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ABSTRACT: Top-down liquid chromatography-mass spectrome-
try (LC-MS) analyzes intact proteoforms and generates mass
spectra containing peaks of proteoforms with various isotopic
compositions, charge states, and retention times. An essential step
in top-down MS data analysis is proteoform feature detection,
which aims to group these peaks into peak sets (features), each
containing all peaks of a proteoform. Accurate protein feature
detection enhances the accuracy in MS-based proteoform
identification and quantification. Here, we present TopFD, a
software tool for top-down MS feature detection that integrates
algorithms for proteoform feature detection, feature boundary
refinement, and machine learning models for proteoform feature evaluation. We performed extensive benchmarking of TopFD,
ProMex, FlashDeconv, and Xtract using seven top-down MS data sets and demonstrated that TopFD outperforms other tools in
feature accuracy, reproducibility, and feature abundance reproducibility.

■ INTRODUCTION
Top-down mass spectrometry (MS) has attracted increasing
attention owing to its unique capacity to analyze intact
proteoforms and characterize proteoforms with multiple
alterations, such as sequence mutations, splicing events, and
post-translational modifications (PTMs).1−3 Advances in high-
resolution and high-accuracy MS instruments significantly
increased proteoform identifications and amino acid sequence
coverage in proteome-wide top-down proteomics analysis.4

Recent top-down MS studies identified more than 23 000
proteoforms from colorectal cancer cells5 and about 30 000
proteoforms from human blood and bone marrow cells.6 Top-
down MS-based proteoform profiling has successfully identi-
fied differentially expressed proteoforms associated with
diseases.7−10

Proteoform feature detection is a fundamental computa-
tional problem in top-down MS-based proteoform quantifica-
tion. In proteome-wide top-down MS analysis, proteoforms
extracted from samples are first separated by liquid
chromatography (LC) or other separation methods and then
analyzed by tandem mass spectrometry (MS/MS). Each
proteoform has an elution profile (Figure 1a), which depicts
the abundance of the proteoform eluted over time in
proteoform separation. A mass spectrum contains a list of
peaks, each represented by its mass-to-charge ratio (m/z) and
intensity. The isotopologues of a proteoform with the same
charge state are detected as a group of isotopic peaks in a mass
spectrum, called an isotopic envelope (Figure 1b). The peak
intensities in an isotopic envelope follow a distribution
determined by the isotopic frequencies of the atoms in the

proteoform. A mass spectrum often contains multiple isotopic
envelopes of a proteoform with different charge states (Figure
1b). Feature detection in top-down MS aims to identify all
isotopic peaks of each proteoform over retention time (RT)
and across charge states in a liquid chromatography-mass
spectrometry (LC-MS) data file and reports its elution profile
and total signal intensity (Figure 1c).

Many methods have been proposed11−22 for peptide feature
detection in bottom-up MS (Supporting Table S1), which is
similar to proteoform feature detection in top-down MS. These
methods are focused on solving three computational problems
in feature detection: (1) grouping peak signals with similar m/
z values in consecutive MS1 scans into an m/z or envelope
trace (Figure 1c), (2) splitting a trace into several
corresponding to single peptides if the trace contains peak
signals from two or more peptides, and (3) evaluating and
ranking reported features.

To identify an m/z or envelope trace, a seed peak or
envelope of a feature and its corresponding scan are selected.
The peak or envelope is then extended along the RT in both
directions until one or several scans do not contain peaks or
envelopes with similar m/z values matched to the seed.12
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Trace splitting methods can be divided into three groups.
The first is to split a trace at the scans lacking matched peaks
or envelopes.12 In the second approach, the elution profile of a
feature is fitted to a distribution or function, such as a Gaussian
distribution or wavelet function, and a cutoff signal intensity is
used to determine feature boundaries.15,23 The third approach
is to use a function, such as a Savitzky−Golay filter,16,19,22 to
smooth a trace locally and use local minima to determine
feature boundaries in the trace.

Reported features are in general evaluated by their peak
intensities, peak m/z errors, and RT ranges.21 The quality of

envelope features is also determined by the similarity of
theoretical and experimental isotopic peak intensity distribu-
tions.12 Recently, deep learning methods have been proposed
to evaluate envelope features.24

Feature detection in top-down MS is more challenging than
in bottom-up MS, as top-down mass spectra tend to have
higher charge state ions, more complex isotopic envelopes, and
more overlapping envelopes than bottom-up spectra. As a
result, feature detection methods designed for bottom-up MS
may fail to achieve good performance for top-down MS.

Several methods have been proposed for feature detection in
top-down MS, e.g., Xtract,25,26 ProMex,27 and FlashDeconv.28

ProMex uses a greedy algorithm to cluster isotopic envelopes
of the same proteoform across MS1 scans. The peak intensities
in the experimental envelopes of a proteoform are aggregated
to reduce the measurement errors between theoretical and
experimental isotopic distributions. The elution profile of each
proteoform feature is constructed and smoothed by a
Savitzky−Golay filter. Finally, the RT range is obtained using
1% of the apex intensity as the signal intensity cutoff. The
quality of each feature is evaluated by a likelihood ratio
function based on a Bayesian network model. In FlashDe-
conv,28 candidate features are identified by searching a mass
spectrum for peak groups that are generated from proteoform
molecules with the same mass and different charge states. The
RT range of a feature is determined by a mass trace detection
algorithm, in which features are extended along RT, and
feature boundaries are found using a smoothing method.29 A
feature is evaluated by fitting a Gaussian distribution to the
peak intensities with different charge states and computing the
cosine similarity between the fitted and experimental
intensities. The methods in Xtract have not been published.

In this paper, we propose TopFD, a method for proteoform
feature detection in top-down MS, in which the functions in
MS-Deconv30 are employed to identify feature candidates, and
RT boundaries of feature signals are determined using local
minima of envelope traces. In addition, a neural network
model that takes eight attributes of proteoform features as the
input was trained for feature evaluation. TopFD was
extensively assessed and compared with ProMex,27 FlashDe-
conv,28 and Xtract using seven top-down MS data sets

Figure 1. Illustration of two proteoform features in an LC-MS map.
(a) Elution profiles (curves) of two proteoforms A and B. At time
points t1, t2, and t3, three MS1 spectra are generated. The abundances
of A have a ratio of 4:3:0 (two red vertical lines), and the abundances
of B have a ratio of 0:1:1 (two blue vertical lines). (b) Theoretical
isotopic envelopes of proteoform A with charge states 1+ and 2+ and
proteoform B with charge state 2+. (c) Three MS1 spectra are
generated at time points t1, t2, and t3. The elution profiles on the right
are the same as (a). The three spectra contain four experimental
isotopic envelopes of A and two envelopes of B.

Figure 2. Overview of the pipeline for proteoform feature identification in TopFD. (a) Preprocessing. Experimental centroided peaks are processed
to remove those that have a low intensity or appear in only one MS1 spectrum. Then, MS-Deconv is used to deconvolute MS1 spectra to obtain
seed envelopes. (b) Proteoform feature extraction. (1) The reported seed envelopes are ranked based on the sum of the peak intensities of the
theoretical envelope. The one with the highest intensity is selected. (2) To extract an envelope set, peaks in the seed theoretical envelope are
matched with experimental peaks and extended in both forward and backward directions until no matching experimental peaks are found. (3) The
RT boundaries of the reported envelope set are refined if it contains peaks from neighboring envelope sets. (4) The charge state of the envelope set
is evaluated and corrected if needed. (5) Once an envelope set is extracted, the neighboring charge states are explored to find other envelope sets in
the envelope collection. (6) The experimental peaks included in the envelope collection are removed from the data. The six steps are repeated for
the next seed envelope, which has the highest intensity in the remaining seed list. (c) Postprocessing. The precursor masses of reported envelope
collections are first refined. Envelope collections are then merged if they have similar precursor masses and similar retention time ranges. Finally, an
ECScore is computed for each envelope collection and those with low ECScore are removed.
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(Supporting Methods S1). Experimental results demonstrated
that TopFD outperforms these tools in the accuracy,
reproducibility of proteoform feature detection, and reprodu-
cibility of proteoform quantification.

■ METHODS
In an LC-MS experiment, the start, apex, and end RTs of a
proteoform are determined by the separation column, the
experimental parameters, and the chemical and physical
properties of the proteoform. An MS1 spectrum collected
during the RT range of a proteoform contains peaks of the
proteoform, which can be grouped into one or several isotopic
envelopes based on their charge states (Figure 1b). The set of
all isotopic envelopes of a proteoform with a specific charge
state in the LC-MS map is an envelope set (single charge
feature) of the proteoform. The collection of the envelope sets
of the proteoform for all charge states is the envelope
collection (multicharge feature) of the proteoform. The
proteoform feature detection problem aims to find all envelope
collections in an LC-MS map and report the monoisotopic
mass, RT range, and abundance of each envelope collection
(Figure 1c).
Proteoform Feature Detection. Figure 2 shows the

overall scheme of TopFD for proteoform feature detection. In
preprocessing, TopFD filters out noise peaks in an LC-MS
map and then uses the functions in MS-Deconv30 to identify
experimental isotopic envelopes of proteoforms in single MS1
spectra. A theoretical isotopic envelope is computed for each
experimental isotopic envelope using the Averagine model.31

The reported isotopic envelopes are ranked based on their
total peak intensities and then used iteratively as seed
envelopes for feature detection (Supporting Methods S2).

In feature detection, TopFD first extends a seed envelope to
neighboring MS1 scans to obtain an envelope set, then the RT
boundaries and charge state of the envelope set are adjusted.
Next, the envelope set is extended to identify envelope sets
with the same precursor mass and neighboring charge states,
resulting in an envelope collection. Finally, peaks used in the
envelope collection in the LC-MS map will be removed or
reduced (Supporting Methods S3).

In postprocessing, the precursor mass of each envelope
collection is refined using its isotopic peaks, and then envelope
collections with similar precursor masses and RTs are merged.
Finally, a neural network model is used to assign an envelope
collection score (ECScore) to each envelope collection, and
those with low ECScore are removed (Supporting Methods
S4).

■ RESULTS
Training the Neural Network Model for ECScore. A set

of envelope collections for training ECScore was generated
from three top-down MS data sets: one from SW480 cells with
triplicates and the other two from breast cancer (BC) samples,
each with six replicates (Supporting Methods S1). On average,
21 190 envelope collections were reported from each SW480
replicate and 1765 from each BC replicate (Supporting Table
S2) using the methods for envelope collection identification
(Figure 2) with the default parameter settings (Supporting
Table S3). Note that all envelope collections reported from the
three data sets were used for generating training and validation
data sets. We labeled the envelope collections identified from
the first SW480 replicate, and the first replicate of each BC

data set as follows: An envelope collection was labeled negative
if it was reported in only the first replicate and labeled positive
if it was reported in all of the three SW480 replicates or ≥5 BC
replicates. The unlabeled envelope collections were removed.
A total of 8579 envelope collections were labeled positive, and
10 876 were negative. We randomly split the envelope
collections with a 67:33 ratio into training and validation
sets. There was no overlap among the training set, validation
set, and test data sets used in the following experiments. We
trained the ECScore model using the training set (Methods
section), and ECScore achieved a balanced accuracy of 87.03%
and the area under the receiver operating characteristic (ROC)
curve (AUC) value of 94.18% on the validation data set. The
default cutoff of ECScore was set to 0.5 for filtering out low-
quality envelope collections because the ECScore distributions
of the validation envelope collections show that the cutoff
value can efficiently separate positive envelope collections from
negative ones (Supporting Figure S1a). With the cutoff of 0.5,
the estimated false discovery rate (FDR) of reported envelope
collections is 16.4% in the validation set (Supporting Figure
S1b), which is acceptable because protein database search-
based proteoform identification will remove most false-positive
features in downstream analysis. In addition, the FDR may be
overestimated due to inaccurate labeling of negative envelope
collections.
Comparison of ECScore and EnvCNN. We compared

the accuracy of ECScore and the EnvCNN score32 on two top-
down MS data sets: one from SW620 cells with three replicates
and the other from ovarian cancer (OC) samples with 10
replicates (Supporting Methods S1). Using the methods in the
previous section, we labeled the envelope collections reported
from the first replicates of the SW620 and OC data. An
envelope collection was labeled negative if it was reported in
only one replicate and labeled positive if it was reported in all
three SW620 replicates or ≥8 OC replicates. This resulted in
an SW620 test set of 8376 positive and 3175 negative envelope
collections and an OC test set of 6223 positive and 304
negative envelope collections. Because the EnvCNN model
takes single isotopic envelopes, not envelope collections, as the
input, all test envelope collections were converted to aggregate
experiment envelopes (Supporting Methods S3.3), which were
used as the input of the EnvCNN model.

ECScore achieved higher ROC AUC values (Supporting
Figure S2) than the EnvCNN score on the OC test set (91.52
vs 83.79%) and the SW620 test set (80.56 vs 61.83%). We also
compared the rank-sum values of the two scoring functions on
the OC and SW620 test sets. To compute the rank-sum of a
list of envelope collections, all envelope collections were
ranked in the decreasing order of their scores, and the ranks of
all positive envelope collections were summed up. ECScore
reduced the rank-sum values compared with the EnvCNN
score on the OC data set (2.02 × 108 vs 2.18 × 108) and the
SW620 data set (1.42 × 108 vs 1.67 × 108).
Evaluation Using a Protein Mixture. The accuracy of

TopFD in determining proteoform monoisotopic masses and
charge states was assessed using a top-down LC-MS/MS data
of a five-protein mixture: bovine ubiquitin (8559.62 Da),
bovine superoxide dismutase (15 581.78 Da), equine
myoglobin (16 941.96 Da), bovine trypsinogen (23 965.49
Da), and bovine carbonic anhydrase (29 006.82 Da)
(Supporting Methods S1). TopFD identified the proteoform
features of all of the five proteins, demonstrating that TopFD
can accurately identify proteoform features with a mass <30
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kDa (Supporting Tables S4 and S5). The identified features of
the last four proteins contained PTMs. The charge states of the
seed envelopes of the features ranged from 11 to 33. The
errors of reported monoisotopic masses were ≤0.06 Da for the
first four proteoforms, and the error of the bovine carbonic
anhydrase proteoform was 1.04 Da, which is a common ±1 Da
error in spectral deconvolution.

TopFD relies on isotopic peaks of proteoforms for feature
detection, so it can deconvolute only isotopically resolvable
proteoforms. The m/z difference between two neighboring
isotopic peaks of a proteoform with a charge state z is about
1.00235/z, where 1.00235 Da is an estimated mass difference
between two isotopologues whose numbers of neutrons differ
by one.33 When the mass spectrometer cannot resolve such

Figure 3. Artifact masses reported by TopFD, ProMex, FlashDeconv, and Xtract from the first replicate of the OC data and the first replicate of the
SW620 data. (a) Number of top proteoform features against the percentage of valid features for the first replicate of the OC data. Numbers (b) and
percentages (c) of valid, low harmonic, high harmonic masses, and isotopologues in all features reported by the tools from the first replicate of the
OC data. (d) Number of top proteoform features against the percentage of valid features for the first replicate of the SW620 data. Numbers (e) and
percentages (f) of valid, low harmonic, high harmonic masses, and isotopologues in all features reported by the tools from the first replicate of the
SW620 data.
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two isotopic peaks, TopFD will fail to correctly report the
charge state and monoisotopic mass of the proteoform feature.
Evaluation of Overlapping Features. To evaluate the

performance of TopFD on overlapping features, we extracted
the peaks of the proteoform feature of bovine ubiquitin in the
five-protein mixture data and used the peaks to generate
simulated proteoform features with shifts in m/z value and RT.
Specifically, we obtained all peaks in the LC-MS window
defined by the m/z range [693, 697] and RT range [24, 27]
min, which contained an envelope set of bovine ubiquitin with
charge state 7. The set of all peaks, denoted as E0,0, was used to
generate a total of 90 simulated LC-MS windows Ei,j for i = 0,
···, 9 and j = 1, ··· , 9. To generate Ei,j from E0,0, we shifted the
RTs of all peaks by j MS1 scans and the m/z values of all peaks
by i shift units (each unit is 1.00235/7). That is, the
monoisotopic mass of the feature was shifted by 1.00235i
Da. For each Ei,j, we generated a simulated LC-MS map
containing only peaks in E0,0 and Ei,j, and then merged all peaks
with similar m/z values (with an error tolerance of 0.01 m/z)
in the same scan. The intensity of a merged peak was set to the
sum of the intensities of all peaks being merged. As a result, the
map contained two overlapping features with known proteo-
form monoisotopic masses. TopFD successfully identified the
monoisotopic masses of the two features (some with ±1 Da or
±2 Da errors) in the LC-MS maps with ≥6 shifted m/z units
or ≥5 shifted scans (Supporting Figure S3), showing that
TopFD can identify overlapping features when they are slightly
separated by the m/z value or RT.
Evaluation of the Artifacts of Reported Proteoform

Features. Following the methods in Jeong et al.,28 we assessed
the quality of proteoform features reported by feature
detection tools using three types of artifact masses: low
harmonic masses, high harmonic masses, and isotopologues.
Incorrect charge state assignments to isotopic envelopes will
result in low and high harmonics masses, which are integer
fractions and multiples of true masses of proteoforms,
respectively. Errors in computing the monoisotopic masses of
envelope collections will introduce isotopologues, which are
shifted by the mass of one or several neutrons compared with
true masses.

An envelope collection A is a mass artifact of another
envelope collection B if (1) the total peak intensity of B is
higher than A, (2) the overlapping RT range of A and B is
larger than 80% of the RT range of A, and (3) the
monoisotopic mass of A is an isotopologue, low harmonic
mass, or high harmonic mass of the monoisotopic mass of B
(Supporting Methods S5). An envelope collection is valid if it
is not a mass artifact of another envelope.

We benchmarked TopFD, ProMex (version 1.1.8082),27

FlashDeconv (version 2.0),28 and Xtract (Thermo BioPharma
Finder 4.1)25,26 in the ratio of valid proteoform features using
the first OC replicate and the first SW620 replicate. Parameter
settings, running times, and numbers of reported proteoform
features of the tools are given in Supporting Tables S3, S6−S8,
Figure S4, and Table S9, respectively. Valid masses were
selected for each software tool separately. After a tool reported
a list of proteoform masses from a data set, the method in
Jeong et al.28 was employed to choose valid masses from the
mass list for the tool. For each tool, we ranked the reported
proteoform features based on their total peak intensities,
obtained the corresponding mass artifacts and valid features,
and plotted the ratio of the valid ones against the number of
top features. We chose total peak intensities, not software tool-

specific scores, to rank features to ensure a fair comparison of
the tools. Proteoform features reported by TopFD achieved
the best valid ratios (>80%) among the four tools (Figure
3a,d). The valid ratios for Xtract and FlashDeconv are also
high, and the distributions of the three types of artifacts are
similar for TopFD, FlashDeconv, and Xtract (Figure 3b,c,e,f).
ProMex reported many isotopologues, resulting in low valid
percentages. We used Fisher’s exact test to compare valid and
invalid (mass artifacts) proteoform features reported by
TopFD and FlashDeconv as these two outperformed Xtract
and ProMex. The p-values for the differences between
proteoform features reported by TopFD and FlashDeconv
are 0.0046 and 4.17 × 10−12 for the OC and SW620 data sets,
respectively.
Comparison between Total Ion Currents (TICs) and

Feature Intensities. While the TIC of an MS1 scan depicts
the number of ions detected by the scan, the total peak
intensity of reported proteoform features for an MS1 scan gives
the number of ions reported by feature detection tools. These
two measurements are expected to be consistent with each
other. So following the method in Jeong et al.,28 we compared
the TICs and total feature intensities reported by the four
tools.

To evaluate the correlation between TICs and proteoform
feature intensities, we divided the RT range of an MS data set
into 1 min RT bins and computed the TIC and total
proteoform feature intensity for each bin. The TIC of an RT
bin is the sum of the total TIC of all MS1 scans in the bin; the
total proteoform feature intensity of an RT bin is the sum of
the intensities of the proteoform features whose apex RTs are
in the bin. All mass artifacts were removed before the
computation of total proteoform feature intensities. The total
feature intensities reported by TopFD achieved the best
similarity with the TICs on the OC and SW620 data sets
(Supporting Figures S5 and S6). For the first OC replicate, the
cosine similarity scores between the two measurements are
78.04, 77.46, 77.40, and 61.37% for TopFD, ProMex,
FlashDeconv, and Xtract, respectively (Supporting Figure
S5). Similarly, for the first SW620 replicate, the cosine
similarities are 74.65, 23.61, 73.68, and 67.67% for TopFD,
ProMex, FlashDeconv, and Xtract, respectively (Supporting
Figure S6).

The software tools reported different feature intensities due
to missing envelope sets. We compared the feature intensities
reported by the tools in the RT range [114, 115] min of the
first OC replicate. TopFD, ProMex, FlashDeconv, and Xtract
reported total feature intensities of 1.3 × 109, 1.65 × 108, 7.6 ×
108, and 1.49 × 108, respectively. TopFD reported 214
envelope sets (from 52 features) from the RT range, whereas
ProMex, FlashDeconv, and Xtract reported 176, 153, and 112
envelope sets, respectively.
Reproducibility of Proteoform Features in MS

Replicates. We benchmarked the feature reproducibility of
TopFD against ProMex, FlashDeconv, and Xtract on the OC
and SW620 data sets (see the Supporting Material). In MS
technical replicates, a true proteoform feature is expected to be
observed in all of the replicates, so the frequencies of
proteoform features reported from MS technical replicates
are a good metric for evaluating proteoform features.27 Because
mass artifact removal can improve the quality of reported
proteoform features, we removed mass artifacts from proteo-
form features reported by the tools.
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We first examined the overlapping features and proteoform
mass distributions reported by the four tools in the first OC
and SW620 replicates. The four tools reported different
numbers of proteoform features from each MS data file
(Supporting Figure 7a,b). TopFD, ProMex, FlashDeconv, and
Xtract reported 7672, 5811, 6067, and 7773 features in the first
OC replicate and 11 552, 3025, 12 240, and 8322 features in
the first SW620 replicate, respectively. The two data sets have
different distributions of feature masses (Supporting Figure
8a,b). The most observed masses reported by TopFD are
between 3 and 4.5 kDa for the OC data and between 1.5 and 3
kDa for the SW620 data. Of the 7672 TopFD features from the
OC data, 3233 (42.1%) are shared with all of the other three
tools and 6164 (80.1%) are shared with at least one of the
three tools. Of the 11 552 TopFD features from the SW620
data, 1535 (13.3%) are shared with all of the other three tools
and 7707 (66.7%) are shared with at least one of the three
tools. The low overlap for the SW620 data may indicate high
false-positive rates of the reported features due to the high
complexity of the data.

We further studied the overlapping features and proteoform
mass distributions in the same number of top features reported
by the four tools in the first OC and SW620 replicates. For
each data file, we selected the top n features from each of the
four feature lists provided by the tools, where n is the smallest
size among the four feature lists (n = 5811 for OC and 3025
for SW620). Note that this method was used to keep only top
features for all replicates in the following evaluation of
proteoform feature reproducibility. These top features have
higher percentages of overlapping features (Supporting Figure
7c,d) compared with all reported features. Of the top TopFD
features from the OC data, 2932 (50.5%) are shared with all of
the other three tools and 5071 (87.3%) are shared with at least
one of the three tools. Of the top TopFD features from the
SW620 data, 507 (16.8%) are shared with all of the other three
tools and 2382 (78.7%) are shared with at least one of the
three tools. The proteoform mass distributions of the top
features reported by TopFD (Supporting Figure 8c,d) are
similar to those in all of the features.

We investigated the reproducibility of the four tools on the
first two replicates of the OC and SW620 data sets. We kept
only the top features in each of the four feature lists reported
by the tools from each replicate to make sure that the same
number of features were used for comparison: OC replicate 1:
5811, OC replicate 2: 5819, SW620 replicate 1: 3025, SW620
replicate 2: 2984. TopFD reported the highest percentage
(4781, 83.82%) of proteoform features shared in the two OC
replicates compared with ProMex (4327, 74.46%), FlashDe-
conv (3803, 65.44%), and Xtract (3841, 66.09%). TopFD also
outperformed other tools in feature reproductivity on the first
two SW620 replicates. A total of 75.86% proteoform features
reported by TopFD (2295 out of 3025) were observed in both
SW620 replicates, which was better than ProMex (2028,
67.04%), FlashDeconv (1850, 61.15%), and Xtract (1994,
65.19%).

We further extended the feature reproducibility analysis to
the 10 replicates of the OC data and three replicates of the
SW620 data. Similarly, we kept only the top features in valid
feature lists reported by the tools to make sure the same
number of features were used for each replicate. On average,
6034 features were used for each of the OC replicates and
3048 for each of the SW620 replicates (Supporting Table
S10). For each tool, the features reported from the first

replicate (5811 for OC and 3025 for SW620) were compared
with those reported from other replicates to obtain their
numbers of occurrences. TopFD reported the highest number
(3546 out of 5811) of proteoform features reported in all 10
replicates of the OC data set (Supporting Figure S9a) and the
highest percentage (77.66%) of proteoform features in 8 or
more replicates compared with ProMex (65.96%), FlashDe-
conv (57.76%), and Xtract (62.14%). Similarly, TopFD
outperformed the other tools in feature reproductivity on the
SW620 data set (Supporting Figure S9b). A total of 66.47%
proteoform features reported by TopFD were observed in all
three replicates, which was better than ProMex (57.45%),
FlashDeconv (47.80%), and Xtract (55.63%). As ProMex
achieved the best performance among the other tools, we
utilized Kolmogorov−Smirnov test34 to compare the distribu-
tions of feature observation frequencies between TopFD and
ProMex. The p-values are 4.64 × 10−35 and 3.87 × 10−11 for
the distribution differences in the OC and SW620 data sets,
respectively, showing that TopFD can report a significantly
larger number of reproducible features compared with other
tools.
Quantitative Reproducibility. We benchmarked the four

tools in the reproducibility of proteoform abundances using
the top valid features (Supporting Table S10) reported from
the OC and SW620 data sets. High-accuracy proteoform
feature detection is essential for increasing the reproducibility
of proteoform abundances measured in MS replicates. To
compare the abundance reproducibility between two replicates
for a tool, we obtained the overlapping top valid features
reported by the tool in the replicates and computed the
Pearson correlation coefficient (PCC) of the log-abundances
of the overlapping features. We first compared the quantitative
reproducibility of the four tools using the first two replicates of
the OC and SW620 data sets. For the OC data, TopFD
reported a PCC of 98.12% while ProMex, FlashDeconv, and
Xtract reported 96.57, 94.97, and 94.37%, respectively. For the
SW620 data, TopFD, ProMex, FlashDeconv, and Xtract
reported similar PCC values of 94.42, 94.19, 94.70, and
92.13%, respectively. We further extended the PCC analysis to
all of the replicates in the OC and SW620 data sets. TopFD
reported better proteoform abundance reproducibility com-
pared with other tools, thus indicating good reproducibility in
proteoform quantification on the OC (Supporting Figure S10)
and SW620 (Supporting Figure S11) data sets.
Feature Reproducibility in Different Mass Ranges. We

first compared the feature reproducibility of the four tools in
different mass ranges using the first two replicates of the OC
and SW620 data sets. We divided the top valid features
reported by each tool into the mass ranges [0, 1.5k], [1.5k, 3k],
[3k, 4.5k], [4.5k, 6k], [6k, 7.5k], and [7.5k, 100k] Da. Using
the methods described in the previous sections, we compared
overlapping proteoform features and proteoform quantitative
reproducibility of the four tools in each mass range. TopFD
reported the highest overlapping feature ratios in all mass
ranges compared with other tools in the two data sets except
for the range [7.5k, 100k] in the SW620 (Supporting Figure
S12). The reason is that the ratio might not be correctly
estimated due to the small number (11) of proteoform features
reported by TopFD in the range. TopFD also achieved a
slightly better PCC for reported proteoform abundances in
most mass ranges in the two data sets (Supporting Figure
S13).
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Comparison between Technical Replicates and Bio-
logical Replicates. We further compared the feature
reproducibility in technical and biological replicates of semen
protamine (SP) top-down MS data set (Supporting Methods
S1). We used TopFD to identify proteoform features from
three runs of the data set: SP11 (technical replicate 1 of
biological replicate 1), SP21 (technical replicate 2 of biological
replicate 1), and SP12 (technical replicate 1 of biological
replicate 2) using the parameters in Supporting Table S3, and
mass artifacts were removed from the proteoform features
reported by TopFD. The features (1726) reported from SP11
were compared with those reported from SP21 and SP12
separately to evaluate feature reproducibility between technical
and biological replicates. TopFD obtained a reproducibility of
51.39% (887 of 1726) for the proteoform features reported
from the two technical replicates and a reproducibility of
40.90% (706 of 1726) for features reported from the two
biological replicates. The correlation of the proteoform log-
abundances reported by TopFD was 90.90% for the technical
replicates, which was better than the correlation (80.21%) for
the biological replicates.

■ CONCLUSIONS AND DISCUSSION
In this paper, we proposed TopFD, a software tool for top-
down MS feature detection that integrates algorithms for
proteoform feature detection, feature boundary refinement,
and machine learning models for proteoform feature
evaluation. Using a standard protein mix, we demonstrated
that TopFD can accurately report proteoform features. We
further demonstrated TopFD’s ability to parse overlapping
envelopes using a simulated data set. An extensive bench-
marking of TopFD, ProMex, FlashDeconv, and Xtract using
several top-down MS data sets demonstrated that TopFD
outperforms other tools in feature accuracy, reproducibility,
and feature abundance reproducibility. In comparison with
other tools, TopFD also reported fewer artifacts and reported
feature intensities had the highest correlation with total ion
current.

Accurate proteoform feature detection in top-down MS is
essential for proteoform quantification. Proteoform feature
detection results show that more than 61% of features reported
from one replicate are observed in all three replicates of the
SW620 data and all 10 replicates of the OC data, and the
PCCs of proteoform abundances between MS replicates are
higher than 94%. This level of reproducibility makes it possible
to identify differentially expressed proteoforms in two types of
samples in proteome-wide top-down MS studies.

Accurate precursor monoisotopic mass calculation in top-
down MS is indispensable for identifying PTMs and other
alterations in proteoforms. Proteoform feature detection tools
often report monoisotopic masses of features with ±1 Da
errors due to noise in measured isotopic peak intensities in
experimental envelopes and errors in isotopic peak intensities
in theoretical envelopes. Following the method in Park et al.,27

TopFD aggregates isotopic envelopes in an envelope collection
to improve the accuracy of experimental isotopic peak
intensities. The errors in theoretical peak intensities are mainly
introduced by the difference between the chemical composi-
tion of the proteoform and that computed based on the
Averagine model.31 To address this problem, a postprocessing
step can be employed to recalculate the theoretical isotopic
peak intensities when the proteoform sequence of the feature is
identified and its chemical composition is known.

ECScore in TopFD outperforms the EnvCNN score32 for
computing confidence scores for identified envelope collec-
tions, showing that neural network-based models have the
potential to improve the accuracy in proteoform feature
detection. ECScore is based on a simple fully connected neural
network with eight attributes of envelope collections as the
input. As complex neural network models24 have been
successfully used for peptide feature detections in bottom-up
MS, a future research direction is to employ deep learning
models to solve various problems in proteoform feature
detection, such as feature boundary detection and scores of
envelope collections, and use these models to further improve
the accuracy in proteoform feature detection.

There are still many challenging problems in proteoform
feature detection, like feature boundary detection and the
identification of overlapping proteoform features and low
abundance features. TopFD identifies overlapping proteoform
features by comparing isotopic peak intensities in experimental
and theoretical envelopes. If there is a significant difference
between the intensities of a pair of matched experimental and
theoretical peaks, the experimental peak is treated as an
overlapping peak. TopFD relies on seed envelopes for
proteoform feature identification and may fail to find seed
envelopes for low abundance features. Deep learning models
are promising to provide better solutions for identifying
overlapping features and low abundance features.
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