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Abstract

Identification of biological risk factors that contribute to the development of complex 

neuropsychiatric disorders such as psychosis and autism spectrum disorders (ASD) is key for early 

intervention and detection. Furthermore, parsing apart the biological heterogeneity associated 

with these neuropsychiatric syndromes will help us understand the neural mechanisms underlying 

psychiatric symptom development. 22q11.2 Microdeletion syndrome (22q11DS) is caused by 

a recurrent genetic mutation that carries significantly increased risk for developing psychosis 

and/or ASD. In this review, I provide an brief introduction to 22q11DS and discuss common 

phenotyping strategies that are used to assess psychosis and ASD in this population. I then 

summarize neuroimaging phenotypes associated with psychosis and ASD in 22q11.DS. Next, I 

discuss challenges within the field and provide practical suggestions to overcome these obstacles. 

Finally, I end the review with a discussion of future directions for moving 22q11DS risk and 

resilience research forward.

Psychosis and autism spectrum disorders (ASD) are neuropsychiatric syndromes that 

share many features, including deficits in cognition, altered language processing and 

production, and social impairments (1,2). ASD and psychosis also share underlying genetic 

contributions (3–7). Despite similarities, ASD and psychosis have different developmental 

onsets. ASD typically presents in early childhood while psychosis onset usually occurs 

in late adolescence and early adulthood. Gaining a better understanding of biological risk 

factors contributing these differential trajectories will help identify causes of the illness and 

treatment targets, facilitating early detection and intervention.

An approach providing valuable insights into the causes of psychosis and ASD is the 

detailed examination of a more homogeneous subtype, with a known genetic cause. The 

22q11.2 Microdeletion Syndrome (Velocardiofacial/ DiGeorge syndrome; 22q11DS) is a 

compelling model, as 14–50% of 22q11DS youth meet criteria for ASD (22q11DS-ASD+; 

8–11) and 23–41% of 22q11DS adolescents and adults meet criteria for a psychotic disorder 

(22q11DS-psychosis+; 12–18). 22q11-ASD+ individuals do not have increased risk of 

later developing psychosis (19,20), suggesting that separate neurobiological mechanisms 

contribute to the manifestation these syndromes in 22q11DS. The purpose of this review is 
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to examine structural and functional neuroimaging factors that contribute to psychosis and 

ASD in 22q11DS. First, I provide a brief introduction to 22q11DS and discuss phenotyping 

strategies used to assess psychosis and ASD in 22q11DS. Next, I summarize how brain 

alterations in gray matter, diffusion-weighted imaging, and resting-state functional magnetic 

resonance imaging (rsfMRI) in 22q11DS are related to psychotic and ASD symptoms 

and social impairments. Third, I discuss current challenges faced in field and provide 

suggestions to overcome these obstacles. I conclude with future directions for 22q11DS risk 

and resilience research.

An Introduction to 22q11.2 Microdeletion Syndrome

22q11DS is caused by a hemizygous deletion at chromosome 22q11.2, an area that 

encompasses ~90 genes (~46 protein-coding genes), including those that play a role in 

neuronal migration, myelination, and brain development (21,22). 22q11DS is the second 

most common neurogenetic disorder, affecting approximately 1 in 4000 live births (23). 

22q11.2 microdeletions range from 1–3 megabases (Mb) in size (24,25), with the most 

common deletion size being 3 Mb. 22q11DS is most frequently caused by a de novo 

mutation, although approximately 10% of the cases are inherited from parents (26). While 

the phenotype of 22q11DS is highly variable, there are common physical characteristics, 

including craniofacial anomalies, cardiovascular abnormalities, and immune deficiency (27–

29). 22q11DS is also distinguished by a characteristic neurocognitive profile: 22q11DS 

individuals show visuospatial deficits relative to their verbal performance, and often have 

lower than average full-scale IQ (30,31). While 22q11DS is considered an ideal “human-

knock out” model for understanding psychiatric disorders, unique aspects of 22q11DS may 

also reflect distinct risk and resilience factors within this population.

Psychosis and ASD phenotyping strategies commonly used in 22q11DS

It is important to understand how psychosis and ASD phenotypes are typically characterized 

in 22q11DS. The Structured Interview for Prodromal Syndromes (SIPS; 32,33), is 

commonly used to assess psychosis risk in 22q11DS (Figure 1A). Positive symptoms are 

assessed dimensionally, ranging from no symptoms to psychotic-level symptom severity 

(Figure 1B). A 22q11DS participant is usually considered to be at “ultra-high risk” 

for developing psychosis (22q11DS-UHR+) when symptom severity falls within a sub-

threshold range. Researchers also compare 22q11DS individuals with a diagnosed psychotic 

disorder (22q11DS-psychosis+) to 22q11DS individuals who do not meet criteria for 

psychosis (22q11DS-psychosis-). Psychotic disorder diagnosis is determined from level-6 

severity scores on individual positive symptoms and/or through a semi-structured clinical 

interview. Others combine individuals with sub-threshold and psychotic level severity 

symptoms (score ≥ 3 on any positive symptom measure), creating a “psychosis-spectrum” 

group (22q11DS-pychosis-spectrum+) and compare them to 22q11DS individuals without 

clinically significant positive psychotic symptoms (22q11DS-psychosis-spectrum-). All 

positive symptom severity scores on the SIPS can be summed to obtain a dimensional 

measure of psychotic symptoms.
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There are important differences in how 22q11DS-UHR+ are assessed in comparison to UHR 

youth without a known 22q11.2 deletion (idiopathic). Most idiopathic UHR participants 

meet criteria for “Attenuated Positive Symptom Syndrome”, which means they endorse 

subthreshold positive symptoms that have started or gotten worse in the past year and 

symptoms are present at least once per week in the past month. In contrast, frequency and 

onset criteria are not typically used when assessing positive symptoms in 22q11DS. Despite 

these differences, multiple studies find that positive symptom presentation is similar in 

22q11DS in comparison to idiopathic forms of psychotic symptom presentation (14,34,35).

There are also detailed phenotyping measures used to characterize ASD in 22q11DS. ASDs 

in 22q11DS are commonly determined through: 1) the Autism Diagnostic Observation 

Schedule (ADOS; 36), and/or 2) the Autism Diagnostic Interview-Revised (ADI-R; 37). 

The ADOS is a semi-structured interview administered to the youth and elicits behaviors 

associated with social interactions and communication (Figure 1C). ADOS scores can 

be used to create a categorical diagnosis (22q11DS-ASD+ vs. 22q11DS-ASD-) or as a 

dimensional measure of symptom severity (Figure 1C). The ADI-R is a semi-structured 

interview administered to the youth’s primary caretaker; dimensional and categorical 

approaches in the three domains of social interactions, communication, and repetitive 

behaviors are also used (Figure 1D). Typically, in idiopathic ASD research settings, an 

individual must meet the identified cut-offs in all three domains of the ADOS and ADI-R 

to receive an ASD diagnosis, though there is variability in cut-off criteria for an ASD 

diagnosis, as the Collaborative Programs for Excellence in Autism (CPEA)-defined ASD 

diagnostic criteria required social communication deficits on the ADI-R and ADOS, but 

does not require repetitive behavioral impairments (38). Like the CPEA guidelines, in many 

22q11DS-ASD studies, if 22q11DS individuals score below the diagnostic threshold on the 

repetitive domain, but meet the cut-offs for the other two domains, they are still given an 

ASD diagnosis (e.g., 39,40).

Two studies have directly compared the 22q11DS-ASD+ phenotype to the idiopathic 

ASD phenotype (41,42). Both studies found that the severity of repetitive behaviors 

was similar in the two groups, but 22q11DS-ASD+ had less severe communication 

impairments in comparison to individuals with idiopathic ASD (41,42). Impairments in joint 

attention, gestural communication, initiating conversation, as well circumscribed interests 

are characteristic phenotypes associated with 22q11DS individuals, independent of ASD 

diagnosis (41,42). Taken together, these findings suggest that a “broader autism phenotype” 

may be more applicable to the 22q11DS population.

Neuroimaging Factors associated with psychosis and ASD in 22q11DS

A brief description of the neuroimaging metrics covered in this review, as well as possible 

biological interpretations of these measures, is reported in Table 1.

Grey matter alterations that contribute to psychosis vulnerability and ASD in 22q11DS

Cross-sectional neuroimaging work in 22q11DS provided proof of concept that cortical 

regions implicated in idiopathic psychosis (43–49) were also altered in 22q11DS-

psychosis+ vs. 22q11DS-psychosis- (50,51). Subsequent longitudinal investigations found 

Jalbrzikowski Page 3

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2023 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that progressive structural changes, particularly in temporal and frontal regions, predicted 

severity of positive symptoms at follow-up, in those who have or develop sub-threshold 

psychosis symptoms (52,53) and in 22q11DS-psychosis+ (54,55). Simialrly, a large-scale 

study compared cortical measures in 22q11DS-psychosis+ vs. 22q11DS-psychosis- and 

found largest group differences in lower frontal and temporal cortical thickness (56). Effect 

sizes for these group differences were similar to the cortical thickness differences observed 

in idiopathic schizophrenia (49). These findings suggest that there are convergent biological 

mechanisms contributing to progressive cortical gray matter changes in those who develop 

psychosis, both with and without 22q11DS.

There are also deficits in subcortical regions associated with 22q11DS-psychosis-specturm+. 

A longitudinal investigation found that, in comparison to 22q11DS-psychosis-spectrum-, 

22q11DS-psychosis-spectrum+ exhibited reduced overall hippocampal volumes, an effect 

driven by CA2/3, CA4, and dentate gyrus subregions (57). In 22q11DS-psychosis-

spectrum+, these regions exhibited had a steeper age-related slope, suggesting aberrant 

hippocampal development contributes to the psychosis onset. Another study found that 

22q11DS individuals who endorsed clinically significant auditory hallucinations compared 

to those who did not had lower baseline volume and steeper age-related slopes in the medial 

geniculate nuclei of the thalamus (58). Both studies only assessed the sub-regions of one 

subcortical region, and neither study assessed how change of these metrics (e.g., Visit 2-Visit 

1) was associated with psychotic symptoms at follow-up. The ENIGMA 22q11DS Working 

Group also found subcortical alterations in 22q11Ds-psychosis+, with 22q11DS-psychosis+ 

exhibiting lower hippocampal, thalamic, and amygdala volumes in comparison to those 

with 22q11DS-psychosis- (59). In this study, the effect sizes associated with 22q11DS-

psychosis+ were similar to multiple psychiatric disorders, including schizophrenia, 

bipolar disorder, major depressive disorder, and obsessive-compulsive disorder (59). Thus, 

subcortical aberrations in 22q11DS may reflect a general vulnerability for psychiatric 

disorders and/or illness severity.

Table 1 summarizes published longitudinal investigations relating gray matter changes to 

22q11DS psychosis vulnerability. STable 1 summarizes single site cross-sectional grey 

matter neuroimaging studies of 22q11DS-psychosis-spectrum+. Importantly, the 22q11DS 

general neuroanatomic phenotype is unlike idiopathic psychosis. Compared to healthy 

controls, 22q11DS individuals have overall greater cortical thickness and pervasive surface 

area reductions (56). It is the 22q11DS-psychosis+ vs. 22q11DS-psychosis- comparisons 

that are similar to idiopathic psychosis vs. controls.

Cross-sectional studies have examined structural grey matter differences in 22q11DS-ASD+ 

vs. 22q11DS-ASD-. Compared to 22q11DS-ASD-, 22q11DS-ASD+ exhibited increased 

cortical volume and surface area in the dorsolateral prefrontal regions, posterior cingulate 

cortices, and temporal areas (39). 22q11DS-ASD+ also had reduced entorhinal volume and 

surface area (39). An earlier study (which included a subset of participants examined in 

(39)) found that 22q11DS-ASD+ had thinner parahippocampal cortices and smaller right 

amygdala volumes than 22q11DS-ASD- (60). However, there is also evidence of increased 

amygdala volumes in children with 22q11DS-ASD+ vs. 22q11DS-ASD- (8). In contrast, 

the largest-scale study of idiopathic ASD found increased frontal and decreased temporal 
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cortical thickness in ASD vs. healthy controls, suggesting that different neurobiological 

mechanisms may underlie symptom presentation in idiopathic ASD (61).

One study compared cortical measures in 22q11DS-ASD+, 22q11DS-ASD-, idiopathic 

ASD, and healthy controls. An ASD diagnosis (regardless of deletion status) was associated 

with increased cortical surface area in insula, superior temporal, fusiform, parahippocampal, 

lingual, and supramarginal regions, and increased cortical thickness in the isthmus cingulate 

and the superior temporal gyrus (62). This study conducted a dimensional analysis of ASD 

phenotypes and found that distinct patterns of neuroanatomic variability were associated 

with clinical profiles in 22q11DS-ASD+ and idiopathic autism (62). Consistent with these 

dimensional findings, an investigation of local gyrification indices that differing patterns of 

abnormalities in 22q11DS-ASD+ vs. individuals with idiopathic autism (63). These findings 

highlight the importance of comparing 22q11DS-psychosis-spectrum+ and 22q11DS-ASD+ 

to idiopathic forms of the respective illness.

Diffusion-weighted imaging metrics are related to psychosis and social impairments in 
22q11DS

Single site cross-sectional findings of diffusion-weighted abnormalities in 22q11DS-

psychosis-spectrum are inconsistent (50,51,56,59,64–77,78, reviewed in STable 2). 

However, a recent multisite study examined diffusion-weighted imaging measures in 

22q11DS-psychosis+ vs. 22q11DS-psychosis- (75), providing a ‘ground truth’ for future 

investigations of 22q11DS psychosis risk. In comparison to 22q11DS-psychosis-, 22q11DS-

psychosis+ had reduced axial diffusivity in multiple white matter tracts, namely those 

consisting of subcortical-cortical connections (75; reviewed in Table 2). Multiple 

neurobiological mechanisms could contribute to reduced axial diffusivity in 22q11DS-

psychosis+, including axonal damage (79), reduced axonal diameter (80), and/or greater 

tortuosity in axons (81). A histological examination of postmortem brain tissue of an 

22q11DS infant found an increased number of interstitial neurons in comparison to a control 

group (82). Interstitial neurons are believed to be fetal subplate remnants, and the fetal 

subplate is involved in guidance and morphogenesis of early development of subcortical-

cortical connections (83); disruption of this instruction may contribute to reduced axial 

diffusivity in 22q11DS-psychosis+.

Unlike the grey matter findings, these 22q11DS-psychosis+ white alterations diverged 

from ENIGMA Schizophrenia-DTI Working group, which found widespread reduced 

fractional anisotropy in idiopathic schizophrenia (74). The reduced fractional anisotropy 

in idiopathic schizophrenia is most often driven by increased radial diffusivity (75, presented 

in Table 2), possibility reflecting reduced myelination (84). These divergent findings suggest 

that different white matter neurobiological alterations may lead to similar, downstream 

phenotypes in 22q11DS and idiopathic forms of the illness.

Though there are no published studies comparing diffusion-weighted imaging measures 

in 22q11DS-ASD+ vs. 22q11DS-ASD-, impaired social cognition is a core feature of 

idiopathic ASD and psychosis. Relationships between diffusion-weighted imaging metrics 

and social cognition have been observed in 22q11DS. Increased axial diffusivity, which may 

reflect greater axonal coherence, in two association tracts (uncinate fasciculus and inferior 
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fronto-occipital fasciculus) was associated with better emotion recognition and theory of 

mind performance (85), features impaired in idiopathic ASD and psychosis (86–89). Future 

studies should examine to what extent the neural mechanisms underlying social cognition in 

22q11DS converge or diverge with risk factors for psychosis and ASD phenotypes.

Altered functional connectivity is related to psychotic symptoms and social impairments 
in 22q11DS

Multiple cross-sectional studies have investigated effects of psychotic symptoms on rsfMRI 

in 22q11DS (76,77,90–92) and one study examined the relationship between functional 

connectivity and a dimensional measure of ASD in 22q11DS (93). The first rsfMRI 

study of 22q11DS and psychosis found that reduced activation in superior frontal regions 

was associated with increased total positive symptoms (90). Later, others found that 

increased positive symptoms in young adults with 22q11DS were associated with increased 

connectivity between the precuneus and superior frontal cortex (77), brain regions typically 

believed to be part of the default mode network (DMN). Still, others found no relationship 

between rsfMRI DMN connectivity and positive symptoms in 22q11DS (91). Support vector 

machine (SVM) approaches have been used to distinguish between 22q11DS participants 

with and without psychotic symptoms; variability in within-network connectivity of DMN 

regions differentiated 22q11DS-psychosis-spectrum+ from 22q11DS-psychosis-spectrum- 

with a high-degree of accuracy, in both the training sample and an independent validation 

data set (92). Finally, increased connectivity between DMN regions (e.g., posterior cingulate 

cortex, medial prefrontal regions and the anterior cingulate cortex) was associated with 

fewer autism-spectrum behaviors in 22q11DS (93). Taken together, these findings suggest 

that altered DMN connectivity contributes to psychosis and autism-spectrum symptoms in 

22q11DS.

To date, seed-based approaches have not achieved the same level of success as network-

based rsfMRI analyses. Consistent with previous studies of idiopathic schizophrenia 

and individuals at clinical high risk for developing psychosis (94,95), a recent study 

found over-connectivity between the thalamus and somatosensory regions and under-

connectivity between the thalamus and cerebellum in 22q11DS vs. controls. However, 

machine-learning techniques did not differentiate 22q11DS-UHR+ vs. 22q11DS-UHR with 

sufficient accuracy, nor were there significant relationships between thalamic connectivity 

patterns and psychotic symptoms (78).

Novel approaches to rsfMRI connectivity analyses highlight their potential for 

understanding 22q11DS psychosis and ASD risk. An examination of dynamic “brain states” 

across a rsfMRI session found that longer anti-coupling (i.e., one region exhibits increased 

activation while another shows decreased activation) between the dorsolateral prefrontal 

cortex and anterior cingulate was associated with higher positive symptoms in 22q11DS 

(96). Studies have also identified relationships between altered graph theory metrics, 

which measure network connectivity, and increased psychotic symptoms in 22q11DS 

(96,97). Future studies should examine these metrics in multisite, longitudinal samples and 

determine to what extent group differences are observed in 22q11DS-ASD+ vs. 22q11DS-

ASD-.
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Challenges faced in 22q11DS risk research

This review highlights some of the challenges we face in understanding psychosis and ASD 

in 22q11DS, including: 1) phenotyping issues and 2) the need to incorporate the role of 

development into future studies.

Phenotyping challenges in psychosis and ASD in 22q11DS

First, there is no consistent method for determining 22q11DS psychosis-spectrum status. 

Some studies restrict comparisons to 22q11DS-psychosis+ vs. 22q11DS-psychosis- (56), 

some include individuals experiencing subthreshold symptoms and those with full-blown 

psychotic symptoms (57), and some focus specifically on individuals experiencing sub-

threshold psychotic symptoms (53). Whilst all approaches have value, I propose that, in 

future, researchers specify their main approach to psychosis-classification in the primary 

analyses, and report alternative approaches in supplemental, exploratory analyses. Also, 

because 22q11DS-ASD neuroimaging research has found that categorical and dimensional 

approaches provide complementary information (40), it will be important to assess psychosis 

dimensionally.

Regardless of classification strategy, psychotic symptoms are not always stable in 22q11DS 

(98,99). In 22q11DS participants who presented with psychotic symptoms at the baseline 

assessment, 55–61% continued to endorse psychotic symptoms at follow-up, while the 

remainder experienced symptom remission (98,99). In 22q11DS youth who did not endorse 

psychotic symptoms at baseline, 13–39% adolescents endorsed emergent symptoms at 

follow-up (98,99). Researchers must fully characterize psychotic symptoms at baseline 

and follow-up assessments in 22q11DS. It is important to include variation in symptom 

severity at the baseline assessments as a predictor when assessing symptom severity 

at follow-up. This approach is not typically employed in longitudinal studies 22q11DS-

psychosis-spectrum+; many studies only include symptom measures at follow-up. Omitting 

this measure from statistical models is likely leaving out an important source of variation. 

Finally, other assessment methods may better capture psychotic symptom fluctuations in 

22q11DS, like ecological momentary assessment.

We also face phenotyping challenges in understanding neurobiological risk factors for 

22q11DS-ASD+. The reported prevalence 22q11DS-ASD+ is highly variable across studies, 

which may be due to: 1) wide-ranging methodological differences in clinical assessment, 

2) ASD diagnosis in 22q11DS possibly reflecting a generalized social impairment, distinct 

from idiopathic autism (103), and/or 3) core autism behaviors often being recognized as 

characteristic phenotypes in individuals with 22q11DS regardless of ASD diagnosis (42). 

One way to mitigate this challenge is with a detailed phenotyping study that includes social 

cognition, social functioning, and comprehensive ASD assessments, examining how these 

metrics are related to and/or distinct from each other. Additionally, the temporal stability of 

ASD symptoms in 22q11DS is not known; it will be essential to examine 22q11DS-ASD 

symptom fluctuations over time.

Finally, studies rarely report both ASD and psychotic symptoms. Previous 22q11DS-ASD+ 

neuroimaging results remained significant when 22q11DS-psychosis+ were removed from 
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analyses and when psychotic symptoms were included as a covariate; furthermore, ASD and 

psychotic symptoms were not correlated (40). Similar approaches are necessary for future 

investigations. It will also be important to determine what extent of the variance is shared in 

categorical and dimensional measures of ASD and psychotic symptoms in 22q11DS.

It is essential to incorporate development into 22q11DS risk and resilience research

Another methodological challenge facing 22q11DS research is understanding how 

development affects onset of symptoms. Most studies report on participants that fall 

within a large age range, and well-established work shows significant age-associated brain 

changes across development (104–106). Though most published research covaried for age 

in analyses, neurobiological factors may exert differential influences on symptomatology 

at distinct points in development (60,107), resulting in developmentally-specific risk 

markers. One solution is to use a time-varying analytic approach to characterize how 

connectivity measures relate to individual differences at different stages of development 

(60,108). Furthermore, it is important to obtain an accurate estimate of normative age-effects 

and to identify how 22q11DS neuroimaging profiles deviate from them. Using growth 

charting methods, deviations from normative age-associated trajectories were linked to 

psychopathology, suggesting that age-deviation phenotypes provide meaningful information 

(109,110). Tracking within-subject deviations from normative development in 22q11DS, 

in reference to an accurately quantified neurodevelopmental growth chart (111), will be 

informative for understanding risk and resilience to ASD and psychosis in 22q11DS.

Future Directions

I conclude with a discussion of key areas of future focus for 22q11DS risk and resilience 

research. I discuss the necessity of investigating links between neuroimaging metrics 

and transdiagnostic psychiatric conditions, the need to conduct resilience research, the 

importance of large-scale, longitudinal investigations, and the need to link genes to risk and 

resilience factors.

Importance of transdiagnostic research in 22q11.2 Microdeletion Syndrome

Most 22q11DS individuals meet criteria for at least one psychiatric disorder (47–85%; 

53,57,58,112,113). Despite this finding, the transdiagnostic neuroimaging alterations 

common across psychiatric disorders in 22q11DS are unknown. This is important for earlier 

identification of 22q11DS high-risk youth and can be probed with existing longitudinal 

neuroimaging data sets. In addition, future studies of risk factors in 22q11DS could use a 

data-driven transdiagnostic approach derived from empirical investigations of psychological 

symptom co-occurrence (114,115). Indeed, elevated levels of mood and anxiety predispose 

22q11DS youth for later developing psychosis (as reviewed in 116). Others have highlighted 

the importance of studying constructs that cut across psychiatric diagnostic boundaries, such 

as emotion regulation, in 22q11DS (117).

A need to focus on resilience in 22q11DS research

Given that many 22q11DS participants have a psychiatric disorder diagnosis, this deleted 

suite of genes clearly confers increased risk for psychiatric disorders. However, how 
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do we assess resilience within 22q11DS? Resilience processes are increasingly framed 

as ‘the dynamic outcome of a dynamic process of successful adaptation to adversity” 

(118). Is the absence of a psychiatric disorder sufficient to determine that a 22q11DS 

individual is “resilient”? Researchers must assess perspectives of individuals with lived 

experience of 22q11DS to understand how they view resilience. Additionally, resilience 

is a complex construct with temporal aspects that can be measured on multiple levels 

(119,120). Furthermore, evidence suggests that that one-time measurements of responses to 

resilience questionnaires are poor predictors of mental health outcome (121). To accurately 

characterize resilience in 22q11DS, large, longitudinal studies must be implemented to 

assess the dynamic and multidimensional nature of resilience. Furthermore, consistent with 

the need for a transdiagnostic approach, neurobiological mechanisms underlying resilience 

must be “dysfunction specific”, not “disorder-specific’ (121).

To date, there are no published studies linking resilience to neuroimaging phenotypes 

\in 22q11DS. There is evidence that the reciprocal condition, duplication at the 22q11.2 

locus, protects against schizophrenia (122,123). One neuroimaging study found, compared 

to controls, individuals with 22q11.2 deletions and 22q11.2 duplications had opposing 

structural brain alterations (124). Protection against psychosis may have neurobiological 

underpinnings in brain regions with a 22q11.2 gene dosage effect and should be related to 

measures of resilience.

It is also necessary to characterize how modifiable factors protect against psychopathology 

in 22q11DS. Higher socioeconomic status is associated with improved psychological 

functioning in 22q11DS (127). High quality peer relationships, greater parental warmth, and 

lower levels of neuroticism all contribute to resilience to psychopathology in other high-risk 

cohorts (128–130), and are potential targets for future investigation to better understand 

resilience in 22q11DS. Finally, the presence or absence of unique features associated with 

22q11DS (e.g., craniofacial or cardiovascular anomalies) may contribute resilience (and/or 

risk) within this population.

Longitudinal approaches must become the norm in 22q11DS risk and resilience research

22q11DS neuroimaging studies must continue to shift to prospective, risk- and resilience-

based studies. Longitudinal investigations of 22q11DS-ASD risk factors have not been 

conducted. Prospective fetal and infant studies found that distinct neurobiological 

abnormalities reflect an increased likelihood of later developing idiopathic ASD (131; 

see 132 this issue). It will be important to conduct prospective neuroimaging studies of 

22q11DS infants to see if a similar pattern emerges. Retrospective analyses of fetal MRI 

may prove useful, as existing evidence shows that 22q11DS-psychosis-spectrum+ are more 

likely to have incidental radiological findings than 22q11DS-psychosis-spectrum- (133). It 

may be possible to use fetal and infant clinical MRIs paired with later ASD evaluations to 

conduct similar investigations in 22q11DS.

As longitudinal designs become more prevalent in 22q11DS research, it is important to 

focus on statistical rigor. To identify a true risk factor, a study must assess if a baseline 

predictor contributes to a later outcome. Neurobiological change over time is an important 

question; however, this question addresses how brain changes shift in concordance with 
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clinical symptomatology, or how neural changes drive later behavioral change. Second, 

when assessing many neuroimaging variables, correcting for multiple comparisons is 

essential. If many variables are assessed, it may be more fruitful to focus on feature selection 

techniques or dimension reduction techniques. Finally, to ensure sufficient power in 

analyses, we must conduct multisite, prospective investigations of 22q11DS neurobiological 

risk and resilience factors, similar to the work conducted in UHR psychosis(135,136).

Linking genes within the 22q11.2 locus to neuroimaging phenotypes associated with risk 
and resilience

If separate neurobiological risk factors underlie psychosis and ASD phenotypes in 

22q11DS, then, presumably differing genes within the 22q11.2 locus contribute to these 

phenotypes. Preliminary evidence suggests that 22q11 deletion size influences clinical 

and neurobiological phenotypes (56),(137), while another investigation of the 22q11.2 

transcriptome found that separate gene co-expression networks were associated with ASD 

and psychosis (138). However, these networks consisted of genes outside the 22q11.2 locus, 

suggesting that downstream genomic interactions may drive these phenotypic differences 

(138). Future research is necessary to understand how genes inside and outside the 22q11.2 

locus are related to risk and resilience in 22q11DS.

Conclusions

To date, studies find reduced fronto-temporal cortical thickness in 22q11DS-psychosis+ and 

idiopathic psychosis, suggesting convergence of grey matter neural mechanisms underlying 

psychosis onset. Preliminary work suggests that 22q11DS-ASD+ have increased surface 

area in specific brain regions compared to 22q11DS-ASD-. Together, these findings provide 

support for differential neurobiological mechanisms underlying risk for psychosis and 

ASD in 22q11DS. However, white matter alterations in 22q11DS-psychosis+ are markedly 

different from the idiopathic psychosis, suggesting that distinct white matter neural 

mechanisms contribute to psychosis onset in these groups. Finally, rsfMRI work suggests 

that DMN alterations are important for both psychosis and social impairments in 22q11DS. 

In the future, research must focus on development, longitudinal investigations, statistical 

rigor, and transdiagnostic risk factors, as well as resilience, in 22q11DS psychiatric research.
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