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Understanding the impact of DNAvariation on human traits is a fundamental question in human genetics. Variable number

tandem repeats (VNTRs) make up ∼3% of the human genome but are often excluded from association analysis owing to

poor readmappability or divergent repeat content. Althoughmethods exist to estimate VNTR length from short-read data,

it is known that VNTRs vary in both length and repeat (motif) composition. Here, we use a repeat-pangenome graph

(RPGG) constructed on 35 haplotype-resolved assemblies to detect variation in both VNTR length and repeat composition.

We align population-scale data from the Genotype-Tissue Expression (GTEx) Consortium to examine how variations in

sequence composition may be linked to expression, including cases independent of overall VNTR length. We find that

9422 out of 39,125 VNTRs are associated with nearby gene expression through motif variations, of which only 23.4%

are accessible from length. Fine-mapping identifies 174 genes to be likely driven by variation in certain VNTR motifs

and not overall length. We highlight two genes, CACNA1C and RNF213, that have expression associated with motif variation,

showing the utility of RPGG analysis as a new approach for trait association in multiallelic and highly variable loci.

[Supplemental material is available for this article.]

Variable number tandem repeats (VNTRs) are repetitive DNA se-
quences with the size of a repeat unit >6 nucleotides. The copy
number of a repeat unit is hypervariable owing to its susceptibility
to replication slippage caused by strand mispairing between the
same (Viguera et al. 2001) or across haplotypes (Jeffreys et al.
1994). At the sequence level, single-nucleotide variants (SNVs) or
short indels are also prevalent along a repeat sequence and can
greatly expand the number of identified alleles relative to classifi-
cation by length (Novroski et al. 2016). Altogether, copy number
variations, SNVs, and short indels contribute to the full spectrum
of VNTR polymorphism. Missing heritability (Eichler et al. 2010)
that cannot be explained by SNVs can be partially attributed to
VNTR polymorphisms (Hannan 2018; Lu et al. 2021; Mitra et al.
2021). Accumulating evidence indicates that VNTRs are associated
with a diverse array of human traits and are casual to several diseas-
es at the copy number level or sequence level (Bakhtiari et al. 2021;
Beyter et al. 2021; Mukamel et al. 2021). Furthermore, significant
enrichment of VNTRs in subtelomeric genes that are mostly ex-
pressed in the brain suggests further exploration of their roles in
shaping behavioral/cognitive polymorphisms and modulating
neurological disease risks (Linthorst et al. 2020).

VNTR length polymorphism can modulate human traits
through several mechanisms, including changing the number of
protein domains (Desseyn et al. 2000), the distance between
gene and gene regulators (Sun et al. 2018), the number of regulator
binding sites (Tsuge et al. 2005), and the number of CpG sites
(DeJesus-Hernandez et al. 2011; Renton et al. 2011). Abundant as-

sociations between repeat copy number and human traits have
been widely reported (Mukamel et al. 2021) and provide insights
to functional annotations. However, it is impossible to fully under-
stand the biological functions of VNTRs without examining varia-
tion at the sequence level. For example, a single cytosine insertion
in theMUC1 VNTR was identified to be causal to medullary cystic
kidney disease type 1 by adding a premature stop in translation
(Kirby et al. 2013). In addition, certain repeat motifs in
CACNA1C but not the total repeat copy number were reported to
be associated with schizophrenia risk by tuning gene expression
activity (Song et al. 2018). In both cases, long-read sequencing
such as single-molecule real-time sequencing or capillary sequenc-
ing has been useful to resolve the full sequence of VNTRs and yield
meaningful clinical interpretations.

Currently, large-scale sequencing efforts use high-through-
put short-read sequencing (SRS) (Taliun et al. 2021); however,
VNTR analysis with SRS suffers from ambiguity in read alignment,
allelic bias of reference, and the hypermutability of repeat se-
quences. SNV and small indel variant calls from VNTR regions us-
ing short-read alignments are error-prone and blacklisted by
ENCODE (Amemiya et al. 2019). Recently, several methods have
been developed specifically to estimate VNTR length from short-
read data using hidden Markov models (Bakhtiari et al. 2021),
read depth (Garg et al. 2021), and repeat-pangenome graphs
(RPGGs) (Lu et al. 2021). These approaches have found an associ-
ation between estimated VNTR length and gene expression. In this
study, we use a reference pangenome graph (PGG) to reduce allelic
bias when mapping short reads to a reference and to improve var-
iant inference for motif composition. The PGG is a graph-based
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data structure that summarizes sequence variations from a collec-
tion of samples by representing variants as alternative paths, or
“bubbles,” from the reference (Eizenga et al. 2020). One of the
most common implementations of PGG is to use a sequence
graph. In this model, each node represents an allele; each edge
points to a downstream allele; and a traversal through the graph
matches an observed haplotype. This allows sequencing reads to
be placed more accurately across the genome and significantly im-
proves variant calling accuracy in regions containing SVs (Chen
et al. 2019; Eggertsson et al. 2019; Li et al. 2020; Sirén et al.
2021), with the majority of which coming from indel events with-
in VNTRs (Li et al. 2020). However, variant calling remains chal-
lenging for multiallelic VNTR regions as the position of calls
varies (Li et al. 2020); an extra processing step is needed to reveal
the multiallelic property of a locus.

Another commonly used graph model is the de Bruijn graph
(dBG). Themain distinction is that each node is a unique k-mer de-
rived from one or more k-base substrings present in the input se-
quences. By augmenting with additional haplotype or distance
information, dBG-based models have been useful in genome as-
sembly (Iqbal et al. 2012; Muggli et al. 2017) and variant calling
(Cameron et al. 2017; Narzisi et al. 2018). Furthermore, this formu-
lation groups all occurrences of repetitive k-mers across input se-
quences by construction, which can be a particularly desirable
property when studying the biological implication of VNTR
motifs.

By leveraging the advantages of PGG and dBG, genotyping
VNTR from SRS samples at a population scale has been made possi-
blewith danbing-tk (Lu et al. 2021). Themethod constructs a RPGG
that consists of disjoint locus-RPGGs, each representing a single
VNTR locus and encoding observed VNTR alleles with a dBG.
Read mapping to RPGG reveals the coverage of each k-mer and
can be accumulated as a copy number estimate, allowing associa-
tions between repeat copy number and human trait to be identified.

In this work, we extend the application danbing-tk to exam-
ine the association between each path in the graph, or VNTR “mo-
tif,” and gene expression using the complete read-mapping
output, that is, the coverages of all k-mers. The extension includes
new depth normalization approaches that accurately show motif
usage/repeat count in a RPGG, and this may be used to compare
motif composition between individuals. To show the utility of
this method, we profiled motif composition from genomes se-
quenced by the Genotype-Tissue Expression (GTEx) project and
Geuvaids to identify motif cis-eQTLs. We envision this as a frame-
work for genetics studies to associate tandem repeat variation to
traits when only short-read data are available.

Results

RPGGs enable accurate profiling of motif composition

We developed an extended computational analysis pipeline based
on the previously published danbing-tk method to map read
depth and identify eQTLs from individual paths in an RPGG
(Fig. 1A,B). The RPGG is constructed using 35 haplotype-resolved
assemblies including three trios released by the Human Genome
Structural Variation Consortium (HGSVC) (Ebert et al. 2021).
Orthologous boundaries of 80,478 VNTR loci were annotated us-
ing danbing-tk (Lu et al. 2021) from a set of 84,411 VNTRs
(Methods).We further augment theVNTR annotationswith 40 ad-
ditional clinically relevant loci (Supplemental Table S1) and re-
moved 40,204 loci that contain tandem mobile elements, giving
a total of 40,314 loci (Supplemental Data S1) for subsequent anal-
yses. The VNTRs annotated have a mean length of 403 bp across
the assemblies versus 371 bp in GRCh38 (Fig. 2A; Supplemental
Fig. S1). The assemblies give a limited estimate of VNTR diversity.
Among the 70 haplotypes, a VNTR has an average of 8.7 alleles per
locuswhen defining an allele based on exact length (Supplemental

B

A

Figure 1. Methods overview. (A) Estimating the dosages of VNTR motifs using a locus-RPGG. A locus-RPGG is built from haplotype-resolved assemblies
by first annotating the orthology mapping of VNTR boundaries and then encoding the VNTR alleles with a de Bruijn graph (dBG), or locus-RPGG. A com-
pact dBG is constructed by merging nodes on a nonbranching path into a unitig, denoted as a motif in this context. Motif dosages of a VNTR can be com-
puted by aligning short reads to an RPGG and averaging the coverage of nodes corresponding to the same motif. (B) Identifying likely causal eMotifs. The
dosage of eachmotif is tested against the expression level of a nearby gene. Genes in significant association with at least one motif (denoted as eMotif) are
fine-mapped using susieR (Wang et al. 2020) in order to identify eMotifs that are likely causal to nearby gene expression. All GTEx variants and lead motifs
from each gene–VNTR pair are included in the fine-mapping model.
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Fig. S2). Each locus has an average of 3.9 alleles that are observed
only once, denoted as private allele count, and 513 loci that
have at least half the alleles (N≥35) as private (Supplemental
Fig. S2). The number of alleles per locus is positively correlated
with VNTR length (Pearson’s r=0.43, P<10–323). As VNTR length
increases, the private allele count also increases (Supplemental
Fig. S2); for example, the private allele count=8.9 when VNTR
length>500 bp.

We used danbing-tk (Lu et al. 2021) to encode the allele infor-
mation across haplotypes in an RPGG, consisting of 40,314 locus
subgraphs, or locus-RPGGs. The graph has a total of 173,944,578
k-mers (k=21) or nodes and 176,697,311 edges, with an average
of 4315 nodes in each locus-RPGG when including 700-bp flank-
ing sequences on both sides. Each locus-RPGG has an average of
102 nodes, or 13.4% nodes, that are observed only in one assem-
bly. The repeat region of RPGG (excluding flanking sequences)
has 17,762,872 k-mers (Fig. 2B), which is 25% greater than the
graph built from GRCh38 alone (n =14,257,939) and 71% greater

than the smallest graph built from an assembly (HG00864, n=
10,413,896).

We evaluated the quality of the alignments to each locus-
RPGG by measuring the consistency of k-mer counts from a dip-
loid assembly versus from mapping of short-read data from the
same sample, denoted as aln-r2 (Methods). Overall, there is a
slightly higher aln-r2 of 0.96 (Fig. 2C) compared with the aln-r2

(0.93) on the previously published 19 haplotype-resolved assem-
blies, with enrichment of loci with higher aln-r2 (Supplemental
Fig. S3). We also measured read mismapping rates from reads sim-
ulated from and aligned back to each assembly and compared the
reads incorrectly mapped to a VNTR to those mapping correctly.
The majority of loci (n =39,560) had <5% mismap rate (Fig. 2D).
To account for sequences missing from the HGSVC assemblies,
we also considered the mismap rate from GRCh38-only simula-
tions to filter problematic loci, selecting mismapping rate thresh-
olds based on the variance of mismap rate among loci (Fig. 2D).
VNTR loci with aln-r2 > 0.5, assembly mismap rate < 5%, and

A
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D

Figure 2. Characteristics of VNTRs and the RPGG. (A) Size distribution of VNTR alleles across 35 HGSVC assemblies. Each dot represents the size of a VNTR
locus in an assembly. The orders of 40,314 VNTR loci were sorted according to size in GRCh38. (B) Cumulative graph sizes. A total of 35 repeat-genome
graphs were incrementally added to the RPGG in the order of their respective graph size. The red dashed line denotes the size of the repeat graph built from
GRCh38. The blue dashed line denotes the average size of the graphs built from assemblies. (C) Distribution of aln-r2 for all locus-RPGGs. The aln-r2 of each
locus was computed by regressing the assembly k-mer counts against the read k-mer counts from graph alignments. The cutoff for aln-r2 (0.5) is shown in
red dotted lines. (D) Distribution of assembly andGRCh38mismap rates for all locus-RPGGs. The cutoffs for assembly (5%) andGRCh38 (1%)mismap rates
are shown in red dotted lines. The histograms represent the marginal distribution for each variable. (E) Distribution of VNTR dosage between-sample cor-
relation batch-r2 on the HGSVC and HPRC data sets, with the diagonal with slope of 1 in red.
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GRCh38 mismap rate < 1% were retained (n=39,125) for further
analysis. The above approaches removed 775 loci from segmental
duplicationswith high similarity to another copy and retained 544
loci within regions that were still distinguishable from other cop-
ies. To ensure data quality, we genotyped all 40,314 loci so that
low-quality loci could act as “baits” for reads that tend to mismap.

Even though k-mer compositions in the majority of VNTRs
show high consistency with ground truths within each sample
(37,840 loci with aln-r2 > 0.8), we observed that read depth varia-
tion owing to unknown bias or sampling stochasticity could cause
k-mer dosages to vary across samples even for loci where ground-
truth VNTR lengths are identical (Supplemental Fig. S4). We cor-
rected these biases by searching for VNTR k-mers that occur the
same number of times throughout the 70 HGSVC haplotypes, de-
noted as invariant k-mers. For each locus in an individual, all k-mer
dosages were scaled by a constant factor so that the average dosage
of invariant k-mers were the same across samples. We assessed the
effect of bias correction by measuring the k-mer dosage consisten-
cy across samples, denoted as batch-r2. When summing up all
k-mer dosages as an estimate for VNTR length, we saw an increase
in batch-r2 from0.531 to 0.820 after bias correction (Supplemental
Fig. S5). Applying the same procedure to 36 Human Pangenome
Reference Consortium (HPRC) assemblies (Liao et al. 2022) with
matching short-read samples in the 1000 Genomes Project
(1 KGP) (Byrska-Bishop et al. 2022), we also observed higher
batch-r2 after bias correction (0.521 vs. 0.795) (Supplemental Fig.
S5). The aln-r2 metric indicates that we can accurately genotype
VNTR k-mer compositions within a sample, whereas the batch-r2

further confirms thatVNTRdosages are scaled properly across sam-
ples (Fig. 2E), warranting analyses at a population level.

VNTR motif composition has pervasive cis-effects
on gene expression

Using the short-read alignmentmodule in danbing-tk, we estimat-
ed the VNTR content of 39,125 loci as graph genotypes and pro-
cessed 838 GTEx genomes (The GTEx Consortium 2020) using
∼12CPUhours and∼29GB ofmemory per sample. The read align-
ments to each subgraph are summarized as a vector of the number
of reads mapped to each node/k-mer. When normalized by global
read depth, these representmapping dosage used as input for eQTL
mapping of the 100-kb cis-windows of genes.

In work by Lu et al. (2021), cis-eQTLmapping using an RPGG
was reported using the sum of the dosage vector for each locus-
RPGG as an estimate of VNTR length. Applying this approach on
the 35-genome RPGG and adding an additional bias correction
step, we discovered 2870 VNTRs in association with nearby gene
expression (denoted as eVNTR and eGene, respectively) (Supple-
mental Fig. S6; Supplemental Data S2), which is an eightfold in-
crease over the number (n=346) reported from the previous
RPGG built on 32,138 VNTRs (Lu et al. 2021). Of the original
eVNTRs, 39.6% (137/346) were reproduced in this version. Among
the 209 eVNTRs not reproduced, 70% were removed in the more
stringent QC filtering in this version.

In addition to VNTR length, our previous work (Lu et al. 2021)
identified motifs enriched in certain populations sequenced by the
1000Genomes Project (1KGP) (The 1000Genomes Project Consor-
tium2015).Wehypothesized that differentialmotif usage across in-
dividuals, possibly independent of overall VNTR length variation,
can modulate nearby gene expression. To test this, we converted
each locus-RPGG to a compact dBG (Chikhi et al. 2016) and consid-
ered each path as a locus to test in eQTL mapping. The original

RPGG contains, on average, 400 nodes in each locus-RPGG, which
is reduced to 46 paths (referred to as motifs hereafter) after compac-
tion (Supplemental Fig. S7), with a total of 1,810,042 motifs.

To ensure the quality of read-mapping to each motif in each
locus-RPGG, we evaluated the “mappability” of each motif by
measuring the consistency between the dosage from short reads
and the dosage from the ground-truth assemblies using mean ab-
solute percentage error (MAPE; Methods). We removed 48.7%
(880,895/1,810,042) of the motifs with a MAPE≥0.25 (Supple-
mental Fig. S8). The number of motifs with zero variance in abso-
lute percentage error (n=313,034) is equivalent to the number
paths private to one genome among the 35 HGSVC assemblies
(Supplemental Fig. S8) and were retained for subsequent analyses.
Similar to eQTLmapping on SNVswhere homozygous variants are
removed, we avoid testing “invariant”motifs that appear the same
number of times in a repeat across all assemblies. This further re-
moves 17.1% (159,212/929,147) of motifs. By construction, our
RPGGs could contain loci with multiple VNTRs in close proximity
but spaced apart by short flanking sequences. We removed addi-
tional 0.04% (319/769,935) motifs that are derived from those se-
quences and could be simply explained by SNVs, leaving a total of
769,616 motifs for eQTL mapping. We evaluated how well we can
genotype these motifs following the same procedure for VNTR
dosage using batch-r2. Bias correction moderately improved
batch-r2 on both the HGSVC (0.656 vs. 0.701) and the HPRC
(0.653 vs. 0.697) data sets (Supplemental Fig. S9). For each motif,
we consider only GTEx samples for which the dosages are within
two standard deviations from the mean, avoiding the discoveries
of associations whose effects are mainly driven by outliers. This,
on average, removes 32 from the 813 samples per motif (Supple-
mental Fig. S10).

We ran cis-eQTL mapping for each VNTR motif and discov-
ered 9,422 eVNTRs, including 25,031 motifs associated with near-
by gene expression, denoted as eMotifs (Fig. 3A; Supplemental
Data S3). Although 79.8% (2291/2870) of the eVNTRs discovered
using length estimates were also reported using motif dosage,
75.7% (7131/9422) of the eVNTRs discovered frommotif were un-
detectable with length-based eQTL mapping. We noted a consis-
tent trend of a higher batch-r2 in eMotifs compared with the
genome-wide values, with the mean batch-r2 being 0.842 and
0.835 in HGSVC and HPRC, respectively (Supplemental Fig.
S11). The genomic correction values λGC of eMotifs (0.953–
1.226, depending on the tissue) are consistently lower than the
ones from GTEx eQTLs (Supplemental Fig. S12).

To further assess the reproducibility of our methods, we per-
formed eQTLmapping on the Geuvadis data set (Fig. 3B; Lappalai-
nen et al. 2013) and compared the discoveries with the GTEx
results (Supplemental Fig. S13). We found that 68.5% (862/1259)
of the eMotifs and 90.0% (1039/1154) of the eVNTRs fromGeuva-
dis were also observed in at least one GTEx tissue. Unreplicated
eGene–eMotif pairs (ePairs) tended to have lower significance in
Geuvadis, especially when P>10–6.6 (odds ratio = 3.35, Fisher’s ex-
act test P=4.0 ×10−21) (Supplemental Fig. S14). When comparing
the whole-blood tissue from GTEx and the lymphoblastoid from
Geuvadis, the effect sizes from the two data sets had a correlation
coefficient of 0.81 (P=1.5 ×10−94) (Fig. 3C). Among the replicated
ePairs, 92% (363/394) had the same sign of effect (Fig. 3C). When
comparingwith the EBV-transformed lymphocytes fromGTEx,we
observed a stronger correlation (Pearson’s r=0.96, P=2.1 ×10−120)
and 100% of the ePairs (n =208) with the same sign of effect
(Supplemental Fig. S15), suggesting motif variations as a common
explanatory variable in gene expression.
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Disease relevance of eMotifs

Among the 40 additional disease-relevant tandem repeats
(matched with 36 genes) included in the RPGG, 17 of them
(Supplemental Table S2) were identified as eQTLs and were associ-
ated with their original disease-linked genes, including ATN1,
ATXN7, AVPR1A, C9orf72, CACNA1C, CEL, DRD4, HTT, IL1RN,
JPH3, MAOA, MUC1, MUC21, PER3, and SLC6A4. Additionally, at

least one eVNTR was detected for 17 of the 21 remaining genes
and was different from the originally annotated disease-relevant
tandem repeat.

We investigated two examples of motifs associated with dis-
ease to see if they had associations with expression in healthy in-
dividuals. Landefeld et al. (2018) report that the “RS1” short
tandem repeat (STR) at the 5′ UTR of AVPR1A and the “AVR”
STR in the intron are associated with externalizing behaviors,

A
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Figure 3. cis-eQTLmapping of VNTRmotifs. (A) Quantile–quantile plot of gene-level eMotif discoveries across 20 human tissues fromGTEx data sets. The
expected P-values (x-axis) were drawn from Unif(0,1) and plotted against observed nominal association P-values. (B,C ) Replication on the Geuvadis data
set. (B) The quantile-quantile plot shows the observed P-value of each association test (two-sided t-test) versus the P-value drawn from the expected uniform
distribution. Black dots indicate the permutation results from the top 5% associated (gene, motif) pairs. (C) Correlation of eMotif effect sizes between
Geuvadis and GTEx whole-blood tissue. Only eGenes significant in both data sets were shown. Each pair of gene and motif that has the same/opposite
sign across data sets were colored in red/black. (D–F) Identification of risk motifs for CACNA1C expression. The motifs in CACNA1C VNTR at Chr 12:
2,255,789–2,256,088 were analyzed. (D) Association of CACNA1C VNTR motif CAACCACACGATCCTGACCTT (left) or VNTR length (right) with gene ex-
pression in the brain cerebellar hemisphere. (E) Multiple sequence alignment of known CACNA1C risk motifs (Song et al. 2018) and the likely causal eMotifs
reported in this study. (F ) Graph visualization of motif effect sizes from the CACNA1C VNTR. Each edge denotes a motif and is colored blue/red if having a
negative/positive effect on gene expression. Color saturation and edge width both scale with the absolute value of effect size. The sequence of a motif is
shown parallel to the edge and is colored in dark blue if having a significant effect or is colored in light red/blue if borderline significant. (G) UCSC Genome
Browser view (Kent et al. 2002) of CACNA1C VNTR.
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whereas Vollebregt et al. (2021) report that the “RS3” STR but not
RS1 is associated with childhood onset aggression. No association
was found between AVPR1A expression and the lengths of the
three STRs; however, we found eMotifs for AVPR1A in healthy
individuals that correspond to RS1 ((GATA)5AATA(GATA)4G, b =
−0.17, P= 1.0 ×10−4, artery tibial), AVR ((GA)9A4, b =−0.17, P=
3.1 ×10−4, fibroblast), and RS3 (C(AG)10, b = 0.28, P=7.5 ×10−5,
artery coronary). The RS3 STR (Chr 12: 63,156,354–63,156,429)
has a nested repeat structure with an average size of 701 bp in as-
semblies. It consists of two slightly divergent copies that each carry
a highly repetitive (CT)nTT(CT)n(GT)n core motif at Chr 12:
63,156,354–63,156,394 and Chr 12: 63,156,701–63,156,751
(Supplemental Fig. S16). Other tandem repeat annotation ap-
proachesmight consider this region as two separate STRs for which
the length of the coremotif is associated with AVPR1A expression.

The decreased expression ofCACNA1Cwas known to be a risk
factor for schizophrenia and has been reported to be associated
with several 30-bp risk motifs at Chr 12: 2,255,789–2,256,090
based on a case-control study (Song et al. 2018). Here, we found
that the expression of CACNA1C in the brain cerebellar hemi-
sphere was associated with a risk eMotif CAACCACACGATCCTG
ACCTT (denoted as motif 1, b =−0.45, P=5.3 ×10−9) (Fig. 3D,
left) but not the VNTR length (P=0.92) (Fig. 3D, right). The eMotif
covers five of the six mutation sites (Fig. 3E) and is novel to all of
the risk motifs reported previously (Song et al. 2018). In addition,
we were able to replicate findings from the case-control study
(Song et al. 2018) in healthy populations. The risk eMotif
CCCTGACCTTACTAGTTTACGA (b=−0.41, P=6.9 ×10−8, denot-
ed as motif 2) that covers three of the mutation sites (Fig. 3E)
matches two of the risk motifs and none of the protective motifs,
indicating the prevalence of risk-modulating motifs even among
healthy populations. When examining the frequency of the two
risk eMotifs in the 35 HGSVC assemblies, 28 haplotypes carry mo-
tif 1 and 38 haplotypes carrymotif 2 (Supplemental Fig. S17). Most
of the individuals carry only few copies of the riskmotifs, but some
could carry up to 191 copies of motif 1 in one haplotype (Supple-
mental Fig. S18). Annotating the locus-RPGGwith the eQTL effect
sizes also reveals that motifs with minor risk and protective effects
are pervasive within the locus, for example, CTGACTAGTTTAC

GATCACACGA (b=−0.23, P=2.8 ×10−3) and CGTAAACTAGT
CAGGTCAGGA (b=0.16, P=4.2 ×10−2) (Fig. 3F). The size of this
VNTR locus in GRCh38 is underrepresented, with only 301 bp
compared with an average size of 6247 bp across assemblies. In ad-
dition, immense histone modification, DNase clusters, and TF
clusters signals can also be found in this locus (Fig. 3G), necessitat-
ing future investigations to fully understand the regulation mech-
anism of CACNA1C.

To further narrow down eMotifs that are likely causal to gene
expression, we used susieR (Wang et al. 2020) to fine-map the
1-Mb cis-window of each eGene. We discovered 179 out of
12,894 eGenes, of which the highest eVNTR posterior inclusion
probability (PIP) is greater than 0.8, suggesting the likely causal
roles of these eMotifs and VNTR lengths (Supplemental Fig. S19;
Supplemental Data S4; Supplemental Note S1). The expression of
these 179 eGenes are likely modulated by 163 eVNTRs, through
the total length of three VNTRs or the overall dosage of 206
eMotifs (Fig. 4A). Among these, 90 VNTRs are associated by motif
composition independent of length (Fig. 4A). On average, 56.2%
of the eGenes are shared across tissues, whereas 58.7% of the
eVNTRs and 38.1% of the eMotifs are observed across multiple tis-
sues (Supplemental Figs. S20–S22). The genotyping accuracy of
these likely causal variants are high on the HGSVC data set
(mean batch-r2 = 0.857) and reproducible in the HPRC data set
(mean batch-r2 = 0.851) (Fig. 4B). Although no single regulatory el-
ement was found to be enriched in the fine-mapped motif se-
quences, we found that 54/140 VNTR loci with fine-mapped
motifs overlap ENCODE cis-regulatory elements, a 2.3-fold in-
crease overwhat is expected by chance (P< .001, permutation test).

We identified a fine-mapped VNTR at Chr 1: 152,213,243–
152,221,044, within an exon of HRNR, a large polymorphic
VNTR (7.8 kbp inGRCh38 vs. an average of 13.5 kbp in assemblies)
(Fig. 5A,B), previously identified as an eQTL using read depth anal-
ysis (Garg et al. 2021). The VNTR length as well as 16 other motifs
are reported to be likely causal across 24 tissues for the expression
of three different genes, HRNR, FLG-AS1, and FLG (Fig. 5E;
Supplemental Fig. S23; Supplemental Data S4), which are respon-
sible for ichthyosis vulgaris (Smith et al. 2006) and atopic derma-
titis (Fallon et al. 2009). The repeat overlaps almost the entire

A B

Figure 4. Fine-mapping of VNTR variants. (A) VNTR-centric view of gene-level eQTL discoveries and fine-mapping. Lead eMotif denotes any VNTRs that
are associated with gene expression through at least one eMotif under gene-level discoveries. Length denotes any VNTRs that are associated with gene
expression through length under gene-level discoveries. Causal-motif denotes any VNTRs for which a motif passes the fine-mapping procedure with a pos-
terior inclusion probability≥0.8 while being a significant eQTL under genome-wide P-value cutoff. Motifs with the lowest P-value for each VNTR–gene pair
are included in the fine-mapping model in addition to VNTR length. (B) The batch-r2 of likely causal motifs on the HGSVC and HPRC data sets. Each bin on
the marginal histogram spans 0.01.
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Figure 5. HRNR repeat expansion impacts nearby gene expression. (A,B) VNTR allele diversity of theHRNR repeat (Chr 1: 152,213,243–152,221,044). (A)
The VNTR lengths and counts for motif AGGAGTGCCCCAAACCGGACCCATGTCGGCCG in the HGSVC and HPRC assemblies are shown (matplotlib alpha
= 0.2). (B) Two divergent haplotypes in A are highlighted with dot plots. Red lines indicate the boundary of the repeat, flanked by 700-bp sequences on
both sides. The locations of the motif in GRCh38 and assemblies are shown as blue lines. Each dot denotes an exact match of 21-mers. (C) UCSC Genome
Browser (Kent et al. 2002) view of HRNR, FLG, and FLG-AS1. Blue, red, and yellow lines in the ENCODE cCRE track denote CTCF sites, promoters, and en-
hancers, respectively. Micro-C chromatin structure from HFFc6 cell line is shown. HRNR and FLG are highlighted in light blue. (D) Predicted CTCF binding
sites across 13 length-divergent haplotypes. Each haplotype was scanned for matches with a 34-bp, two-core CTCF motif (MA1929.1) using FIMO with a
cutoff of P<10–4. Plus andminus signs at the start of each haplotype indicate the orientation of the motif. (E) Association of the estimated HRNR repeat size
in GTEx genomes with FLG (in fibroblast) and HRNR (in thyroid) expression. Red dashed lines indicate the best fit under simple linear regression. (F, left) The
number of predicted CTCF sites versus disruption of local genome folding predicted by Akita for alternate VNTRs among 83 assemblies. Each variant VNTR is
shown as a gray dot with a shade reflecting the multiplicity of alleles that have the similar numbers of CTCF sites and disruption scores. A higher local dis-
ruption score reflects greater changes in contact frequencies relative to GRCh38 in a 262-kb window. (Right) Illustration of how a local disruption score is
calculated comparing predicted folding in a haplotype to GRCh38.
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exon 3 of HRNR, a shared feature for the S100 fused type protein
family, including FLG. Although it is expected that repeat expan-
sion of the HRNR exon leads to a higher read count, HRNR repeat
expansions were associated with reduced expression of FLG-AS1
and FLG. Given that one CTCF binding site (ENCODE ID:
EH38E1384952) was annotated on GRCh38 and the critical role
of CTCF in genome folding (Merkenschlager and Nora 2016), we
conjecture that repeat expansion creates more CTCF binding sites,
alters nearby chromatin contacts, and perturbs the expression of
FLG-AS1 and FLG (Fig. 5C).We found several potential CTCF bind-
ing sites matching a 34-bp two-core motif (JASPAR ID: MA1929.1)
(Soochit et al. 2021) when scanning each VNTR allele with FIMO
(Fig. 5D; Supplemental Fig. S24; Grant et al. 2011). The number
of detected binding sites tightly correlates with the size of the re-
peat (Pearson’s r=0.996, P=2.4 ×10−160) (Supplemental Fig. S25)
and estimates themagnitude of perturbation in local genome fold-
ing predicted by the in silicoDNA folding software Akita (Pearson’s
r= –0.838, P=8.2 ×10−42) (Fig. 5F; Supplemental Fig. S26;
Fudenberg et al. 2020). Overall,HNHR repeat expansion could per-
turb nearby gene expression—FLG-AS1 and FLG in this case—with
a potential interplay with CTCF binding.

Although likely causal motifs in some cases are strongly cor-
related with VNTR length such as the above example, they can
also be very distinct from length, such as the ones in Chr 17:
80,260,506–80,260,846, a VNTR immediate upstream of RNF213
(Fig. 6A; Supplemental Figs. S27, S28). The VNTR adjoins the pro-
moter and a proximal enhancer (ENCODE ID: EH38E2146500) of
RNF213 and overlaps abundant histone marks, DNase I hypersen-
sitivity, and TF clusters (Supplemental Fig. S29). A search for a TF
binding motif matching the likely causal motif GCGGGGCCG
GCGGCGGCGGCGG using TOMTOM (Gupta et al. 2007) indi-
cates a strong match with ZNF93 (JASPAR ID: MA1721.1, P=9.0
×10−7) (Supplemental Fig. S30). Scanning each haplotype se-
quence using FIMO suggests that there are up to 16 ZNF93 binding
sites in the repeat (Supplemental Fig. S31). However, repeat expan-
sion does not create newbinding sites in all cases because themotif
count better correlates with the number of TF binding sites than
the repeat length (Supplemental Fig. S31). In some haplotypes, re-
peats expand through alternative motifs (Fig. 6B,C) that have a

poorer match with the ZNF93 motif (Supplemental Fig. S32) and
minor effects on gene expression (Supplemental Fig. S33). In this
case, the likely causal VNTR variant for gene expression is motif
and not length.

Discussion

Genomic variant discovery serves to link genetic and phenotypic
variation. Using gene expression as a phenotypic measure, diverse
classes of variation have been found to have an effect on gene ex-
pression including SNVs (The GTEx Consortium 2020), structural
variation (Sudmant et al. 2015; Chiang et al. 2017; Ebert et al.
2021), STRs (Gymrek et al. 2016), and VNTRs (Bakhtiari et al.
2021; Eslami Rasekh et al. 2021; Garg et al. 2021). Here we show
that in addition to association of VNTR length with expression,
a more nuanced measurement of VNTR variation that takes into
account sequence composition reveals eMotifs that influence
gene expression.

Overall, we find 9422 VNTR loci containing at least one
eMotif. In contrast, previous studies that used associations based
on length estimate alone ranged between 163 and 2980 eVNTRs
(Bakhtiari et al. 2021; Garg et al. 2021; Lu et al. 2021), with the
number roughly correlating with the number of loci each study
profiled. Although more tests per VNTR locus are performed, the
fine-mapping analysis finds that themajority of variants are linked
with nearby eQTLs. After applying fine-mapping, 162 (1.7%)
eVNTRs contain motifs determined as likely causal. In contrast,
0.18% of the 4.3 M eQTL variants discovered in the GTEx (v8)
are fine-mapped (The GTEx Consortium 2020). We note that the
estimate of motif dosage is inherently noisy and that despite con-
trolling for false-discovery rate, unknown biases may lead to an
overestimation of the number of significant loci, particularly in
the absence of robust experimental validation. Future studies
that generate long-read data for deeply phenotyped cohorts will
help address this issue through exact readouts of motif copy
number.

We observe that most eVNTRs have different motifs positive-
ly and negatively associated with expression of the same nearby
gene.Most eQTLmapping pipelines are based on biallelic variants.

When encoding a variant, the reference
allele is usually treated as zero, whereas
the alternative allele is treated as one.
Alternatively, this can be viewed as en-
coding the alternative allele as its copy
number, which is simply one for a bial-
lelic variant, while keeping the reference
allele as zero. When the same encoding
method is applied to a VNTR locus con-
sisting of a reference motif and an alter-
native motif, the only difference is that
the alternative allele becomes a continu-
ous value representing the adjusted mo-
tif depth and may take on a positive or
negative association depending on the
relation to the reference motif.

This study profiles 39,125 VNTR
loci, a 1.2-fold increase over our previous
analysis of VNTR variation using RPGGs
(Lu et al. 2021) that is largely attributable
to the high-quality haplotype-resolved
assemblies used to construct the pange-
nome. The size of the graph increases

A B

C

Figure 6. Motif composition, but not length, explains RNF213 expression changes. (A) VNTR allele
diversity of the RNF213 promoter repeat (Chr 17: 80,260,506–80,260,846). The VNTR lengths and
counts for the likely causal motif GCGGGGCCGGCGGCGGCGGCGG, corresponding to the red repeat
unit in B, in HGSVC and HPRC assemblies are shown (matplotlib alpha = 0.2). (B) Repeat expansion of
the RNF213 VNTR from diverse repeat units. VNTR haplotypes from all assemblies were annotated using
vamos (Ren et al. 2022). Different repeat units are illustrated by different colors; the repeat unit contain-
ing a ZNF93 binding site is colored dark orange. Only unique annotations were shown, with the frequen-
cy of each entry shown on top if greater than one. (C) Multiple sequence alignment of the four repeat
units shown in B. Alignments were generated using MUSCLE (Edgar 2004) and visualized with Jalview
(Waterhouse et al. 2009).
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sequentially with the number of assemblies included in the graph
and is consistent with the increasing number of structural variants
discovered in VNTRs by whole-genome alignment (Ebert et al.
2021). The inclusion of additional genomes from large-scale se-
quencing projects such as the Human Pangenome Reference
Consortium will yield an improved estimate of saturation of
VNTR variation.

The use of RPGGs in this study differs from other implemen-
tations of pangenome graphs including those constructed by pro-
gressive whole-genome alignment (Li et al. 2020) and variant
inclusion (Sirén et al. 2021), both of which preserve haplotype in-
formation from the genomes or variants used to construct the
PGG. Although systematic analysis of variation inVNTRs and asso-
ciationwith expressionhas not yet been conducted using these ap-
proaches, we anticipate the RPGG will provide complementary
analysis. In particular, variant genotyping in graphs that preserve
haplotype as implemented by Giraffe (Sirén et al. 2021) and
PanGenie (Ebler et al. 2022) corresponds to associating read data
with haplotypes (paths in a PGG) covering variants. These ap-
proaches provide highly accurate genotyping of variants shared
with the graph; however, hypervariable VNTR sequences are
more likely to have differences from genomes represented in the
graph, and additional analysis is required to quantify motif usage
in addition to genotype.

The implementation of the pangenome as a dBG is an elegant
approach to identifying the composition of identical motif re-
peats; however, small differences in motif composition can make
the graph complex, and additional development is necessary to
identify graph topologies that naturally reflect VNTR repeat com-
position. One result of this complexity is our number of eMotifs
that are deemed likely causal using fine-mapping is possibly an un-
derestimate. Many motifs have a highly correlated read dosage;
however, we use a conservative approach of considering each mo-
tif as an independent variable for fine-mapping. Future develop-
ment that merges similar motifs to the same edge both
aggregates depth otherwise split on several edges and reduces the
correlated motifs tested during fine-mapping.

In summary, this study shows how VNTR composition has a
pervasive influence on gene expression, and highlights the need to
profile variation in complex, repetitive regions of the genome.We
anticipate this approachwill be useful for future expression and as-
sociation studies.

Methods

Data retrieval

HGSVC haplotype-resolved assemblies (n=35; HG00096,
HG00171, HG00512, HG00513, HG00514, HG00731, HG00732,
HG00733, HG00864, HG01114, HG01505, HG01596, HG02011,
HG02492, HG02587, HG02818, HG03009, HG03065, HG03125,
HG03371, HG03486, HG03683, HG03732, NA12329, NA12878,
NA18534, NA18939, NA19238, NA19239, NA19240, NA19650,
NA19983, NA20509, NA20847, NA24385) were downloaded
from Ebert et al. (2021) (https://www.internationalgenome.org/
data-portal/data-collection/hgsvc2). HGSVC whole-genome se-
quencing (WGS) samples are downloaded from the 1000
Genomes Project phase 3 (The 1000 Genomes Project
Consortium 2015; https://www.internationalgenome.org/data-
portal/data-collection/hgsvc2; Supplemental Note S2).

HPRC freeze 1 (v2)haplotype-resolved assemblies (n=47) (Liao
et al. 2022) were downloaded from https://zenodo.org/record/
5826274#.ZAAaa9LMKEI. CHM13 telomere-to-telomere assembly

(v1.0) (Nurk et al. 2022) was retrieved from the NCBI Assembly
database (https://www.ncbi.nlm.nih.gov/assembly/) under ac-
cession number GCA_009914755.2. WGS samples (n=36) match-
ing HPRC genomes were downloaded from https://www
.internationalgenome.org/data-portal/data-collection/30x-grch38
(under NCBI BioProject database [https://www.ncbi.nlm.nih.gov/
bioproject/] accession number PRJEB36890) (Byrska-Bishop et al.
2022).

Maternal and paternal haplotypes were referred to as h0 and
h1 in the text for brevity.

WGS samples (n =879), gene expression matrices of 49 tis-
sues, and covariates for eQTL mapping of GTEx genomes were
retrieved from GTEx Analysis release V8 (under NCBI database of
Genotypes and Phenotypes [dbGaP; https://www.ncbi.nlm.nih
.gov/gap/] accession number phs000424.v8.p2) (The GTEx
Consortium 2020). WGS samples for Geuvadis genomes (n=445)
were downloaded from 1000 Genomes Project phase 3 (https://
www.internationalgenome.org/data-portal/data-collection/hgsvc2),
and the matching residualized gene expression matrix for lympho-
blastoid cell lines (GD462.GeneQuantRPKM.50FN.samplename
.resk10.txt.gz) were retrieved directly from the Geuvadis portal
at https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-GEUV-1
(Lappalainen et al. 2013).

RPGG construction

A set of 88,441 VNTR coordinates was retrieved from danbing-tk
v1.3 (Lu et al. 2021). The VNTR set was obtained by (1) detecting
VNTRs over the five haplotype-resolved assemblies (AK1,
HG00514, HG00733, NA19240, NA24385) released by Lu et al.
(2021) using Tandem Repeat Finder v4.09.1 (Benson 1999), (2) se-
lecting for VNTRswith a size between 100 bp and 10 kbp and amo-
tif size > 6 bp, and (3) applying danbing-tk to the VNTRs in the five
genomes to identify 88,441 loci with proper orthology mapping.
VNTR annotations on the 35 HGSVC assemblies and the corre-
sponding RPGG were generated using the build module of danb-
ing-tk, giving a total of 80,518 loci.

VNTR genotyping

WGS samples were from GTEx (The GTEx Consortium 2020) and
Geuvadis (Lappalainen et al. 2013) with a total of 879 and 445
samples, respectively. Both cohorts are primarily composed of in-
dividuals from European/European–American populations: 85.3%
(GTEx) and 83% (Geuvadis). The remaining individuals in GTEx
are African American (12.5%), Asian American (1.4%), and
Hispanic or Latino (1.9%), as well as West African (Yoruban) in
the Geuvadis cohort. VNTRs were genotyped using danbing-tk
v1.3 with the options “-ae -kf 4 1 -gc 85 -k 21 -cth 45.” Although
each locus-RPGG encodes the population diversity of a VNTR
along with the 700-bp flanking sequences, which is crucial for
read alignment, only the k-mer counts in repeat regions are output
by danbing-tk. The output k-mer counts were adjusted by the cov-
erage of each sample before subsequent analyses.

Graph compaction and motif dosage computation

Locus-RPGG built from k= 21 contains abundant contiguous
paths without branches. It is desirable to reduce the number of
nodes to be tested in eQTL mapping by merging nodes on this
type of paths. This is essentially a problem of converting dBGs to
compact dBGs (Chikhi et al. 2016), where nodes on a nonbranch-
ing path are merged into a unitig or referred to as a motif in this
context. For each motif, we recorded the mapping relation from
its constituent nodes and computed themotif dosage by averaging
the k-mer counts from constituent nodes. In practice, when given
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a matrix of VNTR genotype where each column represents a k-mer
in a locus-RPGG and each row represents a sample, the matrix of
motif dosages can be simply computed by column operations us-
ing the mapping relations.

Quality control of VNTRs

To ensure the VNTR set in the database ismainly composed of sim-
ple repeats instead of tandemly duplicated mobile elements and
can be genotyped with high accuracy, we applied the following
five filters: (1) mobile element mask, (2) aln-r2 > 0.5, (3) assembly
mismap rate < 5%, (4) GRCh38 mismap rate < 1%, and (5) length
variable on the HGSVC assemblies.

All of the genomes (AK1, HG00514, HG00733, NA19240,
NA24385) used for calling VNTRs were processed with Repeat-
Masker v4.1.2-p1 (http://repeatmasker.org). VNTR annotations
that overlapped with any of the mobile elements detected by
RepeatMasker were masked. This removed 40,199 out of the
80,518 loci.

The aln-r2 statistic was used to evaluate how well a VNTR can
be genotyped within a sample. It is the r2 computed by regressing
the k-mer counts from assemblies against the counts from reads
aligned to the locus-RPGG. Because VNTRs were genotyped using
the RPGG, any read k-mers not present in the original assembly
were ignored.

A VNTR within segmental duplications (segdups) has the
chance to be genotyped with high aln-r2 but contains extensive
mismapped reads from other genomic regions. A perfectly duplicat-
ed VNTR creates the following scenario. All reads from the two loci
will be deterministically mapped to one locus. The locus without
any reads will be dropped because aln-r2 is not a value. However,
the other locus will have the same aln-r2, and the only difference
is that the slope doubled in the linear fit. To avoid genotyping these
loci, we ran simulations to detect loci with mismapping from or to
other genomic regions. Error-free 150-bp paired-end reads (frag-
ment size =500 bp) were simulated from 35 HGSVC diploid assem-
blies. Contigs<50 kb were ignored because a short contig can
contain a partially assembledVNTR sequence that is fully assembled
in another longer contig. Readsweremapped to the RPGGusing the
same options (-ae -kf 4 1 -gc 85 -k 21 -cth 45). The loci of aligned
reads were extracted from danbing-tk’s alignment output and
were compared with the origin of the reads, restricting to reads
with VNTR k-mers only. The number of reads from other loci or un-
tracked regions aligned to this locus is denoted asNG. Thenumber of
reads from this locus aligned to other loci or untracked regions is de-
noted asNL. The number of VNTR reads from a locus isN0. Themis-
map rate is computed as (NG+NL)/N0. The average mismap rate
from all assemblies was used as the final metric for filtering.

To account for locimissing fromHGSVCassemblies but present
onGRCh38,we ran another simulationonGRCh38 alone. The over-
all procedure is similar except that reads were simulated from
GRCh38 without alt contigs. Read mapping was performed on the
graph built from GRCh38 alone. VNTR boundaries on GRCh38
were adjusted such that the k-mer set was consistent with the anno-
tations from other assemblies. This expanded 34,637 out of the
80,518 loci and dropped four loci with unresolved inconsistency.

Length-invariant VNTRs based on the observation from the
35 HGSVC assemblies were removed from eQTL mapping by esti-
mated VNTR length to avoid associating gene expression with
length variation predominantly driven by noise in sequencing
read depth and length estimation.

All loci passing the mobile element mask were retained (n=
40,314) for genotyping so that loci with higher mismap rates can
act as “baits” for reads from problematic regions. Only the results

for loci passing all filters (n =39,125)were used for eMotifmapping
and fine-mapping.

Quality control of motifs

To ensure the quality of motifs tested in eQTL mapping, we ap-
plied three filters to remove (1)motifs withMAPE>0.25, (2)motifs
with dosage invariant across HGSVChaplotypes, or (3) motifs that
were derived from an inter-VNTR region (denoted as “flank-like”)
but were included in the repeat region of a locus-RPGG owing to
the distance between the upstream and downstream VNTRs being
<700 bp. For the first filter, we computed MAPE for each motif by
measuring the error size of each motif to the linear fit for aln-r2.
Formally, let x= (x1, x2, …, xP) be the motif dosages from assem-
blies and y= (y1, y2, …, yP) be the motif dosages from short reads,
where P is the number of motifs in the locus-RPGG. For each ge-
nome g, ŷg is the fitted value for the dosage of a motif from the lin-
ear fit between x and y. The MAPE of a motif can be computed as
follows:

MAPE = 1
N

∑N
g=1

|ŷg | − yg
yg

,

where N is the number of genomes with the motif. For the second
filter, a motif was removed if the dosage of a motif was the same
across all 70 haplotypes. The dosage was set to zero if the motif
was not present in a haplotype. For the third filter, any k-mers de-
rived from the inter-VNTR regions before the VNTR merging step
were extracted. Any motifs overlapping with these k-mers were
removed.

Bias correction and batch-r2

Although aln-r2 indicates that most loci can be accurately geno-
typed in terms of the relative k-mer compositions in a locus
when examining each individual separately, we noticed that loci
with high aln-r2 and nonoverlapping segdup regions can have
huge variations in the slopes of the linear fits when compared
across individuals owing to the stochastic nature of read coverage
or unknown technical biases. This imposes a challenge for popula-
tion-scale analysis such as eQTL mapping. To correct for this, we
searched for invariant k-mers in each locus that appear the same
number of times across all HGSVC VNTR haplotypes. For each lo-
cus, rawVNTRgenotypes (motif counts, or sumof k-mer counts for
length) were adjusted by coverage and then by a bias term such
that the final k-mer coverage of these invariant k-mers is the
same across individuals. More formally, let k ∊RN be a vector of in-
variant k-mers, and let c ∊RN be the counts associated with these k-
mers in the diploid assembly. If short reads sampled from the
whole genome were perfectly uniform, the only factor changing
the observed k-mer counts c′ ∊RN was read coverage, or d ∊R1. In
this case, k-mer coverage, or ci′/ci, is d for all k-mers. Nowwe extend
this procedure to a stochastic sampling process. For an individual j
and read coverage dj, let

∑
i {c

′j
i /(djc

j
i)}/N

j be the bias term bj for this
VNTR locus, reflecting the magnitude of a sample-specific devia-
tion of k-mer coverage from dj. Let b ∊RM be the bias vector for
M individuals, and let T ∊RN’ ×M be the k-mer count matrix collat-
ed from danbing-tk’s outputs, where each row represents a k-mer
from a locus with N′ k-mers, and each column represents an indi-
vidual fromM samples. The final k-mer dosage table, or T′, can be
computed by dividing each column inTwith djbj, or

∑
i {c

′j
i /ci

j}/Nj,
removing the read depth and bias factors at the same time as an es-
timate for diploid k-mer copy number. Correctedmotif dosage can
be computed by averaging the values from k-mers corresponding
to the motif, as described in the section “Graph compaction and
motif dosage computation.”
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To measure the performance of this correction, we define
batch-r2 for length estimation as the r2 between assembly VNTR
size and estimated VNTR dosage (the sum of each column in T′)
across a batch of samples; the batch-r2 for motif dosage estimation
is defined as the r2 between assembly motif count and corrected
motif dosage.

Validation of estimated VNTR and motif dosage

Using the batch-r2 defined in the previous section, we evaluated
the accuracy of our genotyping approach using the assemblies
from HGSVC and HPRC. VNTR annotations on the 48 HPRC as-
semblies includingCHM13were generated using the buildmodule
of danbing-tk, giving a total of 81,261 loci. Only loci with one-to-
one mapping between HGSVC and HPRC annotations were re-
tained when comparing between the two sets, leaving a total of
79,626 loci. For VNTRs with invariable length and motifs with in-
variable count in the assemblies of each data set, batch-r2 is not
computed. If a VNTR locus does not have any invariant k-mers
in HGSVC for bias correction, the batch-r2 is also not computed.
Motifs with at least one overlapping k-mer between the two data
sets were retained for analysis.

eQTL mapping

Gene expression data were processed as previously described (Lu
et al. 2021) unless stated otherwise. Briefly, fully processed, fil-
tered, and normalized gene expression matrices and covariates
were downloaded from GTEx portal as described in the section
“Data retrieval.” Confounding factors were removed using covari-
ates including sex, sequencing platform, amplification method,
PEER factors, and top 10 principal components (PCs) from the
joint single-nucleotide polymorphismmatrix with 1 KGP samples.
Residualization of the gene expression matrices was performed
with the following formula:

Y = (I − C(CTC)
−1

CT )Y ′,

where Y is the residualized expression matrix, Y′ is the normalized
expression matrix, I is the identity matrix, and C is the covariate
matrix where each column corresponds to a covariate mentioned
above. Fully processed, filtered, and residualized expression matri-
ces of Geuvadis samples were obtained from theGeuvadis portal as
described in the section “Data retrieval.”

For eQTL mapping using motif dosage, samples with motif
dosage being two standard deviations away from themeanwere re-
moved for eachmotif. For eQTLmapping usingVNTR length, sam-
ples with VNTR length being three standard deviations away from
the mean were removed for each VNTR. The motif dosages, VNTR
lengths, and the residualized expression counts for the remaining
samples were Z-score-normalized before testing for association.
VNTRs that are <100 kb from a gene body were tested for
association.

The nominal P-values were obtained from t-test on the slope
of each linear model consisting of expression (response variable)
versus motif dosage or estimated VNTR length (explanatory vari-
ables) using Python statsmodels v0.13.2 (Seabold and Perktold
2010). For gene-level cis-eQTL discoveries, the P-value of each
test was adjusted according to the number of variants tested for
each gene using a Bonferroni correction. The minimal P-values
from all the tests against each gene were extracted and controlled
at a 5% false-discovery rate using the Benjamini–Hochberg proce-
dure. Only one eMotif (if using motif dosage) or one eVNTR (if us-
ing VNTR length) was reported for each eGene. For cis-eQTL
discoveries using a genome-wide P-value cutoff, all P-values from
all tests were recorded and controlled at 5% false-discovery rate us-

ing the Benjamini–Hochberg procedure. The P-value cutoffs range
from 2.9×10−5 (kidney) to 1.7 ×10−3 (thyroid), depending on the
power in each tissue (Supplemental Table S3). There can be more
than one eMotif to be reported as significantly associated with a
gene when reporting discoveries with this approach, which is re-
quired for analyses that investigate all motifs in a VNTR locus. A
VNTR that contains an eMotif was also regarded as an eVNTR.
Consequently, an eVNTR can be associated with gene expression
through length or motif dosage depending on the type of tests
performed.

Comparing λGC across data sets and variant types

λGC for GTEx variants were computed from the P-values of all tests.
The full tables ($tissue.allpairs.txt.gz) containing all P-values were
downloaded from the GTEx portal. λGC was computed using using
the SciPy.stats v1.9.1 (Virtanen et al. 2020) and Numpy (Harris
et al. 2020) module in Python as follows:

1. med= stats.chi2.ppf(0.5, 1) # expected median of chi-squared
distribution

2. chi2 =np.median(stats.chi2.ppf(1-ps, 1)) # ps are the P-values
from GTEx variants

3. lambda_gc= chi2/med

The λGC for VNTR motifs in each GTEx tissue or in Geuvadis is
computed in the same way as above, taking the P-values from
our eMotif mapping. However, to make fair comparisons, we reran
eQTLmapping on GTEx whole blood and Geuvadis with a 100-kb
cis-window usingQTLtools v1.3.1 (Delaneau et al. 2017) to be con-
sistent with the setting in our model.

Fine-mapping

To evaluate whether the eMotifs are causal to gene expression, we
used susieR v0.11.92 (Wang et al. 2020) to fine-map the cis-win-
dow around the transcription start site of each gene. All variants
in GTEx’s catalog (GTEx_Analysis_2017-06-05_v8_WholeGeno
meSeq_838Indiv_Analysis_Freeze.vcf.gz), including SNVs, indels,
or structural variants, were extracted if within the 1-Mb cis-win-
dows of transcription start sites. For each tissue, all motifs that
have the lowest P-value for each gene–VNTR pair were extracted.
The extracted GTEx variants and motifs were taken as input for
fine-mapping. Susie was run using L =5 to allow up to five sets of
causal variants within the whole region. Motifs with PIP≥0.8
while passing the genome-wide P-value cutoff as described in the
previous section were reported as likely causal eMotifs.

Enrichment analysis was performed using 1000 permutations
of ENCODE cis-regulatory element regions defined by the
encodeCcreCombined (CRE) UCSC Genome Browser track on
GRCh38 (Rosenbloom et al. 2013). The ENCODE CRE elements
were randomly shuffled excluding centromere sequences and
counted for overlap with fine-mapped VNTR sequences.

Genome folding disruption prediction

Genome folding predictions were made using Akita (Fudenberg
et al. 2020), a deep convolutional neural networkmodel that takes
one-hot encoded DNA sequence as input and makes predictions
for pairwise observed/expected contact frequency maps with
2048-bp bins. The trained model is available on GitHub (https://
github.com/calico/basenji/tree/master/manuscripts/akita/v2). Pre-
dictions were made using tensorflow version 2.6, and model
weights were loaded into Basenji (GitHub commit d61389d) (Kel-
ley 2020). The predictions here used the humanhead (suffix 0) and
were averaged across all human targets and models from each
train/test/validation split. To obtain the reference prediction, the
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input sequence was centered on HRNR Chr 1: 152,213,243–
152,221,044 (in GRCh38 coordinates). The DNA input sequences
for alternate haplotype (35 HGSVC+47 HPRC assemblies +
CHM13) predictions were created by replacing the reference
VNTR at this locus with sequence for each haplotype and trim-
ming the resulting sequence from the right to match Akita’s fixed
input length. To quantify the difference in local contact frequen-
cies for each haplotype, we subtracted the predicted reference
map from the predicted map for each haplotype. Because VNTR
haplotype lengths range from 4984 bp to 32,507 bp, predicted
maps can be shifted bymultiple bins compared with the reference.
Because of this, we took a conservative approach to quantification
that focused ondifferences outside of any inserted (or deleted) bins
relative to the reference. We achieved this by aligning predicted
maps as follows. For alternate haplotypes with insertions relative
to the reference, we first replaced the corresponding bins in the
predicted map with NaNs. We then inserted an equal number of
bins with NaNs into the reference map. For deletions relative to
the reference, the corresponding bins in the reference are replaced
with NaNs and an equal number of bins with NaNs are inserted in
the predicted alternate maps.

We then calculated a local disruption score (LDS) in a 128-bin
(262,144-bp) region centered around the center of the aligned
maps, that is,

LDS128 = 1
2

���������������������∑
−64≤i,j≤64

M2
m+i,m+j

√
,

where M is the predicted map, m is its midpoint, and i, j are inte-
gers. If thewindow overlaps bins containing NaN values as a result
of map alignment, the window is expanded by a corresponding
number of bins on each side of the center of the map.

Annotating the RNF213 repeat with vamos

The repeat sequences for all HGSVC (n=35) and HPRC (n=48, in-
cluding CHM13) assemblies without flanking sequences were ex-
tracted based on danbing-tk’s annotation and saved in FASTA
format. The efficient motif set was retrieved from Zenodo (https
://zenodo.org/record/7155329/files/vntrs_motifs_delta_0.2.bed?
download=1). The BED entry corresponding to the RNF213 repeat
was retained. For each FASTA entry, vamos v1.1.1 (Ren et al. 2022)
was run using the command “vamos ‐‐single_seq -b $fasta -r $bed
-o $out.vcf -s RNF213.” The annotation following the
ALTANNO_H1 tag was extracted.

Software availability

The source code of danbing-tk v1.3.1-manuscript associated with
this study is available on GitHub (https://github.com/Chaisson
Lab/danbing-tk), on Zenodo (https://zenodo.org/record/76974
39#.ZATe99LMKEI), and as Supplemental Code. The bias correc-
tion, eQTL mapping, and fine-mapping scripts are available
on GitHub (https://github.com/ChaissonLab/eMotif_manuscript_
analysis_scripts), on Zenodo (https://sandbox.zenodo.org/record/
1169833#.ZATf99LMLmF), and as Supplemental Code.

Data access

The VNTR annotations from assemblies, RPGG, bias matrices
for each data set, eQTL tables, fine-mapping table, VNTR dosage
matrices for GTEx and Geuvadis, danbing-tk source code
(v1.3.1-manuscript), and analysis scripts associated with this
study are available at Zenodo (https://sandbox.zenodo.org/
record/1169833#.ZD1mdy-B2v6). The software danbing-tk is

additionally available at GitHub (https://github.com/
ChaissonLab/danbing-tk).
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