Virus Genes
https://doi.org/10.1007/511262-023-02010-1

REVIEW PAPER q

Check for
updates

Is COVID-19 severity associated with telomere length? A systematic
review and meta-analysis

Madhumitha Haridoss' - Lavanya Ayyasamy' - Bhavani Shankara Bagepally'

Received: 23 September 2022 / Accepted: 21 May 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Telomere shortening, a marker of cellular aging, has been linked to hospitalization and the severity of COVID-19. In this
systematic review and meta-analysis, the mean difference in telomere length between non-severe and severe COVID-19
individuals was pooled to determine the association between short telomeres and COVID-19 severity. Relevant studies were
retrieved through searches conducted in PubMed-Medline, Scopus, EMBASE, Medrxiv, Biorxiv, EuroPMC, and SSRN
databases up to November 2022. Selected studies were systematically reviewed and assessed for risk of bias using AXIS
tool. The standardized mean difference in telomere length between non-severe and severe COVID-19 was pooled using
random-effects model. A total of thirteen studies were included in the review, out of which seven (1332 patients with the
severe COVID-19 disease and 6321 patients with non-severe COVID-19) were eligible for meta-analysis. The estimated
pooled mean difference in Leukocyte telomere length between severe COVID-19 and non-severe COVID-19 was 0.39 (95%
CI — 0.02 to 0.81, ?=93.5%) with substantial heterogeneity. Our findings do not provide clear evidence for association of
shorter telomere length and severe COVID-19 disease. More extensive studies measuring absolute telomere length with
age and gender adjustments are needed to draw definitive conclusions on the potential causal association between telomere
shortening and COVID-19 severity.
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Introduction

COVID-19, caused by SARS-Cov-2, has posed a significant
public health threat since its emergence. Individual’s clini-
cal presentations of COVID-19 range from a minor illness
to a severe infection resulting in death, the major cause for
concern [1]. Elderly individuals with co-morbidities, in par-
ticular, are at significant risk of developing a severe illness
[2]. Several risk factors and biomarkers that contribute to
COVID-19 severity have been investigated to understand
why some individuals have more severe diseases than others
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[3]. Previous studies have shown a possible link between
leukocyte telomere length (LTL) and the risk of develop-
ing severe disease among covid-19 patients [4]. Telomere
length (TL) has long been linked to cellular aging and is
considered to be the cell’s biological clock [5]. Telomeres
are repeat sequences of short nucleotides located at the ends
of linear chromosomes. Telomere shortening is a phenom-
enon in which a small segment of telomeric sequence is lost
each time a cell divides due to the end replication problem,
which protects the genetic information [5]. Shorter telomere
length has been linked to cardiometabolic outcomes like
stroke, myocardial infarction, and type 2 diabetes, accord-
ing to meta-analyses [6—8]. LTL has recently been proposed
as a marker of replicative capacity and repairability, which
may influence an individual’s response to SARS-CoV-2
infection within the hematopoietic system, irrespective of
age [9]. Shorter LTL has been linked to hospitalization
and COVID-19 severity in a few case—control studies, but
most of the studies have small sample sizes, which might
not detect true associations [10—12]. Few bidrectional men-
delian randomization studies shown contradicting results
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[13-15]. Therefore, we aim to do a systematic review and
meta-analysis to determine the association between LTL and
COVID-19 severity.

Methods

The present systematic review was conducted adhering to
the preferred reporting items of systematic reviews and
meta-analysis (PRISMA) 2020 guidelines [16], and the
protocol was registered at PROSPERO (PROSPERO ID:
CRD42022311400). Observational studies that evaluated
the association of TL or telomerase activity with COVID-
19 severity were systematically searched using key terms
from inception to November 24, 2022, in PubMed-Medline,
Scopus, EMBASE, Medrxiv, Biorxiv, EuroPMC, and SSRN
databases. The search terms were constructed based on the
PEO framework (i.e., Problem COVID-19, Exposure tel-
omere shortening and Outcome-Severe COVID-19 disease).
Additional keywords identified during the search were also
included in the systematic search. A sensitivity and preci-
sion maximizing strategy were adopted to identify the rel-
evant studies. The detailed search terms and strategies are
reported in Suppl Table 1, 2. The last search was performed
on November 24, 2022.

Studies that assessed the LTL or telomerase activity in
COVID-19 individuals and studied its association with the
severity of COVID-19 illness were considered for this sys-
tematic review. Interventional studies and studies that did
not have relevant information for the systematic review were
excluded.

Study screening and selection

The authors (BSB and AL) individually assessed the titles
and abstracts of the papers listed from the electronic data-
base search for their potential inclusion. Authors (BSB
and AL) independently reviewed the full text of publica-
tions identified during screening. On mutual agreement, the
authors compiled the final list of studies that met the inclu-
sion and exclusion criteria for inclusion in the review.

Data extraction and analysis

Relevant details required to meet the proposed objectives
were extracted from the studies using the data extraction
form created in Microsoft Excel 2016. Author names, study
titles, publication year, and contact information of the cor-
responding author, characteristics of the study population
(age, gender, etc.), disease-related information (COVID-19
severity, hospitalization duration, etc.), and telomere-related
information (method of telomere measurement, LTL, etc.)
were recorded in the data extraction sheet. Data on central
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tendency (mean/median) and dispersion (standard devia-
tion (SD)/standard error (SE)/interquartile range/95 per-
cent confidence interval (CI)) were extracted independently
from the included studies (HM and AL). The data were used
for further analysis after being verified for consistency. For
studies reporting outcome variables in units other than the
conventional/standard units, the outcome parameters were
converted to uniform units using standard conversion fac-
tors. All values were converted to mean and SD by using
the formula proposed by Hozo et al. before performing the
meta-analysis [17].

Studies reporting LTL for severe and non-severe groups
were included in the meta-analysis. Mean and SD of the
LTL were pooled for the non-severe COVID-19 and severe
COVID-19 groups and standardized mean difference (SMD)
was estimated. As the included studies have measured and
reported LTL in different ways, we have used SMD (using
Cohen’s method) as the effect measure in our meta-anal-
ysis [18]. COVID-19 involving respiratory dysfunction,
radiographic lung abnormalities, intensive care unit (ICU)
admission, and mechanical ventilation was considered to be
“severe” [19, 20]. Hospitalization due to COVID-19 is also
considered to be “severe” if the comparator group included
non-hospitalized COVID-19. For studies reporting more
than one severity group, groups were categorized into severe
and non-severe, based on the above definition of severity,
following which grand mean and SD were calculated using
the following formula [21].

Decomposition of means and standard deviation
e For each group

0 Xx=mean * n;
p Zx*=SD*n — 1)+ ((Zx)*/n)

e The values are then added together

o tn=sum of all (n)
p tx=sum of all Xx
q txx=sum of all Zx*

e The combined calculations are

o Combined n=tn
p Combined mean =tx/tn
q Combined SD= sqrt((txx—tletn)/(tn - 1))

Visual assessment of forest plots, the Cochran-Q test, and
I-squared (/%) statistics were used to assess heterogeneity
among included studies. The I* value greater than 25% or
Cochrane-Q less than 0.1 indicated the presence of het-
erogeneity between the included studies. A random-effect
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* Databases: PubMed-Medline, Scopus, EMBASE, Medrxiv, Biorxiv, EuroPMC, and
SSRN ** : Studies excluded during Title and Abstract Screening

model with DerSimonian and Laird was applied [22]. The
source of heterogeneity was further investigated by sensitiv-
ity analysis. Publication bias could not be assessed due to
insufficient studies [23].

Data were recorded using a Microsoft excel sheet and
analyzed using Stata version 16 (2019) [24]. Two-sided
p <0.05 was considered statistically significant except for
the heterogeneity test, wherein p <0.10 was considered sig-
nificant [25].

Risk of bias assessment

The AXIS instrument, which consists of 20 components
with three responses: Yes, No, and Do not know, was used
to assess the risk of bias [26]. The quality of included studies
was appraised separately by two authors (AL and HM), and
disagreements were addressed by consensus.

Results

A total of 1596 studies were retrieved through a systematic
literature search. The titles and abstracts of 1371 studies
were reviewed after duplicates were removed. Forty of those
studies were deemed relevant for full-text retrieval. Thirteen
articles fulfilled the eligibility requirements during full-text
screening and were included in the study, whereas 27 stud-
ies were excluded (Fig. 1). Out of the 13 included studies
for the systematic review [10-15, 27-33], only seven stud-
ies that reported mean Telomere length were eligible for
quantitative synthesis [10—12, 29, 30, 32, 33]. The charac-
teristics of included studies and the reasons for the exclu-
sion of individual studies are given in Table 1 and Suppl
Table 3, respectively. Though we had performed the search
in pre-print databases, none of the articles retrieved from the
pre-print databases met the inclusion criteria. Thus, all our
included studies were peer-reviewed.

Seven studies included for meta-analysis consisted of
6321 participants with a mean age of 53.07 years in the
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Telomere length

Non-severe COVID-19 Severe COVID-19 Cohen's d Weight

Study N Mean SD N Mean SD with 95% ClI (%)
Franzen et al.,2020 50 59 19 120 63 18— — -0.18[-1.23, 0.86] 8.34
McGroder CF, et al, 2021 310 15 02 450 14 03 —i— 0.44[-0.03, 0.90] 14.44
Vazquez RS et al 2021 39.0 139 21 460 128 23 —l— 0.47[ 0.04, 0.91] 14.77
Santos GA et al 2021 15.0 70.8 50.2 26.0 27.3 144 —l— 1.35[ 0.65, 2.05] 11.75
Wang et al., 2021 5861.0 -0.0 1.0 9140 -01 1.0 [ | 0.11[ 0.04, 0.18] 17.49
Retuerto et al 2022 1760 72 05 760 74 07 - -0.40[-0.67, -0.13] 16.36
Cao et al 2022 1940 49 13 2130 3.7 1.1 . 3 0.97[ 0.77, 1.18] 16.85
Overall 0.39[-0.02, 0.81]

Heterogeneity: 7° = 0.26, I = 93.50%, H’ = 15.38
Test of 6, = 8;: Q(6) = 92.29, p = 0.00
Testof ®=0:z=1.86, p=0.06

Random-effects DerSimonian—Laird model
Sorted by: Year

Short in severe

0 1
Length in kb

Fig.2 Forest plot of pooled mean difference of telomere length between non-severe COVID-19 and severe COVID-19

Each study’s influence on the pooled mean difference was
assessed using sensitivity analysis by omitting one study at
a time (Suppl Table 4). Omitting the study Franzen et al.
[29] influenced the pooled mean difference (0.49 (95% CI
0.02t00.97, = 84.61%) which was significant between the
severe and non-severe COVID-19. Subgroup analysis based
on age-adjusted LTL revealed that only age-unadjusted LTL
subgroup showed significant difference (0.89 (0.48 to 1.29))
whereas age-adjusted LTL subgroup showed no significant
difference in the mean LTL (0.00 (— 0.36 to 0.36) (Supp
Fig. 2).

Risk of bias assessment

The current synthesis appraised the methodological quality
of the eight cross-sectional studies included in the system-
atic review using the AXIS tool. The response was “Yes” in
all the studies for 3 out of 20 questions related to statistical
significance, description of statistical method, and descrip-
tion of analysis in the form, indicating a low risk of bias for
these questions. The response was “No” or “Do not know,”
signifying moderate-serious bias in all the studies for sample
size justification and non-response bias questions. For all
the other questions, most of the studies showed a low risk
of bias (Suppl Table 5).

Discussion
The current systematic review and meta-analysis were

undertaken to summarize the evidence on the association
between telomere shortening and COVID-19 severity. The
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mean difference in LTL between individuals with severe
COVID-19 and individuals without severe COVID-19 was
pooled; the results indicate that there was no significant dif-
ference in LTL between the two groups. However, sensi-
tivity analysis performed by omitting Franzen et al. [29]
indicates a significantly shorter LTL in severe COVID-19.
A qualitative analysis of studies that examined the odds
of having severe COVID-19 disease with short telomeres
revealed conflicting results. Hence, the current evidence is
insufficient for decisive understanding regarding the causal
relationship between telomere shortening and COVID-19
severity.

Most of the studies that reported a link between short tel-
omeres and COVID-19 severity measured LTL after SARS-
COV-2 infection, making it difficult to conclude whether
telomere shortening preceded or was caused by COVID-19
[10-12, 29, 30]. In light of this, Wang et al. findings suggest
that LTL is associated with a higher risk of poor COVID-19
outcomes regardless of age [33], where LTL was measured
several years before the onset of COVID-19. The results of
this study show reverse causality is much less likely and
suggests that SARS-CoV-2 does not cause telomere shorten-
ing. On contrary, three bidirectional mendelian randomiza-
tion studies report that LTL is not causally related to critical
COVID-19 and vice versa [13-15].

As pre-existing chronic diseases such as hypertension,
type 2 diabetes, atherosclerosis, and cancer are known
to increase the risk of severe COVID-19 infection [34],
it stands to reason that telomere shortening could have
occurred prior to COVID-19 infection as a result of the
pre-existing illnesses. Short telomeres have been associated
with a number of disorders, including hypertension, type 2
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diabetes, stroke [6, 7], lung cancer [35], and overall survival
in patients with colorectal cancer [36], and the majority of
these conditions are also linked to unfavorable outcomes in
COVID-19. In the general population, short telomeres have
been linked to an increased risk of all-cause mortality [37]
and an even higher risk of disease-specific mortality. Age is
another confounding factor, which is linked to both telomere
shortening and severe COVID-19 illness. According to our
observations from age-adjusted and age-unadjusted LTL
subgroup analysis, there is no apparent variation in telomere
length between COVID-19 severe and non-severe patients in
the age-adjusted subgroup.

Although few studies show a link between telomere short-
ening and COVID-19 severity irrespective of age, the exact
mechanisms that link telomere shortening to the severity of
COVID-19 are unclear. TL-dependent T-cell lymphopenia,
commonly witnessed in COVID-19, is the mechanism put
forward by many authors, which is believed to be the con-
necting link between telomere shortening and COVID-19
severity [11, 33, 38]. Among the studies included in this
systematic review, only one study reported significantly
reduced lymphocyte count in COVID-19 compared to
non-COVID-19 individuals [27]. In Froidure et al. study,
lymphocyte count in COVID-19 individuals with short
telomeres (TL < 10th percentile) is not reported to be sig-
nificantly different from COVID-19 individuals with long
telomeres (TL > 10th percentile) [12]. Other studies have
not reported any data on lymphocyte count. Therefore, the
proposed TL-dependent T-cell lymphopenia mechanism
is still considered a hypothesis and needs validation. All
the studies have measured Telomere in leukocytes as LTL
has been used as a proxy for TL in leukocyte lineages and
other somatic cells [9, 33]. Further studies measuring TL
in isolated T-cells and investigating lymphocyte count may
provide some evidence to support the proposed mechanism.
Animal studies show that telomerase activation effectively
treats diseases associated with aging and telomere damage,
such as pulmonary fibrosis, by reversing the process of tel-
omere shortening [39], opening up a new avenue for research
in COVID-19 treatment. Apart from telomere shortening,
several other risk factors such as Kynurenine, genetic fac-
tors, etc., for severe COVID-19 have been proposed [40—42],
and their possible relationships to telomere length need to be
investigated. There are certain limitations in our systematic
review, primarily due to lack of primary data or the het-
erogeneity of available data from current literature. First,
the method used to measure telomeres varied across stud-
ies, with q-PCR being the most commonly used and others
including Flow-FISH, Southern blotting, and so on. Second,
some studies reported LTL in absolute numbers, whereas
others reported relative ratios. Third, each study adopted a

different threshold or cutoff value for short telomeres, adding
heterogeneity. Wang et al. [33] was the most heterogene-
ous of the included studies as it reported log-transformed
and z-standardized mean LTL. Fourth, not all the studies
reported age- and gender-adjusted LTL; hence, confounding
effect of age and gender on telomere shortening or COVID-
19 severity could not be ruled out. Telomere shortening
could also be influenced by pre-existing illnesses; however,
this was not demonstrated in our meta-analysis because none
of the included studies provided information on co-morbid-
ities.Another lacuna observed in most of the included stud-
ies is the small sample size. Furthermore, the definition of
COVID-19 severity was not standard across all the studies
which is also seen to be limitation.

Conclusion

Our systematic review found conflicting results on the asso-
ciation between shorter telomere length and COVID-19
severity. According to the findings of our meta-analysis,
there is no proof that telomere shortening causes severe
COVID-19 illness. However, additional substantial high-
quality studies examining absolute telomere length that are
controlled for age, gender, and co-morbidities are needed in
order to draw firm conclusions in this regard.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11262-023-02010-1.
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