelastic properties 
of the embedding structure on slice viability and quality 
[105], the diversity of sample types makes it difficult to 
provide exact recommendations regarding the device set-
tings. As a general rule, soft and elastic tissues should be 

ALI Air–liquid interface, hu human, rt rat, ms mouse, pg pig, dg dog, hm hamster, ct cat

Table 2  (continued)

Organ/
tissue

Species Slice
thickness

Culture time (max) Culture system features Purpose Ref

Small Intestine ms 250 µm 6 days Slices covered with collagen 
and medium on top

Model for interactions of 
different cell types in the 
intestine

[56]

ms 250 µm 48 h Slices covered with collagen 
and medium on top

Neuronal regulation of goblet 
cell production by

[57]

Colon hu 250 µm 3 days On collagen-covered slices, 
submerged, co-culture with S. 
typhimurium

Host microbial interactions, 
influence of oxygen avail-
ability

[58]

Prostate hu 200-300 µm 10 days Submerged, hypoxia Prostate tissue model [59]

Pancreas ms 100 µm 12 weeks On insert, ALI; electrophysiol-
ogy

β-cell physiology modell 
establishment

[60]

Liver hu, rt 100-400 µm 28 days On insert, ALI Fibrosis model [61]

ms 100-250 µm 5 days Submerged Model for chronic liver 
diseases

[62]

ms, hu 250 µm 5 days Submerged Improve slice culture, fibrosis 
drug therapy testing

[63]

Spleen ms 230 µm 4 days Submerged Protocol, method validation [64]

Thymus ms 400–500 µm Several days On insert, submerged; 
overlayed with thymocyte cell 
suspension

Model for studying T cell 
development

[65]

Femur rt 300-400 µm 3 weeks On insert Study enchondral osteogen-
esis

[66]

Meibomian gland ms 150 µm 21 days Submerged Model development, effect of 
melanocortins on secretion

[67]

Endometrium hu 200 µm 48 h Submerged Modulation of endometrial 
PGE2 synthesis

[68]
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cut at higher amplitude and lower mechanic deflection 
and propulsion than more rigid tissue types. Researchers 
may initially apply the settings used in previous publica-
tions employing the same tissue (see Tables 2 and 3 for 

numerous examples), but optimal slicing conditions fre-
quently need to be established empirically.

By directly comparing a vibratome with a Krumdieck 
tissue slicer, Zimmermann and colleagues [82] showed 

Table 3  Non-exhaustive selection of studies culturing vibrating microtome-generated slices from different tumor types

ALI Air–liquid interface, PDX Patient-derived xenograft, hu Human, ms mouse, sh sheep

Tumor type Species Slice thickness Culture time (max) Culture system features Purpose Ref

Lung hu 300 µm 6 months Implanted into mice (xeno-
graft)

Model for primary tumor 
expansion and xenograft 
production

[69]

sh, ms 300 µm 1 month Submerged Standardized slice model for 
viral infection
gene therapy

[70]

ms 160-250 µm 3 days ALI, titanium grid, rotation Tumor drug testing model [71]

Oral squamous cell carcinoma hu 350–450 µm 8 days Chorioallantoic membrane 
(CAM)

Establishing slices on CAM as 
a tumor model

[72]

Gastrointestinal (various) hu 250 µm 7 days On insert, submerged Protocol, method evaluation [73]

Prostate hu 200-300 µm 10 days Submerged, hypoxia Prostate tumor model [59]

ms 300 µm 6 days With/without insert and 
strainer

Establishing a chemotherapy 
model

[74]

hu 250 µm 9 days On insert, ALI Model for immune microenvi-
ronment studies

[75]

hu 350 µm 96 h On insert, submerged Model development [76]

hu 350 µm 96 h On insert, submerged Assessing culture effects by 
transcriptome profiling

[77]

hu 250 µm 9 days On insert, ALI Model development [78]

hu 250 µm 4 days On insert, ALI Tumor immunology studies [79]

hu 300 µm 15 days On insert, ALI Method development [80]

hu 250 µm 6 days On insert, submerged Interaction of tumor cells with 
immune microenvironment

[81]

Liver hu 200-300 µm 3 days Submerged Comparison of slicing devices [82]

hu, ms 200-300 µm 7 days On insert, submerged Drug discovery, immuno-
oncology

[83]

hu 250 µm 4 days On insert, submerged Immune checkpoint ligands 
and chemotherapy response

[84]

hu 250 µm 6 days On insert, submerged Establish CarT-cell treatment 
model

[85]

hu 250 µm 3 days On insert, submerged Neutralizing antibodies and 
CAR-T cells in cancer therapy

[86]

Bladder hu 300 µm 2 days On insert, submerged, on a 
rotating plate

Method for studying oncolytic 
viruses

[87]

Kidney hu 300 µm 1 week Submerged Characterization of the tumor 
immune environment

[88]

Uterine leiomyoma hu 500 µm 3 weeks On alginate scaffold discs Model development [89]

Breast hu 300 µm 7 days Submerged with/without
rotating platform

Model development, com-
parison with manual slicing

[90]

hu 250 µm 7 days Submerged Model evaluation [91]

hu 250 µm 3 days Submerged Establishing a chemotherapy 
model

[92]

Breast (xenograft) hu 200 µm 4 days Submerged Drug testing [93]

Breast and prostate PDX 
models

hu 300 µm 2 weeks (breast), 
1 week (prostate)

In chip, submerged, shear 
stress, perfusion

Cancer on chip platform for 
predicting drug response

[94]

Head and Neck Squamous 
Cell Carcinoma

hu 300 µm 5 days Rotating platform Model for evaluation of treat-
ment response to radiation 
and chemotherapy

[95]



Page 7 of 13Siwczak et al. Journal of Biological Engineering           (2023) 17:36 	

that the vibratome, while requiring longer operation 
time, is superior in terms of accuracy and reproducibil-
ity. However, the technique can also be applied in fixed 
or cleared tissue samples, and has been integrated into 
numerous imaging platforms [106, 107]. Importantly, 
the technical features of the apparatuses are being con-
stantly improved. For example, Wang and colleagues 
determined that the sectioning quality of soft materials 
can be enhanced by using higher sectioning frequency, 
blade oscillation amplitude, and lower sample feed rate 
[108]. As a result, the same group developed a novel 

high-frequency vibrating microtome allowing high-speed 
cutting without compromising slice quality, and success-
fully applied it to organ-wide imaging [109].

As a gentle cutting technique, it is particularly suit-
able for creating fresh tissue slices to be further cultured. 
Upon identification of appropriate sample thickness and 
other cutting parameters, optimal culture conditions 
can be established. Tissue slices generated with a vibrat-
ing microtome have been cultured under a large variety 
of conditions: simply submerged in culture medium, on 
membrane-coated inserts, or at the air–liquid interface, 

Fig. 1  Working principle of tissue slice culture. A The sample is embedded in agarose and sticked to the block holder (left). B Side-view of a typical 
vibratome cutting chamber (right). C Typical culture methods employed downstream of slice generation: submerged in culture medium, on insert 
submerged or at the air–liquid interface, in each case with or without perfusion, and in a microfluidic culture chamber. Figures were created using 
Krita (https://​krita.​org)

Table 4  Cutting by pressing and sliding: lessons from cheese and salami slicing

Cutting of soft materials, be it human flesh by the surgeon, meat or vegetables by the chef, or tissue samples by the histologists, is made considerably 
easier by sliding the blade rather than just pressing it against the surface of the object to be cut. This principle also holds for the common “paper cut”, 
the painful rendezvous between the skin and a thin paper sheet. The phenomenon has been modelled with a wide variety of materials, and different 
explanations have been provided. Atkins and colleagues [101] lively review the mechanics of cutting and define our study object as a material in 
which sectioning creates a floppy offcut that is not permanently deformed and has negligible bending resistance. These authors demonstrate (by 
cutting cheddar cheese and salami) that the greater the “slice/push ration”, the lower the necessary cutting forces. Reyssat and colleagues [102] focus 
on the role played by shear forces on gelatin blocks and reveal that the sliding action creates a critical local tension at the contact site, in contrast to 
a strong global tension caused by pressing only. Thus, under slicing (= blade vibration) conditions, there is less global deformation and material dam-
age, resulting in better preserved slices – in our context the key motivation for employing vibrational cutting

https://krita.org
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in each case with or without perfusion, or in microfluidic 
devices, among others (Fig. 1C). Such systems have been 
widely used for housing and manipulating tissue slices for 
a variety of purposes and experimental questions. A non-
exhaustive overview of investigations involving the cul-
ture of vibrating microtome-derived normal and tumor 
tissues is given in Tables 2 and 3, respectively.

Perspectives and conclusions
Vibrating microtome sectioning is an outstanding tool 
for creating tissue slices suitable for a wide variety of 
studies and amenable for numerous cutting-edge imaging 
technologies [14, 110]. Latest downstream applications 
include tissue regeneration studies [53, 63] or the evalu-
ation of cancer treatment strategies like gene therapy, 
where the transfection efficacy in a complex environment 
can be assessed [43]. Furthermore, immunotherapy pre-
cision and the invasion of Car T-cells can be tracked [86]. 
As immune cells are present in a natural architecture 
within the slices, they are a suitable model for the inves-
tigation of host–pathogen interactions [52, 99, 111], host- 
microbiome interactions [58] and drug safety assessment 
[42, 71]. Nevertheless, it should not be omitted that this 
method also comes with several potential drawbacks, 
including the increased appearance of apoptotic or 
necrotic areas directly at or close to areas damaged by 
the blade (including anoikis induced by ECM removal), 
disruption or clogging of vessels, depletion of specific 
cell types (for instance by migration into the medium), 
and considerably reduced supply and removal of sub-
strates and metabolites compared to the uncut tissue. 
These problems may represent a significant challenge and 
require considerable improvement of tissue slice culture 
techniques.

Overall, this strategy will benefit from diverse technical 
improvements and subsequent developments.

Vibrating microtome technical improvements
While vibrating microtomes are easy to use and, com-
pared to standard tissue choppers, more sample-gently, 
slice preparation is more time-consuming. The time 
needed for sample processing may indeed be especially 
critical for enzyme-rich (pancreas) or highly metabolic 
(liver) organs. To overcome this issue, e.g. for liver sam-
ples, sophisticated media can be combined with low 
temperatures during slicing, thus improving slice quality 
and viability [63]. Therefore, an automated temperature 
control of sample holder and media would be favorable, 
as for the most systems manual addition of crushed ice 
remains necessary. During sample preparation, the rigid-
ity of relatively soft and flexible tissue types like skin, 
intestine, or lung needs to be increased. While appro-
priate stabilizing agents like low melting point agaroses 

are available, getting the slices completely rid of their 
remnants remains an issue. During sequential sam-
ple processing, usually slices end up floating around in 
the sample chamber filled with media, while the blade 
is already beginning to move to generate the next slice. 
Here, the inclusion of a medium stream gadget in the 
instruments to transport the floating slices away from the 
blade, thereby preventing sample damage and facilitat-
ing slice transfer to culture systems, would be desirable. 
Although most operators work with antibiotics in the 
media, it may be favorable to work without these addi-
tives for some applications. As the footprint of some 
devices is rather small, sterile working conditions can 
be readily achieved by placing the vibrating microtome 
under a sterile hood. In contrast, there is currently no 
vibrating microtome available containing a self-sterili-
zation function or including a sterile working chamber. 
Finally, as for the regular microtomes, working safety is a 
critical issue and accidents may occur. Therefore, a corre-
sponding cap to cover the razor blade when not in use, as 
well as an easily accessible emergency stop button would 
be useful additions.

Combination with other 3D‑models and downstream 
applications
3D models shouldn’t be seen as stand-alone techniques, 
as only the combination of different approaches may 
result in a physiologically relevant model. Tissue slices 
combined with organ-on-chip technology enable sen-
sor implementation into the culture device and a tight 
control of parameters [41]. This enables sophisticated 
manipulation of culture conditions and thereby mimic 
homeostatic or dysbiotic conditions. Organ-on-chip/
microfluidics systems may also allow reproducing one 
of the key properties of tissues in  vivo, the continuous 
nutritional supply, gas exchange, and removal or trans-
port of metabolites and growth factors via capillarization. 
These processes maintain important biophysiochemi-
cal gradients alongside the endothelial-epithelial axis, 
and its implementation in in vitro models is essential for 
improving the translational value of the studies. Further-
more, certain cell types may require perfusion as they 
respond towards the corresponding shear stress with an 
increased barrier function and morphological adaptions 
[112]. Especially in case of linear perfusion, microfluidic 
devices can help to decrease the amount of media con-
sumption. With regard to specific applications, dynamic 
cultivation used in infection experiments might contrib-
ute to prevent microbial overgrowth [113] or provide 
more in vivo-like infection conditions, for instance when 
studying invasion mechanisms [114].

From a practical point of view, as most tissue slices are 
cultured on inserts, perfusable plates are one option for 
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dynamic cultivation conditions, and the same applies to 
chip-systems containing a porous membrane as separa-
tor for perfusable compartments. In such systems, one 
compartment contains the tissue slice, and the other one 
can be perfused. Depending on the tissue type, site-spe-
cific, ubiquitous, unidirectional, or bidirectional perfu-
sion can be applied. However, perfusion similar to that 
in  vivo is difficult to achieve in microfluidic chambers, 
as vessel anastomosis in bioreactors is usually missing. 
Also, the multicellular tissue slices are exposed to a sin-
gle media type, and a site-specific application of shear 
stress can hardly be realized. This could negatively affect 
cell viability and function of tissues not exposed to shear 
stress under physiological conditions (for instance, inter-
stitial tissue).

Co-culture of slices with cell lines opens up a broad 
spectrum of investigations. For instance, fibroblasts 
added to preliminary injured tissue slices can be used for 
the investigation of fibrosis mechanisms [48]. In another 
study, Car T-cell and genetically engineered macrophage 
invasion in tumor tissue slices were examined [85]). Not 
only mammalian cells, but also pathogens as SARS-
CoV-2 have been co-cultured with tissue slices in order 
to determine cell type susceptibility for the virus and 
thereby identify potential treatment targets [44, 52].

Tissue slices can be combined with animal models as 
well. Frequently, the initial manipulation takes place 
in  vivo, and the subsequent generation of tissue slices 
greatly amplifies the number of samples available for fur-
ther in vitro treatments. In this way, the number of ani-
mals used in experiments can be reduced. However, the 
experimental setup can also be designed inversely, as tis-
sue slices of one species can be implanted into another 
one in the form of xenografts [69].

Sample analysis and logistics
Co-evolving imaging technologies of live tissue imaging 
(4D) enable whole sample analysis, time-lapse record-
ing of viable tissue slices enabling thereby e.g., in-tissue 
observation of cell migration and tissue regeneration 
[49]. The analysis of living and fixed tissue slices via cLSM 
and light-sheet microscopy permits a 3D-reconstruction 
of native and manipulated tissue in all its complexity [30, 
55]. Of course, preparative downstream analysis of vital 
tissue, including single cell analysis and studies on ECM 
function, production and regeneration, so far mainly 
performed with tissue chopper-generated slices, can be 
carried out on vibrating microtome-generated slices as 
well [115–117]. Similarly to slides generated with stand-
ard microtomes, vibrating microtome slices would sig-
nificantly benefit from cryopreservation methods, as 
hundreds or thousands of slices may be created from a 
single organ, cryopreserved, and used on demand [118]. 

Notably, test platforms combining precision-cut slices 
with cryopreservation for assessing drug response of 
hepatic tumors [119] or assessing the immune response 
of the lung [120] have been recently reported.

To conclude, there is great potential for the combina-
tion of vibrating microtome tissue slices with microflu-
idic culture devices, which have been greatly improved 
in the context of organ-on-chip methods regarding the 
modulation of specific culture conditions and the use of 
miniaturized sensors. In particular, the correct tissue-like 
spatial organization, multicellularity and the presence of 
native ECM of such slices in combination with tightly 
controlled culture conditions will provide a unique model 
for assessing organ physiology and testing the effects of 
substances in vivo.
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