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Abstract 

Background  Gestational diabetes mellitus (GDM) represents the main metabolic alteration during pregnancy. The 
available methods for diagnosing GDM identify women when the disease is established, and pancreatic beta-cell 
insufficiency has occurred.The present study aimed to generate an early prediction model (under 18 weeks of gesta‑
tion) to identify those women who will later be diagnosed with GDM.

Methods  A cohort of 75 pregnant women was followed during gestation, of which 62 underwent normal term preg‑
nancy and 13 were diagnosed with GDM. Targeted metabolomics was used to select serum biomarkers with predic‑
tive power to identify women who will later be diagnosed with GDM.

Results  Candidate metabolites were selected to generate an early identification model employing a criterion used 
when performing Random Forest decision tree analysis. A model composed of two short-chain acylcarnitines was 
generated: isovalerylcarnitine (C5) and tiglylcarnitine (C5:1). An analysis by ROC curves was performed to determine 
the classification performance of the acylcarnitines identified in the study, obtaining an area under the curve (AUC) of 
0.934 (0.873–0.995, 95% CI). The model correctly classified all cases with GDM, while it misclassified ten controls as in 
the GDM group. An analysis was also carried out to establish the concentrations of the acylcarnitines for the identifi‑
cation of the GDM group, obtaining concentrations of C5 in a range of 0.015–0.25 μmol/L and of C5:1 with a range of 
0.015–0.19 μmol/L.

Conclusion  Early pregnancy maternal metabolites can be used to screen and identify pregnant women who will 
later develop GDM. Regardless of their gestational body mass index, lipid metabolism is impaired even in the early 
stages of pregnancy in women who develop GDM.
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Background
The American Diabetes Association formally classifies 
gestational diabetes mellitus (GDM) as “diabetes diag-
nosed in the second or third trimester of pregnancy that 
was not clearly overt diabetes prior to gestation” [1]. 
GDM affects between 2 and 38% of pregnancies world-
wide. In Mexico, the prevalence has increased from 4% to 
over 30% [2, 3]. The prevalence varies considerably based 
on the diagnostic criteria and the studied sample popula-
tion [4].

Multiple risk factors have been related to the develop-
ment of GDM, including genetic background, age, eth-
nicity, excessive weight gain during the first trimester, 
history of GDM during previous pregnancies, familial 
history of GDM, tobacco use, and presence of preges-
tational obesity, among others [5–9]. Above all. GDM 
places a heavy burden on patients and is associated with 
higher rates of adverse neonatal outcomes such as pre-
mature delivery, shoulder dystocia, macrosomia, birth 
injuries, neonatal hypoglycemia, neonatal cardiac dys-
function, and stillbirth [10, 11]. In addition, several stud-
ies have demonstrated that women with GDM have seven 
times more risk of developing type 2 diabetes (T2D) and 
a higher probability of developing arterial hypertension, 
dyslipidemia, and metabolic syndrome than mothers 
without this pathology [12, 13]. Given the interaction 
between GDM and poor pregnancy outcomes, a greater 
focus is needed on preventing, screening, diagnosing, 
and managing GDM.

The available methods for diagnosing GDM identify 
women when the disease is already established, and pan-
creatic beta-cell insufficiency has occurred [14]. This late 
diagnosis exposes the pregnant woman and fetus to early 
and prolonged maternal hyperglycemia risks. Clinicians 
recognize that early diagnosis, adequate treatment, and 
close follow-up are essential to decreasing the incidence 
of diabetes complications in pregnancy and achieving a 
successful outcome [15]. In addition, lifestyle changes 
appear to be more effective the sooner they start [16]. 
Another recognized limitation of screening for GDM at 
24 to 28 weeks of gestation is the delay in detecting GDM 
that develops in the first or second trimester. Besides, 
many may still need to be recognized and untreated with-
out universal screening programs in Mexico. The uni-
versal 24 to 28 week oral glucose tolerance test (OGTT) 
limitations support the potential value of predictive early 
gestational biomarkers for GDM.

Metabolomics provides a practical approach that 
allows the simultaneous evaluation of low–molecular 
weight metabolites representing the metabolic statuses 
of cells, tissues, or organisms [17]. Also, having brought 
about insights into the association between metabolism 
and clinical conditions, metabolomics has proven to be 

a potential tool for assessing GDM to improve screen-
ing, monitoring, and early detection [18]. Thus far, meta-
bolic biomarkers have been identified between the weeks 
when the GDM diagnosis is established [19–21] or before 
diagnosis [13, 22]. The biomarkers studied include fatty 
acids, amino acids, glucose, glycosylated hemoglobin, 
acylcarnitines, pregnancy-associated plasma protein-A, 
and others [10, 13, 18, 23, 24]. Based on the above stud-
ies, several authors have developed predictive models for 
the early diagnosis of GDM [16, 25–28]. However, diver-
gences remain between the identified metabolites, the 
proposed models, and the studied populations.

This study’s main aim was to find serum biomarkers 
that allow early identification (before gestational week 
18) for pregnant women who later, between weeks 24 and 
28 of pregnancy, were diagnosed with GDM using the 
standard oral glucose tolerance tests (OGTT).

Methods
Study population & clinical data
This is an analytic prospective nested case–control study 
with clinical follow-up between 31/May/2018 and 30/
June/2019. Pregnant women were randomly recruited 
at two primary health care units ‘‘C.S.T.II San Miguel 
Topilejo” and “C.S.T.III Dr. Gabriel Garzón Cossa’’ 
located in Mexico City, that meet the inclusion crite-
ria which include healthy singleton pregnant women 
before 18 weeks gestation, age between 18 and 35 years, 
without any history of major medical pathologies and/
or complications (T2D, hypertension, dyslipidemia, and 
polycystic ovary syndrome) and/or complications (abor-
tion or premature fetal death), with a body mass index 
(BMI) between 18.5 and 49.9  kg/m2, and followed dur-
ing gestation. An OGTT at 24–28 weeks of gestation was 
used to classify control cases that do not develop or were 
developing GDM. All participants signed informed con-
sent. The study was conducted according to the guide-
lines of the Declaration of Helsinki and approved by 
Mexico’s City Ministry of Health (Registration number: 
102-010-02-18).

Informed Consent Statement: Informed consent was 
obtained from all subjects involved in the study.

Anthropometric and biochemical measurements
Weight, height, and samples for metabolomic studies 
were obtained during the first visit at early pregnancy 
stages (before 18 weeks of gestation) by trained person-
nel using standardized techniques. Venous blood sam-
ples were collected in the morning after overnight 8  h 
fasting and serum was kept at 2 to8  °C, centrifuged at 
1500 ×g for 15 min, and stored at − 70 °C until their pro-
cessing at the Instituto Nacional de Medicina Genómica 
(National Institute of Genomic Medicine, INMEGEN) in 
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Mexico City, Mexico. Serum levels of glucose, triglycer-
ides, and total cholesterol were assessed by an automatic 
chemistry analyzer (Advia 1800 Siemens, Malvern, PA, 
USA), while β-Hydroxybutyric acid was determined by 
EnzyChrom Ketone Body Assay Kit (BioAssay Systems, 
Hayward, CA) and insulin was determined by ELISA 
(Human Insulin ELISA, ALPCO, Salem, NH). All meth-
ods were standardized with internal controls and an 
external quality program. HOMA- IR was calculated 
according to the following formula: HOMA-IR = fast-
ing insulin (µUI/mL) × fasting glucose (mmol/L)/22.5. 
HOMA-β was calculated according to the following for-
mula: HOMA-β = 20 × fasting insulin (µUI/mL)/(fasting 
glucose (mmol/L)—3.5) [29, 30].

Oral glucose tolerance test (OGTT)
For GDM diagnosis, a 2  h–75  g OGTT during gesta-
tional weeks 24–28 was performed according to the 
International Association of Diabetes and Pregnancy 
Study Groups (IADPSG) criteria [31]. Diagnostic val-
ues were as follows: ≥ 5.3  mmol/l (fasting blood glu-
cose), ≥ 10.0  mmol/l (1  h) and ≥ 8.6  mmol/l (2  h). GDM 
was diagnosed if one or more of the diagnostic criteria 
values were abnormal.

Metabolomics analysis
Concentrations of serum acylcarnitines, free carnitine, 
and amino acids were measured using the approach of 
targeted metabolomics by electrospray tandem mass 
spectrometry (Quattro Micro API tandem MS, Waters 
Inc., Milford, MA, USA). Metabolite levels in serum 
were analyzed using the commercial kit (NeoBase Non-
derivatized MS/MS Kit, Perkin Elmer, Waltham, MA, 
USA). In brief, 20  μL of plasma samples were dropped 
onto filter paper cards (Whatman 903™,Schleicher and 
Schüell, Dassel, Germany) and dried for 4 h at room tem-
perature in a sterile environment. The resulting spot was 
precisely cut off in 2 mm circles and placed into a 96-well 
plate, and then 190  μLof extraction solution containing 
a mixture of 22 stable isotope-labeled internal stand-
ards were added. The plate was sealed, incubated under 
stirring (30 °C at 650 ×g for 30 min), and then placed in 
a Waters autosampler. An HPLC pump (Waters 2795) 
was employed for the delivery of solvent, supplying a 
0.1  mL/min stream of a mixture of acetonitrile:water 
(80:20 v:v%). Ten microliters of each sample were directly 
administered into the flow at 4-min intervals. A blank 
sample containing extraction solution and internal stand-
ards was included in each plate in triplicate, as reference. 
A MicromassQuattro instrument (Waters Inc., Milford, 
MA, USA) coupled to an ESI source in positive mode was 
employed. For desolvation and nebulization, nitrogen gas 

was utilized, while argon was employed as the collision 
gas [32–34].

Statistical analysis
A descriptive quantitative statistical analysis was per-
formed, where quantitative variables are expressed as 
mean and standard deviations (for parametric variables).
Median and percentiles 25 and 75 were used for non-
parametric variables according to their distribution. To 
determine the normality of the variables Kolmogorov–
Smirnov tests were executed.

Differences between the study groups (control and 
GDM group) were evaluated through one factor mul-
tivariate Partial Least-Squares Discriminant Analysis 
(PLS-DA) to visualize discrimination among samples. 
Permutation testing was carried out to minimize the pos-
sibility that the observed separation on PLS-DA was by 
chance. To evaluate the association and contribution of 
each variable to identify the GDM group from the control 
group Random Forest analyses were performed following 
diverse selection criteria: frequency criteria and aver-
age mean criteria. Due to the nature of the study groups 
(no matching between them), an unconditional logistic 
regression analysis was performed to estimate the aver-
age effect of predictor variables (known GDM risk factors 
such as age, parity, and gestational BMI) on the outcome. 
Also, unconditional regression analysis adjusted for the 
covariates above analyzed was performed on the top 
variables selected by Random Forest analyses. Those vari-
ables with the highest ranking among the two selection 
criteria were selected to create a model to classify GDM 
cases versus controls. Using Receiver Operating Char-
acteristic (ROC) regression curves the optimal cutting 
point to discriminate the study group from the controls 
was determined. For all statistical analyses significance 
was assumed when the p-value was less than 0.05. Sta-
tistical analyses were performed on: SPSS 23, RStudio 
1.4.1717, Stata 15, and MetaboAnalyst 5.0 (McGill Uni-
versity, Toronto, ON, Canada).

Results
Population demographics and clinical characteristics
This study included 75 pregnant women who com-
pleted clinical follow-up; 13 were diagnosed with 
GDM during the OGTT test performed at 24 to 28 
gestational weeks, and 62 had normal full-term preg-
nancies and were classified as controls. The mean age 
in the overall population was 27  years, the mean of 
gestational weeks at the first visit was 12  weeks and 
5 days in the GDM group (range from 9 to 16 weeks), 
and 12  weeks and 7  days in the control group (range 
from 9  weeks and 6  days to 16  weeks and 1  day).For 
these cases, no significant differences between groups 
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were found. Parity was higher in GDM group than in 
the control group. No significant divergences were 
observed in the variables of weight and height in both 
groups. In this study, the GDM group had a higher 
prevalence of grade II obesity (see Table 1).

No significant differences in basal concentration 
of glucose, cholesterol, β-hydroxybutyrate, and insu-
lin were seen between groups (see Table  2). Women 
that later developed GDM had significantly higher 
triglycerides concentration compared to the control 
group. However, both groups are within the ranges 
found during the first trimester of pregnancy (1.95–
2.21  mmol/L) [35]. Marginal significant differences 
were found in the HOMA-IR index and HOMA-β 
between groups, where the group with GDM presented 

a lower HOMA-IR index and HOMA-β compared to 
the control group.

Acylcarnitines and amino acid profile in the early stages 
of pregnancy
The acylcarnitine concentrations are described in Addi-
tional file 1: Figure S1. Significant differences were found 
in all the acylcarnitine species evaluated except for free 
carnitine (C0) and butylcarnitine (C4). About short chain 
acylcarnitines, the concentration of acetylcarnitine (C2) 
decreased and the concentrations of propionylcarnitine 
(C3), butylcarnitine (C4), isovalerylcarnitine (C5) and 
tiglylcarnitine (C5:1) increased in the GDM group. In the 
group of medium chain acylcarnitines, significant differ-
ences were found in hexanoylcarnitine (C6), octanoylcar-
nitine (C8), octenoylcarnitine (C8:1), decanoylcarnitine 

Table 1  Descriptive characteristics of the study population

Bold values denote statistical significance at the p < 0.05 level

Results are shown as mean (± S.D.) for parametric variables and as median (p25-75) for non-parametric variables **p < 0.0001, Mann Whitney U test for independent 
samples
a vs normal weight BMI
b vs overweight BMI; Fisher’s exact test

Variables Control (n = 62) Gestational diabetes mellitus (n = 13) p value

Age (years) 25.9 (± 5.20) 28.2 (± 5.80) 0.509

Gestational age (week.day) 12.7 (± 3.10) 12.5 (± 3.50) 0.306

GDM prevalence – 17.3% –

Parity 1 (1–1) 3 (2–4)** 0.0001
Weight (kg) 66.0 (± 13.8) 72.0 (± 19.8) 0.081

Height (m) 1.57 (± 0.06) 1.53 (± 0.07) 0.567

Gestational BMI (kg/m2) 26.6 (± 5.16) 30.4 (± 6.79) 0.159

Normal weight (%) 28 (45.1) 3 (23.0) 1.000

Overweight (%) 19 (30.6) 2 (15.3) 1.000

Obesity I (%) 11 (17.7) 3 (23.0) 0.356

Obesity II (%) 3 (4.83) 4 (30.7) 0.013a, 0.021b

Obesity III (%) 1 (1.61) 1 (7.60) 0.231

Table 2  Biochemical parameters of the study population

Bold values denote statistical significance at the p < 0.05 level

Results are shown as mean (± S.D.) for parametric variables and as median (p25-75) for non-parametric variables. *p < 0.05, StudenT-test for independent samples. 
+p < 0.05, Mann Whitney U test for independent samples

Variables Control (n = 62) Gestational diabetes mellitus (n = 13) p value

Glucose (mmol/L) 4.52 (± 0.56) 4.47 (± 0.55) 0.660

Triglycerides (mmol/L) 1.46 (± 0.44) 1.88 (± 0.74)* 0.025
Total cholesterol (mmol/L) 4.51 (± 0.80) 4.60 (± 0.56) 0.477

β-hydroxybutiric acid (μmol/L) 42.4 (± 26.4) 48.9 (± 25.0) 0.376

Insulin (pmol/L) 53.4 (± 38.1) 34.7 (± 22.5) 0.213

HOMA-IR 1.47 (± 1.02) 0.91 (± 0.51)* 0.049
HOMA-β 129 (78.5–196) 56.7 (29.9–196)+ 0.041
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(C10), decenoylcarnitine (C10:1), dodecanoylcarnitine 
(C12) where the concentrations of these acylcarnitines 
were higher in the GDM group compared to the control 
group. Lastly, the concentrations of long chain acylcar-
nitines (myristoylcarnitine (C14), tetradecenoylcarnitine 
(C14:1), tetradecadienoylcarnitine (C14:2), palmitoylcar-
nitine (C16), hexadecenoylcarnitine (C16:1), stearoyl-
carnitine) (C16:1), stearoylcarnitine (C16:1) (C16:1), 
stearoylcarnitine: 1) and linoleylcarnitine (C18:2)) were 
higher in the GDM group compared to the control group. 
Regards amino acid concentrations (Additional file 2: Fig-
ure S2), the group with GDM had higher concentration 
of glycine, alanine, valine, citrulline, and proline com-
pared to the control group; while the concentrations of 
arginine, ornithine and methionine were lower in this 
group compared to the control group. No significant dif-
ferences were observed between the groups in leucine, 
phenylalanine, and tyrosine concentrations.

Serum early pregnancy metabolite profile
To visualize the differences among the metabolites data, 
this research performed PLS-DA (see Fig. 1A). The score 
plot revealed differences in groups, which were well sepa-
rated Principal Component 1 (PC1) (69.2%) and Principal 
Component 2 (PC2) (13.9%). The cumulative contribu-
tion rate reached 83.1%, which means that the selection 
of two principal components can explain the data varia-
bility among groups. The performance scores of the PLS-
DA analysis for the study groups were accuracy = 0.83, 
R2 = 0.42, and Q2 = 0.28. Furthermore, unsupervised 
hierarchical clustering of abundance heatmap showed a 

separation between the groups (see Fig.  1B). A distinc-
tive pattern dependent on GDM was observed. Briefly, 
the GDM group showed a higher concentration of propi-
onylcarnitine (C3), octanoylcarnitine (C8), butylcarnitine 
(C4), isovalerylcarnitine (C5), hexanoylcarnitine (C6), 
tiglylcarnitine (C5:1), octenoylcarnitine (C8:1), decadien-
oylcarnitine (C10:2), tetradecadienoylcarnitine (C14:2), 
and tetradecanoylcarnitine (C14).

Predictive accuracy through random forest analysis
Despite the lower R2 and Q2 observed in PLS-DA, 
an alternative to evaluating the relationship between 
metabolomic variables and the development of GDM is 
by using Random Forest decision tree analysis and thus 
obtaining different discrimination models. Figure  2A 
shows the predictive accuracy of the study´s model 
according to the number of features important to dis-
criminate groups. Using a prediction model composed of 
only two variables (due to the small sample size) provides 
a prediction accuracy of 82.9% to discriminate the GDM 
group from the control group (see Fig. 2A). To select the 
candidate metabolites, the criteria of medium impor-
tance were used. Figure  2B shows isovalerylcarnitine 
(C5) and tiglylcarnitine (C5:1) as the metabolites with the 
highest average importance for discriminating the GDM 
group. These metabolites were adjusted for covariates 
(age, parity, and gestational BMI) (see Table 3).

An analysis was also carried out to establish the con-
centrations of the acylcarnitines that make up the 
model for the identification of the GDM group, obtain-
ing concentrations of isovalerylcarnitine in a range of 

Fig. 1  Serum metabolite profile in early pregnancy. A PLS-DA plot shows separation between groups; control (blue circles) and gestational 
diabetes mellitus (red circles). The explained variances are shown in brackets (PC1 (69.2%) and PC2 (13.9%; accuracy: 0.83, R2 = 0.42, and Q2 = 0.28: 
permutation p-value = 0.13); B Hierarchical heatmap, red and green, indicate increase and decreased concentration, respectively
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0.015–0.25 μmol/L and of tiglylcarnitine with a range of 
0.015–0.19 μmol/L.

An analysis by Receiver Operating Characteristic 
(ROC) curves was performed to determine the classifica-
tion performance of the acylcarnitines identified in the 
study, obtaining an Area Under the Curve (AUC) of 0.934 
(0.873–0.995, 95% CI) (see Fig.  3A). Finally, the contin-
gency table of the corresponding model was made to 
evaluate classified and misclassified cases of both study 
groups (see Fig.  3B). The model correctly classified all 
cases with GDM, while it misclassified ten controls as in 
the GDM group.

To evaluate the association between short-chain acyl-
carnitines, branched-chain amino acids (BCAAs), insu-
lin sensitivity, triglycerides, and β-hydroxybutyric acid, 

a correlation analysis was performed (see Fig.  4A–B). 
HOMA-IR and HOMA-β positively correlated with short 
chain acylcarnitine concentrations in the GDM group. 
In contrast, in the control group, a negative correlation 
was observed between these acylcarnitines with HOMA-
IR and HOMA-β, except for acetyl carnitine. Triglycer-
ides negatively correlate with short-chain acylcarnitines, 
HOMA-IR and HOMA-β. Regarding β-hydroxybutyric 
acid, significant correlations (negative: AC2 and AC4; 
positive: AC3, AC5, and AC5: 1) were observed exclu-
sively in GDM group. Finally, leucine correlated posi-
tively with HOMA-IR and HOMA-β, only in the control 
group, while valine negatively correlated with HOMA-IR 
in both groups.

Fig. 2  Metabolite selection through Random Forest analysis. A Predictive accuracy graph through Random Forest analysis. The best model that 
fits the highest predictive accuracy range is a model that combines 10 variables with a predictive accuracy of 85.4% (red circle). B The top 15 
metabolites with the highest average importance to identify GDM cases from controls

Table 3  Unconditional logistic regression analysis of GDM outcome according to covariates and serum concentrations of selected 
ACs (isovalerylcarnitine (C5) and tiglylcarnitine (C5: 1)) adjusted by covariates (age, parity, and gestational BMI)

Bold values denote statistical significance at the p < 0.05 level

Estimated βcoefficient with Wald 95% confidence interval in covariates alone and after adjustment for covariates (age, parity, and gestational BMI) are shown for the 
selected metabolites previously on the Random Forest analysis (standardized serum acylcarnitines concentrations)

Characteristic β coefficient Standard error Wald test value Significance 95% CI

Age per 1 year increment 0.0817 0.0586 1.40 0.163 − 0.0330–0.1966

Parity per 1 pregnancy increment 1.2923 0.3457 3.74 0.0001 0.6147–1.9700

Gestational BMI per 1 unit kg/m2 increment 0.1190 0.0559 2.13 0.033 0.0093–0.2287

Age + parity + gestational BMI per 1 unit increment 0.0012 0.0003 3.77 0.0001 0.0006–0.0019

Adjusted by age, parity, gestational BMI β coefficient Standard error Wald test value Significance 95% CI

C5 (isovalerylcarnitine)per 1 µmol/L increment 24.8118 5.7870 4.29 0.0001 13.4693–36.1543

C5:1 (tiglylcarnitine) per 1 µmol/L increment 24.9211 5.8966 4.23 0.0001 13.3639–36.4783

C5 + C5:1 per 1 µmol/L increment 92.8482 25.5747 3.94 0.0001 46.6426–139.053
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Discussion
This study generated a metabolomic model distinguish-
ing women who later develop GDM during early preg-
nancy. Short chain acylcarnitines (isovalerylcarnitine C5 
and tiglylcarnitine C5:1) during weeks 12 to 18 of preg-
nancy allow the identification of women who will develop 

GDM. Incorporating biomarkers that precede the onset 
of hyperglycemia into a risk prediction model for GDM 
may facilitate earlier risk assessment, screening, and 
diagnosis, thereby reducing the risk of adverse maternal 
and infant outcomes through targeted intervention.

Several metabolomic models have been developed 
in the Caucasian population to diagnose GDM early. 

Fig. 3  ROC curve of model for the early identification (< 18 gestational weeks) of gestational diabetes mellitus. A ROC curve adjusted by age, parity, 
and BMI, AUC = 0.934 (0.873–0.995, IC 95%) B Predicted class probabilities for all samples (controls (open circle) and gestational diabetes mellitus 
group (filled circle)) using the created biomarker model

Fig. 4  Correlation heatmap between metabolites in the early stages of pregnancy. A Control group. B Gestational diabetes mellitus group. Blue 
and red colors indicate an increase and de-creased correlation, respectively. The size of each dot was associated with the p-value, where a big circle 
represents a smaller p-value
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However, the predictive performance of these models 
varies between 0.741 and 0.848 [25–27]. This research 
proposed model showed a predictive performance of 
0.93 (0.869–0.991, 95% CI), which allows for classify-
ing cases of GDM correctly. This is the first study to 
evaluate the metabolomic profiles of pregnant Mexican 
women who will develop GDM before their 18-week 
gestation. Nevertheless, the results must be considered 
cautiously due to the study’s limited sample size.

Some acylcarnitines species, amino acids, and 
β-hydroxybutyric acid evaluated in this study have been 
associated with obesity, insulin resistance, T2D, and 
GDM [12, 26, 36–39]. In T2D, branched-chain amino 
acids, such as leucine, valine, and isoleucine, and their 
intermediary metabolic products, such as short-chain 
acylcarnitines (C3, C5), propionyl-CoA, and acetoa-
cetyl-CoA, have been proposed as potential biomarkers 
that help explain diabetic stages’ pathophysiology [40]. 
Regarding GDM, the associations drawn between some 
acylcarnitines and amino acids have identified potential 
biomarkers of this pathology. Roy et al. noted acetylcar-
nitine, butylcarnitine, isobutyrylcarnitine, glutamic acid, 
and leucine as potential biomarkers [26]. Meanwhile, the 
Nevalainen et al. early pregnancy study found 3-hydroxy-
isovalerylcarnitine, arginine, and glycine to be differen-
tially expressed in women who later develop GDM [16]. 
Additionally, Batchuluun et  al. discovered that women 
with GDM had higher levels of medium-chain acylcar-
nitines (namely C6 and C8), which are key in the pro-
gression to type 2 in women with a history of GDM 
[41]; furthermore, these metabolites have the poten-
tial to induce pancreatic β-cell dysfunction. In particu-
lar, the short-chain acylcarnitines used to generate the 
early identification metabolomic model are metabolites 
from branched-chain amino acid (BCAA) metabolism. 
Isovalerylcarnitine is a metabolite from leucine and isole-
ucine metabolism (through the action of isovaleryl-CoA 
dehydrogenase), and tiglylcarnitine or 3-methyl-crotonyl 
carnitine is a metabolite from isoleucine metabolism 
(through action acetoacetyl-CoA thiolase). Interestingly, 
β-hydroxybutyric acid concentrations were positively 
correlated with AC5 and AC5:1. It is important to note 
that the correlation of β-hydroxybutyric acid with short-
chain acylcarnitines was present only in the GDM group.

Isovalerylcarnitine is elevated in obesity (body fat and 
waist-to-hip ratio), liver fat, and cardiovascular diseases 
[22, 42]. Serum accumulation of acylcarnitines in obese 
and type 2 diabetic individuals has been associated with 
incomplete fatty acid (FA) oxidation. The proposed 
mechanism is associated with an increase in β-oxidation; 
it causes acetyl-CoA accumulation, which exceeds the 
tricarboxylic acid (TCA) cycle rate, leading to an incom-
plete β-oxidation. Otherwise, Sunny et al. indicated that 

insulin stimulation resulted in higher oxidation rates of 
branched-chain amino acids (BCAAs), contributing to 
higher levels of isovalerylcarnitine in plasma [43]. The 
increased concentrations of BCAAs overload the cata-
bolic pathways in the liver and skeletal muscle, increas-
ing the production of the catabolites succinyl-CoA and 
propionyl-CoA and reducing the β-oxidation of fatty 
acids and the catabolism of glucose. Therefore, the loss of 
efficiency in oxidative metabolic pathways amplifies the 
oxidation of partially oxidized products, increasing mito-
chondrial stress, reducing insulin sensitivity, and altering 
circulating glucose concentrations [44].

In a prospective observational cohort study, propionyl‐ 
and isovalerylcarnitine concentrations were positively 
correlated with triglycerides, C‐peptide, insulin, β‐cell 
activity, and insulin resistance [45]. These findings are 
consistent with this study, in which the concentrations 
of isovalerylcarnitine, tiglylcarnitine and propionylcar-
nitine were positively correlated with insulin sensitivity 
and β-cell functionality. However, an interesting finding 
is that this correlation could only be observed in women 
who later developed GDM. Among the major physiologi-
cal adaptations during pregnancy are insulin sensitiv-
ity, pancreatic β-cell hypertrophy, and hypersecretion 
[46]. Insulin secretion rises progressively throughout 
gestation, reaching its highest point during the third tri-
mester [47]. In the present study, the GDM group was 
characterized by normoglycemia and a lower HOMA-IR 
index than the control group, suggesting the group that 
develops GDM has greater sensitivity to insulin than 
the control group in the first trimester of pregnancy. 
Remarkably, when the β-cell functionality was estimated, 
it was observed that women who develop GDM have a 
lower HOMA-β index during early gestation. This index 
has a correlation coefficient of 0.87 with the hyperglyce-
mic clamp and continuous glucose in-fusion with model 
assessment (CIGMA) [30]. However, the HOMA-β index 
has not been well studied in GDM. Endo et  al. showed 
that women who developed GDM later in pregnancy had 
lower HOMA-IR and HOMA-β in the first trimester of 
pregnancy than controls [48]. The study findings agree 
with Endo et  al. and suggest that, unlike normal preg-
nancy, where greater β-cell functionality is observed, as 
gestation progresses, β-cell dysfunction occurs in women 
who develop GDM against a background of chronic insu-
lin resistance. Therefore, insulin secretion in women who 
develop GDM can increase by advanced gestation; how-
ever, the insulin secretion rate in women with GDM from 
early gestation is lower than in healthy women.

Scott et  al., reported lower glycine concentrations in 
women with GDM [49]. This study differs from these 
observations. The difference may be related to the 
week of gestation they were studied (14 to 27  weeks of 
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gestation vs. 13  weeks of gestation in this study) and 
the matrix assessed (urine vs. serum in this study). This 
research strongly underlines that consideration should 
be taken when comparing studies using various biofluid 
matrices since metabolite expression can be affected by 
factors like ethnicity, age, circadian rhythms, diet, physi-
cal activity, and environment as pre-analytical processing 
[50, 51]. Notably, the alanine level is positively associated 
with insulin resistance and the risk of T2D [52]. Glycine 
and alanine are gluconeogenic amino acids. Dimou et al., 
indicates glycine is converted to glucose during preg-
nancy due to pyruvate dehydrogenase inhibition [53]. 
These findings suggest that during the first trimester of 
pregnancy, the fetoplacental unit in women who later 
develop GDM would be exposed to higher gluconeogenic 
substrates and/or glucose concentrations. A previous 
report indicates that as pregnancy progresses, women 
who develop GDM have lower ornithine concentrations 
[54], which was confirmed in this study. Recently, it was 
shown that subjects with T2D have lower serum concen-
trations of ornithine. The authors note that these concen-
trations could be attributed to the increased expression 
of ornithine decarboxylase observed in the early stages of 
diabetes [55].

Glucose is the main energetic substrate; however, when 
glucose is not available as an energetic substrate in insu-
lin resistance states, the cell uses free fatty acids, lipids, 
and amino acids as alternative substrates, causing an 
imbalance between acylcarnitines and amino acids [56]. 
This metabolic shift causes the accumulation of inter-
mediary substrates, such as acylcarnitines that could be 
implied to interfere with insulin sensitivity, causing insu-
lin resistance and the onset of diabetes. These findings 
suggest that lipid and fatty acid metabolism could consti-
tute an early event that triggers the onset of GDM based 
on the higher acylcarnitine concentrations shown in this 
study in women who developed GDM and can be used 
as biomarkers for early identification of women who will 
develop GDM.

Studies focused on the metabolic changes post-partum 
of women diagnosed with GDM have identified that lipid 
and amino acid metabolism dysregulation is strongly 
associated with the development of other metabolic 
diseases; these metabolic changes predispose women 
to undergo GDM in further pregnancies [57–59]. How-
ever, to date, no study has evaluated the progression to 
GDM in those women who did not undergo this pathol-
ogy in previous pregnancies but further developed GDM 
in future pregnancies. Interestingly, not only these iden-
tified biomarkers could be used for the assessment of 
women who will undergo GDM during their current 
pregnancy; but they could certainly allow for the identifi-
cation of those women who are at risk of developing this 

pathology in further pregnancies, even though they have 
not been diagnosed with GDM; this might be the case of 
the control women assessed in this study, whom the pre-
diction model misclassified as part of the GDM group but 
did not develop this pathology. This study hypothesizes 
that a subclinical GDM-like condition is already present 
in these women, characterized by an impairment of lipid 
and/or amino acid metabolism that could probably trig-
ger the development of GDM in future pregnancies. Fur-
ther studies targeted to identify the metabolomics profile 
of healthy women who later develop GDM in further 
pregnancies are needed to elucidate this metabolic shift.

The present study has several strengths. First, to this 
research´s knowledge, it is the first study to evaluate 
and assess the fasting metabolomic profile of Mexican 
women who later develop GDM. This approach allows us 
to control the metabolic variation caused by postprandial 
states to determine amino acid and acylcarnitines con-
centrations. This investigation also controlled the model’s 
validity by adjusting covariables such as maternal age, 
parity, and BMI, demonstrating that metabolomic vari-
ables alone can identify women who will develop GDM 
at weeks 24 to 28 of gestation. Second, compared to other 
models that included only clinical variables, reaching an 
AUC average of 0.70 (95% CI), the model generated in 
this study using only metabolomic variables can reach an 
AUC average of 0.91 (95% CI). There are, however, some 
limitations to this discovery study. First, the small sample 
size may restrict the inclusion of other metabolites into 
the model and improve the current model’s specificity. A 
validation phase of these biomarkers in different popula-
tions is needed to evaluate GDM’s new early diagnostic 
test. Replicating findings may improve understanding of 
GDM pathogenesis and may have implications for devel-
oping GDM prevention and early diagnosis protocols.

The benefits of early screening for GDM based on 
various risk profiles and/or metabolomics settings on 
maternal and infant outcomes have yet to be adequately 
evaluated by randomized controlled trials. Evidence 
regarding this issue is limited and non-conclusive; how-
ever, meta-analyses published in 2016 [60] and 2021 [61]; 
as well as the major guidelines for screening and treat-
ment of GD [62, 63]; strongly encourage strict glucose 
monitoring and control in order to prevent short and 
long-term maternal and fetal outcomes. One of the main 
areas where metabolomics has already demonstrated 
significant potential is the discovery of biomarkers. 
Therefore, efforts should be made to target translational 
approaches in clinical practice to improve diagnosis 
and prevent adverse outcomes [64]. Further studies are 
needed to validate the applicability and cost-effective 
translational interventions of metabolomics on GDM, 
strategies that escape the scope of this study.
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Conclusions
This study demonstrates that early pregnancy maternal 
metabolites can be used to screen and identify preg-
nant women who will later develop GDM. The proposed 
model showed a predictive performance of 0.93 (0.869–
0.991, 95% CI). This work also supports the hypoth-
esis that higher acylcarnitine levels may be related to 
incomplete fatty acid β-oxidation and BCAA metabo-
lism impairment in early pregnant women who will later 
develop GDM. Nevertheless, these results must be taken 
cautiously due to the limited sample size.
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