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Small nucleolar RNAs (snoRNAs) are structured noncoding RNAs present in multiple copies within eukaryotic genomes.

snoRNAs guide chemical modifications on their target RNA and regulate processes like ribosome assembly and splicing.

Most human snoRNAs are embedded within host gene introns, the remainder being independently expressed from

intergenic regions. We recently characterized the abundance of snoRNAs and their host gene across several healthy human

tissues and found that the level of most snoRNAs does not correlate with that of their host gene, with the observation that

snoRNAs embedded within the same host gene often differ drastically in abundance. To better understand the determi-

nants of snoRNA expression, we trained machine learning models to predict whether snoRNAs are expressed or not in hu-

man tissues based on more than 30 collected features related to snoRNAs and their genomic context. By interpreting the

models’ predictions, we find that snoRNAs rely on conserved motifs, a stable global structure and terminal stem, and a tran-

scribed locus to be expressed. We observe that these features explain well the varying abundance of snoRNAs embedded

within the same host gene. By predicting the expression status of snoRNAs across several vertebrates, we notice that only

one-third of all annotated snoRNAs are expressed per genome, as in humans. Our results suggest that ancestral snoRNAs

disseminated within vertebrate genomes, sometimes leading to the development of new functions and a probable gain in

fitness and thereby conserving features favorable to the expression of these few snoRNAs, the large remainder often de-

generating into pseudogenes.

[Supplemental material is available for this article.]

Vertebrate genomes are shaped by multiple events such as
whole-genome duplication, mutations, recombination, and retro-
transposition events, which led in the past to several evolutionary
highlights such as the vertebrate land invasion (Dehal and Boore
2005; Kuzmin et al. 2022). Protein-coding genes were investigated
quite intensively in that matter, whereas noncoding genes
received considerably less attention. Small nucleolar RNAs
(snoRNAs), a type of noncoding RNA observed in all eukaryotes,
are present in multiple copies within genomes (Dieci et al. 2009;
Bouchard-Bourelle et al. 2020), hinting that they are subject to
similar evolutionary forces as protein-coding genes. In humans,
most snoRNAs are embedded within the introns of either pro-
tein-coding or noncoding host genes, the remainder being encod-
ed within intergenic regions (Bouchard-Bourelle et al. 2020). It is
assumed that their expression depends on their host gene tran-
scription and splicing or on an independent promoter in the
case of intronic and intergenic snoRNAs, respectively (Dieci et al.
2009).

snoRNAs can be divided in two classes based on their struc-
ture and function: C/D and H/ACA box snoRNAs, which guide, re-
spectively, the 2′-O-methylation and pseudouridylation of target
RNAs to which they bind (Kiss 2001; Filipowicz and Pogačic ́

2002). The most common snoRNA targets are ribosomal RNAs
(rRNAs) and small nuclear RNAs (snRNAs), their snoRNA guided
modifications being important for the faithful assembly of ribo-
some and spliceosome (Dupuis-Sandoval et al. 2015). A substantial
proportion of snoRNAs remain with no canonical target (they are
referred to as orphan snoRNAs), although growing evidence points
to new snoRNA targets and functions such as the regulation of pre-
mRNA stability and splicing through snoRNA/pre-mRNA interac-
tions in cis or in trans (Falaleeva et al. 2017; Bergeron et al. 2020;
Bratkovič et al. 2020). Therefore, in this work, a snoRNA is consid-
ered functional if it is at least transcribed and interacts with a target
in a way that it induces a cellular change (e.g., alteration of the lev-
el of RNA modification, abundance, splicing, etc.).

Both snoRNA types harbor specific motifs that promote the
recruitment of core proteins and RNA-modifying enzymes to the
snoRNA, increasing the stability of the resulting ribonucleoprotein
complex (snoRNP) (Matera et al. 2007; Kufel andGrzechnik 2019).
Indeed, C/Dbox snoRNAs possess two conservedmotifs, theC and
D boxes (with respective consensus sequences RUGAUGA
and CUGA, in which R is any purine), as well as the less conserved
C′ and D′ motifs (same sequences as C and D boxes), all of which
attract the binding of the methyltransferase fibrillarin and of core
proteins (i.e., SNU13, NOP58, and NOP56) to the snoRNA
(Filipowicz and Pogačic ́ 2002; Matera et al. 2007). As for H/ACA
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box snoRNAs, they are characterized by the H box (denoted by the
ANANNAmotif, in whichN is any nucleotide), which is present in
the hinge region between two hairpins and by the ACAmotif that
is usually located 3 nucleotides (nt) upstreamof the snoRNA3′ end
(Ganot et al. 1997; Matera et al. 2007). The H/ACA box snoRNA
structure is bound by protein partners such as NHP2, NOP10,
and GAR1, as well as the pseudouridine synthase dyskerin
(Massenet et al. 2017).

We recently characterized the abundance patterns of
snoRNAs across several healthy human tissues using TGIRT-seq
(Fafard-Couture et al. 2021), a high-throughput RNA sequencing
approach that accurately quantifies both structured and less struc-
tured RNAs in the same sample, for instance, snoRNAs and their
host gene, thanks to the use of a high-processivity and high-fidel-
ity thermostable reverse transcriptase (Nottingham et al. 2016;
Qin et al. 2016). We found that expressed human snoRNAs are ei-
ther uniformly expressed across tissues or enriched in one or a few
tissues (e.g., brain, reproductive tissues, etc.) (Fafard-Couture et al.
2021). These two abundance classes are mainly regulated by the
presence or absence of a dual-initiation promoter within the
host gene, which, combined with the nonsense-mediated decay
(NMD) pathway, allows the uncoupling of snoRNA and host
gene expression (Lykke-Andersen et al. 2016; Nepal et al. 2020;
Fafard-Couture et al. 2021). Furthermore, we and other groups
have shown that the abundance of most snoRNAs does not corre-
late well with that of their host gene or even between snoRNA cop-
ies, with the observation that snoRNAs embeddedwithin the same
host gene often vary extremely in terms of abundance (from not
expressed to highly abundant) (Warner et al. 2018; McCann
et al. 2020; Bergeron et al. 2021; Fafard-Couture et al. 2021). In ad-
dition, the fact that most snoRNAs exist in multiple copies within
a genome (Dieci et al. 2009; Bergeron et al. 2021) (and sometimes
in the range of thousands of copies [Schmitz et al. 2008]) compli-
cates even more our understanding of how and why a given
snoRNA is expressed whereas some or most of its copies are not.
Overall, these observations highlight that it is by characterizing
the whole snoRNA spectrum (both expressed and not expressed
snoRNAs) that we will better understand the main determinants
of snoRNA expression, which remain to this day still ill-defined.

Current knowledge on the mechanisms modulating snoRNA
abundance dates back tomore than 20 years ago, when the expres-
sion of a few C/D box snoRNAs was shown to depend on a 40- to
50-nt distance between the snoRNA and the branchpoint within
its intron (Hirose and Steitz 2001;Hirose et al. 2006). This strict dis-
tance range was shown to be crucial (not too close nor too far), as
the assembly of these snoRNPs depends on the binding of the heli-
case AQR (also known as IBP160) at a 33- to 40-nt distance up-
stream of the branchpoint (Hirose et al. 2006). As for H/ACA box
snoRNAs, a study based on 80 of them identified that expressed
H/ACA box snoRNAs do not show any preference in intronic loca-
tion (Richard et al. 2006). In addition, the formation of a terminal
stemwas observed to be crucial for the biogenesis of a fewC/D box
snoRNAs, often compensating when the snoRNA is located farther
away than the optimal 40- to 50-nt distance from the branchpoint
(Hirose and Steitz 2001). Considering that current up-to-date an-
notation files comprise more than 1500 human snoRNAs that
were discovered over the years, it raises the question of whether
these previously mentioned mechanisms apply to the majority
of snoRNAs.

To identify the main expression determinants of snoRNAs,
we first collected for all human snoRNAsmore than 30 features re-
lated to the snoRNAs themselves or to their genomic context. We

also defined their expression status, that is, the binary state of be-
ing either expressed or not expressed in human tissues based on
our TGIRT-seq data sets.We then trained several machine learning
models to predict, based on the collected features, the expression
status of each human snoRNA. By interpreting the decisions
made by the predictors, this work aims at identifying which fea-
tures constitute the main drivers of snoRNA expression in hu-
mans, as well as in several other vertebrates to which the models
were applied. Furthermore, this work seeks to understand the
role of these expression drivers in the evolution of snoRNA reper-
toires across vertebrate genomes.

Results

Expanding the characterization of features known to influence

snoRNA expression to the whole human snoRNome challenges

current knowledge on snoRNA biogenesis

To define the expression status of all human snoRNAs (i.e., which
snoRNAs are expressed or not expressed in humans; see Methods),
we used an updated annotation file containing 1541 snoRNAs to
reanalyze our published TGIRT-seq samples from seven healthy
human tissues (breast, ovary, prostate, testis, liver, brain, and
skeletal muscle) (Fafard-Couture et al. 2021). Less than one-third
(485/1541, 31.5%) of these snoRNAs are expressed in at least one
of these tissues (abundance >1 transcript per million [TPM]), the
majority being C/D box snoRNAs embedded within protein-
coding or noncoding host genes (Fig. 1A). Most nonexpressed
snoRNAs are also C/D box snoRNAs, but they are mainly located
in intergenic regions (Fig. 1A). As previously mentioned, the for-
mation of a terminal stem was shown to be important for the bio-
genesis of a few C/D box snoRNAs (Xia et al. 1997; Darzacq and
Kiss 2000). We hypothesized that a terminal stem could also be
formed and be important for H/ACA box snoRNA biogenesis, as
their 5′ and 3′ ends are often closely located in snoRNA secondary
structural representation (Supplemental Fig. S1; Kalvari et al.
2018). Thus, to verify if this principle applies to all snoRNAs (C/D
and H/ACA box snoRNAs), we computed the stability of a poten-
tial terminal stem constituted of flanking and internal snoRNAnu-
cleotides for each snoRNA. Expressed C/D box snoRNAs display a
significantly more stable terminal stem than their nonexpressed
counterparts (Fig. 1B, left panel). Although less stable, we report
here that many H/ACA box snoRNA terminal stems could be
formed (with stabilities of up to −18.1 kcal/mol) (Fig. 1B, right
panel), as seen with C/D box snoRNAs. However, because the ter-
minal stem stability distributions of expressed and nonexpressed
H/ACA box snoRNAs are highly similar, it is possible that these po-
tential terminal stems only serve to promote the expression of a
handful of H/ACA box snoRNAs. As these terminal stems contain
multiple gaps (which hinder direct length count), we also created a
terminal stem length score to approximate the length of these ter-
minal stems (see Methods). Consistently, expressed C/D box
snoRNAs display significantly higher terminal stem length scores
than their nonexpressed counterparts, which is not the case for
H/ACA box snoRNAs (Supplemental Fig. S2A). Asmentioned earli-
er, snoRNA distance to the branchpoint was shown to be crucial
for the biogenesis of a small number of extensively characterized
intronic C/D box snoRNAs but not of intronic H/ACA box
snoRNAs (Hirose and Steitz 2001; Richard et al. 2006; Vincenti
et al. 2007). To validate these findings across our updated human
snoRNA catalog, we calculated the distance to the branchpoint for
all snoRNAs. Most expressed C/D and H/ACA box snoRNAs are at
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Figure 1. Characterization of human snoRNA features according to their expression status. (A) Proportion of expressed and not expressed snoRNAs as a
function of the snoRNA type (left bar of each pair) and the host gene biotype (right bar of each pair). The number of expressed and not expressed snoRNAs
are displayed in parentheses under the bars. (B) Distribution of terminal stem stability (in kcal/mol) for C/D and H/ACA box snoRNAs per expression status.
The distributions are statistically different: Mann–Whitney U test; (∗∗∗) P<8×10−79 and (∗∗) P<0.01, respectively, for C/D and H/ACA box snoRNAs.
(C) Distribution of the number of expressed and nonexpressed intronic snoRNAs per snoRNA type according to their distance to the branchpoint:
Mann–Whitney U test; (∗∗∗) P<6×10−80 and (∗∗∗) P<8×10−36 for C/D and H/ACA box snoRNAs, respectively. (D) Distribution of the snoRNA structure
stability (in kcal/mol) per expression status and snoRNA type: Mann–Whitney U test; (∗∗∗) P<0.001 and (∗∗∗) P<2×10−23 for C/D and H/ACA box
snoRNAs, respectively. (E) Distribution of snoRNA box score depending on the expression status and snoRNA type: Mann–Whitney U test; (∗∗∗) P<4×
10−80 and (∗∗∗) P<4×10−19, respectively, for C/D and H/ACA box snoRNAs. (F ) Bar charts displaying the proportion of snoRNAs per expression status
for C/D (left panel) and H/ACA box (right panel) snoRNAs according to their target: Fisher’s exact test; (∗∗∗) P<2×10−38 and (∗∗∗) P<4×10−15 for C/D
and H/ACA box snoRNAs, respectively.
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least 100 nt away from their intron branchpoint (and sometimes
up to >100,000 nt) (Fig. 1C), which is in opposition with what is
currently assumed in the literature as an optimal location for C/D
box snoRNAs. We also find a significant tendency for expressed
snoRNAs to be closer to the branchpoint than their nonexpressed
counterparts for both snoRNA types (Fig. 1C). Further investigat-
ing, we observe that expressed C/D box snoRNAs embedded close
to the branchpoint (≤100 nt) are significantly more likely to target
rRNA than expressed C/D box snoRNAs located far from the
branchpoint (>100 nt) (Supplemental Fig. S3A). In addition, in-
trons harboring expressed C/D box snoRNAs that are close to the
branchpoint are boundmarkedly more often by AQR (Supplemen-
tal Fig. S3B). Expressed C/D box snoRNAs located far from the
branchpoint display a more stable structure and less degenerate
boxes than those located closer to the branchpoint (Supplemental
Fig. S3C,D). This suggests that C/D box snoRNAs located close to
the branchpoint are “typical” snoRNAs (i.e., thosewith a canonical
rRNA target and for which their expression depends on AQR),
whereas those located farther away are more atypical in their target
and display enhanced characteristics to compensate for a subopti-
mal branchpoint distance. Altogether, these results underline
that a stable terminal stem is observed for most expressed C/D
box snoRNAs (and also, but to a lesser degree,H/ACAbox snoRNAs)
and that both types of expressed intronic snoRNAs are mainly lo-
cated at a greater distance from their intron branchpoint than
what is currently assumed as an optimal distance.

As splicing is involved in intronic snoRNA biogenesis (Yang
2015), we also computed the distance between intronic snoRNAs
and their upstream and downstream exons, resulting in similar dis-
tributions towhat is seenwith snoRNAdistance to the branchpoint
(Supplemental Fig. S2B,C). Notably, several host genes contain
many introns (up to 147), hinting to a potential wide range of in-
tron lengths in which snoRNAs can be embedded (Supplemental
Fig. S4A). Indeed, we find that both types of expressed snoRNAs
tend to be embedded in smaller introns than nonexpressed
snoRNAs (Supplemental Fig. S2D), suggesting that intronic
snoRNA productionmight be promoted because of smaller introns
that facilitate the splicing process. We also observe that expressed
intronic snoRNAs are located in introns significantly more down-
stream in host genes compared with their nonexpressed counter-
parts (Supplemental Fig. S4B,C). This is in line with the small
intron hypothesis, as downstream introns are usually shorter
than the first introns in several eukaryotes (Bradnam and Korf
2008; Zhang and Edwards 2012). A significant difference is also
found between expressed and nonexpressed intronic snoRNAs ac-
cording to their intron rank computed from the 3′ end of the
gene, highlighting that expressed snoRNAs are preferentially en-
coded farther away from the 3′ end than nonexpressed snoRNAs
(Supplemental Fig. S4D). Taken together, these results indicate
that expressed snoRNAs are preferentially encoded within smaller
introns, which are located, on average, midway between the first
and last introns of host genes, whereas nonexpressed snoRNAs
aremainly located in introns close to the 5′ or 3′ ends of host genes.

snoRNA expression status also varies according to novel features

Because snoRNAs are highly structured noncoding RNAs, we hy-
pothesized that their secondary structure stability might influence
their expression status. Indeed, expressed H/ACA box snoRNAs
display a significantly more stable structure than their nonex-
pressed counterparts, whereas it is the opposite for C/D box
snoRNAs but to a lesser degree (Fig. 1D). To determine whether

the absence of conservedmotifswithin snoRNAsmight affect their
expression status, we calculated a box score based on the distance
to the motif consensus for each snoRNA (see Methods), indicating
with a low score that the snoRNA motifs are highly conserved
(close to their consensus sequence) and vice versa.We find that ex-
pressed snoRNAs of both types displaymotifs that are significantly
more conserved than their nonexpressed counterparts (Fig. 1E),
suggesting that these expressed snoRNAs might be functional as
they could bind their core proteins and enzymes. Indeed, most ex-
pressed C/D and H/ACA box snoRNAs possess a canonical rRNA
target, which is significantly less the case for the nonexpressed
snoRNAs (Fig. 1F). Nonetheless, 211 nonexpressed snoRNAs
display a canonical rRNA target, out of which >87% have at least
another snoRNA copy, suggesting that these snoRNAs are nonex-
pressed copies of snoRNAs with identifiable rRNA targets.
Finally, wewonderedwhether the host gene expression level could
be an indicator of snoRNA expression status. Because it was shown
by several groups that the exact abundance level of most snoRNAs
does not correlate with that of their host gene (Boivin et al. 2018;
Warner et al. 2018; McCann et al. 2020; Fafard-Couture et al.
2021), we decided to use a binary approach to define the host
gene expression level (i.e., either expressed or nonexpressed; see
Methods). Most expressed snoRNAs are produced from an ex-
pressed host gene (i.e., detected in our TGIRT-seq data sets), which
is significantly less the case for nonexpressed snoRNAs that are
mainly encoded within intergenic regions or within host genes
that are not expressed (i.e., not detected in our TGIRT-seq data
sets) (Fig. 2A). Further investigating host gene characteristics, we
discovered that those encoding expressed snoRNAs are enriched
with functions such as ribosomal protein, ribosome biogenesis
and translation, RNA binding/processing/splicing, and functional
noncoding RNA (Fig. 2B). In addition, host genes of expressed
snoRNAs are significantly more prone to harbor a dual-initiation
promoter and be subject to NMD than are host genes of nonex-
pressed snoRNAs (Fig. 2C,D). Overall, these results constitute a
comprehensive catalog of human snoRNA features and suggest
that a diverse combination of features explain the expression sta-
tus of snoRNAs.

All models predicting snoRNA expression status are highly

performant and concordant

Based on the several intrinsic and extrinsic snoRNA features de-
scribed above, we sought to identify the main determinants of hu-
man snoRNA expression using a machine learning approach (Fig.
3A). We chose this avenue over classical statistical approaches for
several reasons, including the fact that machine learning is gener-
ally better at capturing complex relationships between variables,
especially when dealing with a high number of input features rel-
ative to the number of examples (Bzdok et al. 2018). Consequent-
ly, we optimized, trained, and tested five classifiers based on
different algorithms (logistic regression, support vector machine,
random forest, k-nearest neighbors, and gradient boosting) to pre-
dict the expression status of snoRNAs following a stratified nested
10-fold cross-validation approach. Doing so, a total of 50 models
were thereby trained to predict the expression status of the
snoRNAs present in their respective test set, ensuring that each
of the 1541 human snoRNAs had its expression status predicted
once per model type across the 10 different test sets (Fig. 3A; Sup-
plemental Fig. S5). All the models show high performance and
stability across the different iterations, as shown by the high area
under the curve (AUC) of their respective receiver operating
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characteristic (ROC) curve (AUC between 0.89 and 0.92) and the
narrow-colored areas, which represent the variability in the predic-
tions across iterations (Fig. 3B). To further evaluate the perfor-
mance of the different classifiers, the average prediction accuracy
across iterations was computed for all models on the tuning, train-
ing, and test sets (Fig. 3C). Of note, the gradient boosting and
k-nearest neighbors show enhanced and diminished accuracy on
the training and test sets, respectively, which is a hallmark of over-
fitting. We thus discarded these classifiers and selected the logistic
regression, support vector machine, and random forest models for
the rest of our analyses, because they showedhigh prediction accu-
racy and stability across the different data sets (Fig. 3C). To obtain
the final predicted expression status per snoRNA, we chose an en-
semble approach in which the final prediction corresponds to the

predicted expression status with the most occurrences across the
three selected models. Expectedly, the number of true positives
(TPs) and true negatives (TNs) greatly surpassed the number of
false positives (FPs) and false negatives (FNs; with an overall specif-
icity and a sensitivity of, respectively, 95% and 73%), where most
of the TPs are intronic snoRNAs whereas the vast majority of TNs
are encoded in intergenic regions (Fig. 3D). Moreover, the selected
models not only are highly accurate but also show high concor-
dance between their predictions, as the three models predict in
majority the same snoRNAs as TPs (76% of all TPs), TNs (93% of
all TNs) and FNs (66% of all FNs) across iterations (Fig. 3E). Alto-
gether, these results indicate that the selected logistic regression,
support vector machine, and random forest models are highly ac-
curate and concordant at predicting snoRNA expression status.

A

B

C

D

Figure 2. Host gene features vary considerably between snoRNA expression statuses. (A–D) Proportion of snoRNAs per expression status for C/D (left
panel) and H/ACA box snoRNAs (right panel) according to their genomic context (A), their host gene function (B), promoter type (C ), and sensitivity
to nonsense-mediated decay (NMD) (D). (A) Fisher’s exact test; (∗∗∗) P<5×10−6 and (∗∗∗) P<2×10−32, respectively, for C/D and H/ACA box snoRNAs.
(C) Fisher’s exact test; (∗∗∗) P<4×10−28 and (∗∗∗) P<3×10−25, respectively, for C/D and H/ACA box snoRNAs, and (∗∗) P<0.01. (D) Fisher’s exact test;
(∗∗∗) P<2×10−27 and (∗∗∗) P<6×10−22, respectively, for C/D and H/ACA box snoRNAs, and (∗∗) P<0.01.
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snoRNA expression status is governed by the conservation

of their box sequences, their stability, and their host gene

expression status

As our classifiers showed high performance, interpreting their pre-
dictions was the next logical step in order to gain insight into the

main features regulating snoRNA expression status. Based on
Shapley additive explanations (SHAP values) (Lundberg and Lee
2017) applied to all human snoRNAs, a predictive rank was com-
puted for all features across models and iterations (see Methods).
Of note, the box score is consistently present in the topmost pre-
dictive features of all models, highlighting its generalized

A

B

D E

C

Figure 3. All models predicting snoRNA expression status are highly performant and concordant. (A) Features were collected for all human snoRNAs and
used to optimize the hyperparameters of each model. The optimized models were then trained (only the support vector machine and random forest clas-
sifiers are represented) and tested, and their decisions were interpreted using Shapley additive explanations (SHAP values). This process was repeated across
10 randomized data set splits (iterations), ensuring one expression status prediction for each snoRNA. (B) Receiver operating characteristic (ROC) curves
showing the average true- and false-positive rates of each model on the test sets (the colored areas around each curve represent ±1 SD across the 10
iterations). The average area under the curve (AUC) is shown for each classifier. (C) Average accuracy (±SD) of each model on the tuning, training, and
test sets across the 10 iterations. (D) Distribution of the number of snoRNAs based on their predicted value. A snoRNA is considered as, for example, a
true positive when at least two of the three selected models predict it as such. (E) Average intersection of predictions (±SD) between all models for the
different prediction types across the 10 iterations.
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importance for the models’ decisions (Fig. 4A). SnoRNA structure,
terminal stem stability, and the expression status of the host gene
are the three othermost predictive features, although havingmore
rank variations betweenmodel types (Fig. 4A). Most of the remain-
ing features show predictive rank distributions with a small range
of values and an increased median, indicating that most models
agree at defining these features as less important for their predic-
tion (Fig. 4A). In addition, a few feature distributions such as the

distance to the branchpoint, intron length, and total intron num-
ber display a wide breadth of predictive ranks, ranging sometimes
frommost to least predictive acrossmodels and iterations (Fig. 4A).
Thus, there is not a clear consensus betweenmodels with regard to
the importance of these features, underlining their centered posi-
tion on the predictive spectrumbetween the clearly important and
clearly unimportant features. Further analyzing feature impor-
tance (using again SHAP values) but this time separately for C/D

A

B

Figure 4. Box sequence conservation, snoRNA stability, and host gene expression level govern the snoRNA expression status. (A) Distribution of the pre-
dictive rank of each input feature across all selectedmodels and iterations. (B) Frequency logos of the observed C (top panel) and D (bottom panel) motifs in
expressed and nonexpressed C/D box snoRNAs (where R is a purine). The cumulative Shannon entropy (sum of the entropy per nucleotide) is shown for
each logo, as well as the proportion of snoRNAs in which a motif could be found.
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and H/ACA box snoRNAs, we find no remarkable difference
between both snoRNA types according to their feature predictive
ranks (Supplemental Figs. S6, S7), suggesting that they share the
same expression determinants. Because only a handful of reliable
expression data sets comprising both the snoRNA and their host
gene abundance is available in the literature, we tested the perfor-
mance of our predictors using independent and publicly available
data to infer host gene expression status. Using either a subset of
the Genotype-Tissue Expression (GTEx) project (Lonsdale et al.
2013) matching the tissue composition of our TGIRT-seq data set
or the same number of unmatched tissues (both highly concor-
dant regarding the host gene expression status), we find that our
models display a highly comparable performance to what is
achieved using TGIRT-seq data sets to define host gene level
(Supplemental Figs. S8, S9). We thus conclude that the chosen
source of host gene abundance is not crucial in our analyses and
therefore can be substituted without affecting markedly the pre-
dictive performance.

Considering the widespread importance of the box score in
predictions across models, we investigated in further detail how
this feature might correlate with snoRNA expression status. We
find that a higher proportion of expressed C/D box snoRNAs har-
bors an identifiable C box that is more similar to the known con-
sensus sequence than nonexpressed C/D box snoRNAs, which
show significantly more degenerate C motifs when one could be
found (with especially great variation at the two G positions in
themotif; Kolmogorov–Smirnov test, [∗] P<0.05) (Fig. 4B, top pan-
el). We also observe significant, yet much less pronounced, motif
degeneration for D boxes (Kolmogorov–Smirnov test, [∗] P<0.05)
(Fig. 4B, bottom panel). Similarly, slightly more conserved C′

and D′ motifs are found within expressed C/D box snoRNAs com-
pared with their nonexpressed counterparts (Supplemental Fig.
S10). In parallel, only 19.3% of nonexpressed H/ACA box
snoRNAs display a H motif compared with 55.6% of expressed
H/ACA box snoRNAs (Supplemental Fig. S11, top panel).
Likewise, the ACA motif is found less often in nonexpressed
H/ACA box snoRNAs than in their expressed counterparts (respec-
tively, 68.5% and 89.4% of these snoRNAs) (Supplemental Fig.
S11, bottom panel). By reanalyzing available cross-linking and im-
munoprecipitation data sets (eCLIP and PAR-CLIP) of different
snoRNP proteins, including dyskerin, fibrillarin, NOP56, and
NOP58 (Kishore et al. 2013; Van Nostrand et al. 2020), we find
that expressed snoRNAs are significantly more bound by their
respective protein partners than are nonexpressed snoRNAs
(Supplemental Fig. S12), underlining the crucial role of motif con-
servation in snoRNP formation. Overall, these results suggest that
box sequence conservation (especially the C, H, and ACAmotifs),
snoRNA stability (global structure and at the terminal stem level),
and host gene expression level are the principal expression deter-
minants of human snoRNAs, regardless of the snoRNA type.

The predictors elucidate the differing expression status

of snoRNAs embedded in the same host gene and identify

potential functionally relevant snoRNAs among poorly

characterized ones

In vertebrates, several host genes harbor multiple snoRNAs in dif-
ferent introns, and often these snoRNAs vary in terms of expres-
sion status. In humans, 79 (13.6%) of the 581 host genes encode
multiple snoRNAs (Fig. 5A). The vast majority of these snoRNAs
are present within their host gene with not more than one or
two other snoRNAs, most of which are accurately predicted as

expressed or not expressed by our classifiers (Supplemental Fig.
S13). Out of the 79 host genes encoding multiple snoRNAs, 17
are in the situation in which their embedded snoRNAs vary in ex-
pression status, with expressed snoRNAs being always either equal
in number or in majority compared with the nonexpressed
snoRNAs embedded within their host gene (Fig. 5A).

As SHAP values provide not only a global overview of feature
importance (as shown in Fig. 4A) but also a local perspective, it al-
lows us to scrutinize at the snoRNA level which features are impor-
tant for a given prediction. A compelling example we identified is
the host gene GAS5, which encodes a tumor-suppressor long non-
codingRNA. This host geneharbors 11 intronic snoRNAs, 10 being
expressed and one not expressed in human tissues (Fig. 5B; Fafard-
Couture et al. 2021). Notably, both the support vector machine
and logistic regression classifiers accurately predicted the expres-
sion status of all these snoRNAs, allowing us to interpret all their
individual predictions. As shown in the decision plot of the sup-
port vector machine classifier, SNORA103’s prediction to be not ex-
pressed is mainly influenced by the snoRNA box score, structure
stability, target (orphan andnot rRNA), and terminal stem stability
(Fig. 5C, turquoise curve). This suggests that the unstable structure
and terminal stemof this snoRNA and its degeneratemotifs hinder
its expression (Supplemental Table S1). Conversely, the 10 other
GAS5-embedded snoRNAs’ predictions to be expressed are influ-
enced positively by the box score, terminal stem stability, snoRNA
target, and several host gene-related features (i.e., the fact that
GAS5 is expressed, functional, noncoding, and subject to NMD)
(Fig. 5C, orange curves; Supplemental Table S1). This suggests
that the expression of these 10 snoRNAs is greatly favored because
GAS5 is a functionally important lncRNA that is thereby expressed
in humans and because each of these 10 snoRNAs possesses con-
served motifs and a stable terminal stem (Supplemental Table
S1). Of note, all of the mentioned host gene features similarly dis-
favor SNORA103’s not expressed prediction, but not enough to sur-
pass the strongest and most important features in that prediction
(snoRNA stability and box score). Expectedly, we reach similar
conclusions based on the interpretation of the logistic regression
classifier predictions on the same GAS5-embedded snoRNAs (Sup-
plemental Fig. S14).

Another interesting case that we investigated is that of FP
snoRNAs, that is, snoRNAs predicted to be expressed but that are
actually not expressed in our TGIRT-seq data sets. More than
95% of the FPs are embedded within an expressed host gene, re-
sembling closely the host gene expression level of TPs, but not
TNs (Supplemental Fig. S15A). These FP snoRNAs also show, in ge-
neral, significantly higher abundance than the TNs (but still lower
than the expression status threshold we used) (Supplemental Fig.
S15B), hinting that these snoRNAs have at least the potential to
be expressed. One of these FPs is the C/D box snoRNA SNORD86,
which was previously shown to regulate the splicing and expres-
sion level of its host gene (NOP56, a C/D box snoRNA core protein)
through conformational changes and core protein trapping in
HEK293 cells (Lykke-Andersen et al. 2018). SNORD86’s prediction
to be expressed is greatly influenced by the presence of conserved
motifs, the formation of a stable structure and terminal stem, and
because it is encoded within an expressed, NMD-sensitive host
gene that is functionally important in ribosome biogenesis (Sup-
plemental Fig. S15C). Considering that our TGIRT-seq data sets
only included seven healthy tissues, we reprocessed samples com-
ing from the universal human reference RNA (HumanRef; a pool
from 10 cell lines) that were also sequenced using a TGIRT-seq ap-
proach (Nottingham et al. 2016). We find that SNORD86 has an
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average abundance level of 2.88 TPM in these samples (Supple-
mental Fig. S15D). In fact, nine of the 52 FP snoRNAs (17%) are
considered as expressed (>1 TPM) in these samples (Supplemental
Fig. S15D), indicating that these snoRNAs, which were singled out
by our classifiers, might be expressed and functional (i.e., interact
with a target RNA and/or protein[s] to induce a cellular change) in
other tissues that have yet to be analyzed by TGIRT-seq. Overall,
these results indicate that our models can explain the differing ex-
pression status of snoRNAs encoded within the same host gene
and can identify potential functionally relevant snoRNAs even if
they were not detected in our initial data sets.

The models can also accurately predict snoRNA expression

status of other species such as the mouse

To determine if the identified snoRNA expression determinants
could be extended to other species, we first reprocessed TGIRT-
seq data sets that were recently generated inmouse (Musmusculus)
embryonic stem cells (mESCs) (McCann et al. 2020). Because these
data sets contained only small RNAs, we used an independent
RNA-seq data set from 19 different mouse tissues (Shen et al.
2012) to define host gene expression status (previously shown as
an appropriate alternative) (Supplemental Figs. S8, S9). Conversely

A C

B

Figure 5. snoRNAs encoded within the same host gene, such as GAS5, can differ in expression status owing to their intrinsic features. (A) Distribution of
the number of host genes encoding one or multiple snoRNAs within the same gene (top panel) and their corresponding expression status (bottom panel,
outer layer) and consistency of expression status (bottom panel, inner layer). (B) Representation of the host gene GAS5 (exons shown as gray boxes) that
encodes 10 expressed snoRNAs (orange boxes) and one nonexpressed snoRNA (turquoise box). (C) Decision plot of the support vector machine classifier
showing the relative contribution (SHAP value) of each feature in the decision process of predicting the expression status of eachGAS5 embedded snoRNAs
(where each individual line traced toward either the “expressed” or “not expressed” output represents one snoRNA).
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to the human snoRNome, annotated mouse snoRNAs are mostly
of the H/ACA box type (Fig. 6A). However, the proportion of ex-
pressed snoRNAs stays in similar range between mouse (25.4%)
and human (31.5%), with amajority of intronic C/D box snoRNAs
constituting the expressed snoRNA pool and a majority of inter-
genic snoRNAs constituting the nonexpressed pool in both species
(Figs. 6A, 1A). Mouse H/ACA box snoRNA feature distributions are
quite similar to the human ones, whereas C/D box snoRNAs show
reversed tendencies for the box score, terminal stem stability, and
host gene expression status (Figs. 1B,D,E, 2A; Supplemental Fig.
S16). These reversed trends are nonetheless explainable by 204
nonexpressed C/D box snoRNAs encoded within the same
Snhg14 host gene. Indeed, out of these 204 snoRNAs, 81 display
the exact same terminal stem stability (−15.7 kcal/mol) and almost
the same box score (most being equal to one), thus driving the fea-
ture distributions around these values (Supplemental Fig. S16). It
should be noted, however, that a limited diversity of tissues was
available for consideration in themouse, andmany such snoRNAs
currently defined as nonexpressed in the mouse might actually be
expressed in tissues not yet considered by TGIRT-seq.

Considering that the most predictive features used by the
models are easy-to-collect snoRNA features and that most of
the host gene features are generally less well characterized in
the mouse than in humans, we considered simplifying our pre-
dictors in order to apply them more conveniently to other spe-
cies. Human snoRNA expression status was therefore predicted
using as input either only the box score, the top three most pre-
dictive features (box score, global structure, and terminal stem
stability), or the top four (with the addition of the host gene ex-
pression status). The models trained with the top four features
display an equivalent high performance that is comparable to
what is achieved with the complete set of features, which was
not the case for the two other simplified models (Supplemental
Fig. S17; Fig. 3B,C). Using these top four features, the same five
types of models were tuned and trained using, respectively,
10% and 90% of all human snoRNAs across five iterations and
tested on mouse snoRNAs. The resulting performance on mouse
snoRNAs is similar to the one obtained using all features on hu-
man snoRNAs (Figs. 6B, 3C). As the logistic regression classifier
showed the highest accuracy and stability of prediction across it-
erations without overfitting, its best iteration was chosen for fur-
ther predictions. As expected, it predicts a high number of TPs
and TNs composed mostly of intronic and intergenic snoRNAs,
respectively, with a specificity of 85% and a sensitivity of 69%
(Supplemental Fig. S18).

Finally, we used this model to predict the expression status of
snoRNAs across a wide breadth of vertebrate species, ranging from
the chimpanzee (Pan troglodytes) to the zebrafish (Danio rerio) using
publicly available transcriptomic data from the Bgee database
(Bastian et al. 2021). Of note, except for the chicken (Gallus gallus),
all of these vertebrate species show a smaller proportion of predict-
ed expressed snoRNAs compared with the predicted nonexpressed
snoRNAs (ranging from ∼13% to ∼45% of predicted expressed
snoRNAs), as we observe in humans and the mouse based on
TGIRT-seq data sets (Fig. 6C). Moreover, we find a significant anti-
correlation between the number of annotated snoRNAs in a ge-
nome and the proportion of expressed snoRNAs in that species
(Pearson’s r =−0.67 and [∗] P<0.05) (Fig. 6D). Taken together,
these results suggest that our machine-learning based approach
can be applied accurately to species other than human and that
only a small subset of currently annotated snoRNAs needs to be
expressed across vertebrates.

Discussion

In the present work, by assembling a comprehensive catalog of
more than 30 snoRNA features from which predictive models
could learn, we greatly expand the understanding of the main de-
terminants of snoRNA expression in vertebrates. By reprocessing
TGIRT-seq data sets using up-to-date annotations, we find that
only 31.5% of snoRNAs are expressed in healthy human tissues,
most of them being intronic C/D box snoRNAs (Fig. 1A). Based
on the interpretation of the models’ predictions, our study corrob-
orates previous reports supporting the importance of the terminal
stem (Figs. 1B, 4A; Supplemental Fig. S2A), identifying, in addi-
tion, the stability of the global secondary structure of the
snoRNA (Figs. 1D, 4A), the conservation of the sequence motifs
(Figs. 1E, 4A,B; Supplemental Figs. S10, S11), and the expression
status of the host gene (Figs. 2A, 4A) as the fourmost important ex-
pression determinants (Fig. 4A; Supplemental Fig. S17). Of note,
the distance between a snoRNA and the branchpoint in its encod-
ing intron, which is currently assumed in the literature to be a cru-
cial C/D box snoRNA expression determinant, seems to be less
important than previously reported according to most of our pre-
dictors, as it occupies the 23rd predictive rank out of 34 features
(Fig. 4A). The discrepancy seen between what we describe here
and what is assumed in the literature is likely explainable by the
fact that our approach encompasses all 1541 human snoRNAs,
not only the few extensively studied at the time of the reports
(Hirose and Steitz 2001; Richard et al. 2006; Vincenti et al.
2007). Further investigating feature importance but at the single
snoRNA level, we also provide, based on the collected features, a
convincing explanation to the case of host genes that harbor mul-
tiple snoRNAs with varying expression statuses (Fig. 5). Applying
our predictors to other species (by first validating their perfor-
mance on the mouse species), we highlight that most vertebrates
express only between 13% and 45% of their annotated snoRNAs
and that the proportion of expressed snoRNAs is significantly anti-
correlated with the total number of snoRNAs annotated in a spe-
cies’ genome (Fig. 6).

Taken together, our results suggest a model in which,
throughout time, snoRNAs spread and evolved across genomes,
thereby broadening snoRNA repertoires (Fig. 7). Through retro-
transposition and recombination events (Weber 2006; Schmitz
et al. 2008; Zhang et al. 2010; Bergeron et al. 2021), ancestral
snoRNAs, which likely possessed strong consensus motifs as well
as a stable secondary structure and terminal stem (i.e., features
that are paramount for their stability and expression), would
have been copied in new loci that could be either favorable or un-
favorable to their expression (Fig. 7). A favorable locus is defined
here as one providing an active promoter (either a host gene pro-
moter or an independent promoter in the case of snoRNAs inte-
grated within introns or intergenic regions, respectively) and
adequate sequences flanking the snoRNA such that they enable
the formation of a stable terminal stem. We hypothesize that a
long and stable terminal stem promoted snoRNA expression as it
would have served as a pedestal to present the conserved motifs
to core proteins and enzymes composing the snoRNP, away from
the rest of the intron. These newly copied snoRNAs might then
have either conferred a selective advantage to the organism (e.g.,
via the modulation of ribosome biogenesis or the development
of new snoRNA functions) or not. In the latter case, the snoRNA
sequences were likely to degenerate, whereas in the former case,
because of the gain in fitness that they induced, these snoRNA
sequences were likely conserved through positive selection.
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Conversely, ancestral expressed snoRNAs could also have
been copied in unfavorable loci (Fig. 7), defined by the lack of an
active promoter nearby and/or the lack of flanking sequences en-
abling the formation of a terminal stem. If these newly copied
snoRNAs lacked an active upstream promoter, they were presum-
ably never transcribed (and thus not expressed). However, if they
lacked only a stable terminal stem, these snoRNAs were probably
transcribed, but the binding of core proteins to the snoRNA was
likely hindered, producing an unstable snoRNA. Unless these

snoRNAs conferred a selective advantage
to the organism (which is plausible, yet
highly unlikely), it is reasonable to spec-
ulate that in both cases (lack of promoter
and/or of a stable terminal stem), there
was no selective pressure to conserve
these newly copied snoRNAs. This likely
led to an accumulation of mutations in
the snoRNA sequences and, eventually,
to an unstable secondary structure,
motif degeneration, and further de-
creased protein binding to these
snoRNAs. These degenerate and unstable
snoRNAs, if transcribed, would have
been rapidly degraded by exonucleases,
thus representing the high proportion
of nonexpressed snoRNAs we observe in
present species. Of note, one cannot
rule out the third option of newly inte-
grated copies that have not yet accumu-
lated any mutation, thereby positioning
these snoRNAs at the crossroads between
neofunctionalization and pseudogeniza-
tion depending on the effect of future
mutations in their sequence.

snoRNA integration in an optimal
locus likely happened less often than in
an unfavorable locus, as most annotated
vertebrate snoRNAs are not expressed,
and most of these are encoded within
intergenic regions (Supplemental Table
S2; Figs. 1A, 6A), which frequently lack
active promoters. Furthermore, the fact
that most vertebrates are predicted to
have only between 13% and 45% of ex-
pressed snoRNAs suggests that only a
low number of different snoRNAs need
to be expressed to ensure a basal and
functional level of rRNA modification
(Fig. 6C). The most minimalistic species
we covered in this study with regard to
snoRNAs is the chicken, which presents
as few as 130 snoRNAs predicted to be
expressed, forming a core group of
snoRNAs that are potentially conserved
across species. Of note, the proportion
of expressed snoRNAs is inversely related
to the total number of annotated
snoRNAs across vertebrate genomes
(Fig. 6D), indicating that the more
snoRNA retrotransposition/recombina-
tion events a genome harbors, the less
likely these events lead to appropriate ex-

pression of all snoRNA copies (with the extreme case of the platy-
pus, which was reported to have more than 40,000 full or
truncated snoRNA copies, most being located in suboptimal geno-
mic context) (Schmitz et al. 2008).

Another interesting avenue following snoRNA integration in
a locus is the development of new functions after some mutations
accumulate. Indeed, it is well known that protein-coding gene
duplication serves as an evolutionary playground to give rise to
new gene functionalities while keeping a parental copy that

A
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C

Figure 6. snoRNA expression status prediction in mouse and other vertebrates identifies a conserved
low proportion of expressed snoRNAs. (A) Distribution of the number of snoRNAs per expression status
(outer circle) according either to their type (inner circle in left panel) or genomic location (inner circle in
right panel). (B) Average accuracy (±SD) of all models using only the top four features (box_consensus_
score, sno_stability, terminal_stem_stability, and host_expressed) on the tuning (10% of human
snoRNAs), training (90% of human snoRNAs), and test (all mouse snoRNAs) sets across five random it-
erations of tuning/training data sets. (C) Proportion of expressed snoRNAs in humans and themouse (ac-
tual expression status based on TGIRT-seq data sets) and for several vertebrate species (predicted
expression status). The total number of snoRNAs per species is shown on top of each bar. (D)
Proportion of expressed snoRNAs as a function of the total number of snoRNAs encoded within a species
genome. The proportion of expressed snoRNAs is actuallymeasured by TGIRT-seq for human andmouse;
all other proportions are predicted using the logistic regression expression status predictor.
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ensures the original function (Ohno 1970). The same process po-
tentially applies to snoRNAs, as some mutations might affect
snoRNA structure and its interactions with other RNAs and pro-
teins. Doing so, thesemutated snoRNAsmight acquire new targets
and cellular roles such as regulating splicing and pre-mRNA stabil-
ity, processes in which snoRNAs were observed to be involved in
recent years (Bergeron et al. 2020; Bratkovič et al. 2020).
Notably, our models predicted as expressed nine snoRNAs with fa-
vorable features that were not detected in our TGIRT-seq data sets
(Supplemental Fig. S15) but that were present in HumanRef sam-
ples, suggesting that they might be expressed in other conditions

(e.g., other healthy human tissues, tis-
sues under stress, or affected by diseases,
etc.). SNORD86, one of these FPs, was
shown to regulate its host gene splicing
and expression level by adopting two
alternative structures (Lykke-Andersen
et al. 2018). This snoRNA harbors two
mutations within its motifs (A>G at
the end of both C and C′ boxes), hinting
at the possibility that these mutations
(and potentially others across its struc-
ture) allowed SNORD86 to switch more
easily between the two alternate struc-
tures, therefore creating a new regulatory
pathway for the cell. It is thus plausible
that among expressed snoRNAs harbor-
ing some mutations and even among
the eight other FP snoRNAs with favor-
able features, some of these snoRNAs
developed or are in the evolutionary
process to develop new functions that
are yet to be discovered.

In conclusion, our study raises sev-
eral fundamental questions regarding
current snoRNA annotation practices.
Because most annotated snoRNAs are
not expressed, should these genes even
be considered as actual snoRNAs?
Furthermore, to what extent should mo-
tif degeneration be tolerated when an-
notating snoRNA genes? For instance,
>14% of nonexpressed C/D box
snoRNAs have no identifiable C box,
and >80% and 30% of nonexpressed H/
ACA box snoRNAs have no identifiable
H or ACA box, respectively (Fig. 4B;
Supplemental Fig. S11). These results
challenge the very definition of what is
considered a bona fide snoRNA and
call into question the reliability of pre-
sent annotations. This also indicates
that current annotation practices are be-
ing too permissive in defining what is a
snoRNA gene, and underlines that fu-
ture work will be needed to at least recal-
ibrate, if not reannotate, eukaryote
genomes with regard to snoRNAs based
on a refined approach encompassing
the main expression determinants iden-
tified herein. To facilitate snoRNA stud-
ies by the community, we propose that

the degenerate and nonexpressed snoRNAs be identified as
snoRNA pseudogenes in further annotation releases, as they dis-
play features that are incompatible with their expression. As
snoRNA feature distributions are not always as clear-cut as one
would expect between expression statuses (e.g., some nonex-
pressed snoRNAs harbor highly conserved motifs, whereas
some expressed snoRNAs display an unstable terminal stem), it
seems that vertebrate genomes are in constant evolution, oscillat-
ing between defining snoRNA copies as mere remnants of
snoRNA duplication or as building blocks of a future layer of
gene expression regulation.

Figure 7. Model explaining the low proportion of expressed snoRNAs annotated in vertebrate ge-
nomes. Expressed ancestral snoRNAs presumably had box motifs close to their current consensus se-
quence, stable terminal stem, and global structure, as well as a genomic context favorable to their
expression owing to a nearby promoter. Following a recombination or retrotransposition event, the
new locus of these copied snoRNAs might prove to be favorable or unfavorable to their expression,
such as containing or not a nearby promoter and flanking sequences likely to promote the formation
of a stable terminal stem (the dashed line for the promoter representing a possible lack of promoter).
If the newly copied snoRNA induced a gain in fitness, there likely was selective pressure to conserve its
sequence and its flanking regions, promoting the binding of core proteins and enzymes to the expressed
snoRNA to stabilize its structure and generate a stable and functional snoRNA. Conversely, snoRNAs in-
tegrated in unfavorable loci, if transcribed, likely had their binding to core proteins and enzymes hin-
dered by the lack of stable terminal stem, therefore not providing a selective advantage for the
organism and thereby allowing mutation accumulation within these snoRNAs. If transcribed, these un-
stable snoRNAs were then likely degraded by exonucleases and thus represent the nonexpressed
snoRNAs (possibly snoRNA pseudogenes) in the present vertebrate genome annotations. Of note,
only C/D box snoRNAs are represented in the model, but the same conclusions apply to H/ACA box
snoRNAs according to our analyses.
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Methods

TGIRT-seq data acquisition, processing, and label definition

TGIRT-seq data analysis was performed using our previously de-
scribed pipeline (Fafard-Couture et al. 2021) on seven biological
triplicates of healthy human tissues (breast, ovary, prostate, testis,
skeletal muscle, brain, and liver) with our custom human genome
annotation file (gene transfer format [GTF]) available at https://
zenodo.org/record/6799536/files/hg38_Ensembl_V101_Scottlab_
2020.gtf and is described in further details in the Supplemental
Methods. An abundance table containing each tissue triplicate
sample (given in TPM) was obtained as the output of the pipeline.
From this abundance table, 1541 human snoRNAs were extracted
(based on the gene biotype “snoRNA” from our custom GTF file).
The expression status of each snoRNA was defined as follows: A
given snoRNA was considered as expressed if its abundance was
>1 TPM in at least one average tissue (average of biological tripli-
cates) and considered as not expressed otherwise.

Mouse abundance data sets were generated by processing six
publicly available TGIRT-seq samples (three untreated mESC sam-
ples and three treated with retinoic acid) (McCann et al. 2020)
through the same data analysis pipeline but using the mouse
genome and GTF obtained from Ensembl (version 105, GRCm39
assembly, no supplemental annotations). From the resulting
abundance table, snoRNA expression status (expressed or not)
was defined as previously described for human snoRNAs.

Human snoRNA categorical feature extraction

snoRNA type (C/D or H/ACA), target (rRNA, snRNA, or orphan),
host gene biotype (protein-coding, noncoding, or intergenic),
function (ribosomal protein, ribosome biogenesis and transla-
tion, RNA binding processing, splicing, other, poorly character-
ized, functional noncoding RNA, nonfunctional noncoding
RNA, or intergenic), susceptibility to NMD, and propensity to
harbor a dual-initiation promoter were obtained from snoDB
(version 1.0) (Bouchard-Bourelle et al. 2020) and as previously
described (Fafard-Couture et al. 2021). The expression status
for host genes (host is expressed, host is not expressed, or inter-
genic) was defined, using the same procedure described above
for human snoRNA label definition, but this time applied to
host genes.

Human snoRNA numerical feature calculation

snoRNA length (i.e., the number of nucleotides) was derived
directly from our customGTF file. Box score was determined using
custom Python scripts based on Hamming distance (snoRNAs
with box motifs closer to their consensus sequences getting lower
box score and vice versa). For C/D box snoRNAs, C and D boxes
were identified in snoRNA sequences by prioritizing exact consen-
sus match (RUGAUGA and CUGA, respectively, where R is a pu-
rine) over motifs with mismatches compared with the consensus
(up to three and two mismatches were allowed, respectively; no
motif was returned otherwise). As snoRNA length varies between
snoRNA of the same type (Supplemental Fig. S2E), the search for
C and D motifs was confined, respectively, within the first and
last 20 nt of snoRNA sequences. As C′ and D′ boxes are often
degenerate (Henras et al. 2004), an alternative approach was
used to identify these boxes: The best C′/D′ pair was chosen based
on the fact that it should minimize the total C′/D′ Hamming dis-
tance (i.e., the sum of C′ andD′ Hamming distances based on their
respective RUGAUGA and CUGA consensus motifs). These motifs
were searched for between the 21st and 21st-to-last nucleotide of
the snoRNA sequence (with the found D′ box being always up-

stream of the found C′ box). The final box score was then obtained
by summing up the C, D, and C′/D′ Hamming distances, ranging
from zero (representing a C/D box snoRNA with perfect C, D, C′,
and D′ boxes) to a theoretical 22 (representing a C/D box with
completely degenerate C, D, C′, and D′ boxes). For H/ACA box
snoRNAs, as H (ANANNA, where N is any nucleotide) and ACA
motifs are relatively short and simple, nomismatcheswere allowed
when searching for these motifs in snoRNA sequences. The Hmo-
tif was searched for in unpaired (hinge) regions; the ACAmotif, in
the last 10 nt of the sequences. Applying the same Hamming dis-
tance strategy, the final box score was obtained by summing up
H and ACA Hamming distances, ranging from zero (representing
an H/ACA box snoRNA with perfect H and ACA boxes) to nine
(representing an H/ACA box snoRNA with completely degenerate
H and ACA boxes).

For intronic snoRNAs, total intron number per host gene,
intron length in which the snoRNA is encoded, absolute intron
rank (counting in which intron the snoRNA is encoded from
the 5′ or 3′ end), relative intron rank (counting in which intron
the snoRNA is encoded from the 3′ end divided by the total num-
ber of introns in the host gene), and snoRNA distance to the up-
stream and downstream exons were retrieved from our custom
GTF file. Branchpoint location in introns of intronic snoRNAs
was predicted using branchpointer (version 1.16.0) with default
parameters (Signal et al. 2018). snoRNA distance to the branch-
point was then retrieved by computing the distance between
the snoRNA 3′ end and the best-predicted branchpoint (the
one with the highest probability). snoRNA global stability (given
inminimal free energy [MFE]) was computed using RNAfold with
default parameters from the version 2.4.14 of the Vienna RNA
package (Lorenz et al. 2011). snoRNA terminal stem stability
was computed by first collecting the flanking 15 nt upstream of
and downstream from eachmature snoRNA to consider the geno-
mic sequence surrounding the snoRNA and its intronic context
(Deschamps-Francoeur et al. 2014). For C/D box snoRNAs, these
sequences were then both extended by 5 nt (internal snoRNA nu-
cleotides). For H/ACA box snoRNAs, we hypothesized that a po-
tential terminal stem could also be formed as the 5′ and 3′ ends
of H/ACAbox snoRNAs are often closely located in snoRNA struc-
tural representation (Supplemental Fig. S1; Kalvari et al. 2018).
The H/ACA box flanking sequences were thus extended by five
internal nucleotides and only three internal nucleotides from
the 5′ and 3′ ends, respectively, because we suspected that the
ACA motif (which is often located 3 nt upstream of the
snoRNA 3′ end)might not participate in the terminal stem nucle-
otide pairing. For each snoRNA, a terminal stem stability (inMFE)
was computed from the pairing of the two extended flanking re-
gions using RNAcofold with default parameters from the version
2.4.14 of the Vienna RNA package (Lorenz et al. 2011). Finally, a
terminal stem length score was defined for each snoRNA based
on the previously identified terminal stems. This score was
calculated as the number of intermolecular paired nucleotides
between the two extended flanking regions minus the
number of nucleotides within gap(s) inside the stem (a low and
high score representing approximately a small and long stem,
respectively).

Processing of eCLIP and PAR-CLIP data sets

The eCLIP data sets of AQR and dyskerin (DKC1) were obtained
from the ENCODE Consortium (Van Nostrand et al. 2020). The
PAR-CLIP data sets of fibrillarin, NOP56, and NOP58were generat-
ed and obtained from a previous study (Kishore et al. 2013). Their
analysis is described in the Supplemental Methods.
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Collection of mouse snoRNA features

Mouse snoRNA global stability, terminal stem stability, and box
score were computed as described earlier with human snoRNAs.
As terminal stem stability and box score needed snoRNA type in-
formation to be computed, this information was retrieved from
RNAcentral for most of the mouse snoRNAs (RNAcentral
Consortium 2021). For intronic snoRNAs, host genes were defined
as such if they overlappedwith a snoRNAon the same strand using
the mouse GTF file previously described. Host gene biotype infor-
mation was also retrieved from the mouse GTF file. As the mouse
TGIRT-seq data mentioned earlier only included small RNAs,
host gene abundancewas obtained fromanother study comprising
biological duplicate samples of 13 adult mouse tissues (bone mar-
row, cerebellum, cerebral cortex, heart, kidney, liver, lung, spleen,
intestine, olfactory bulb, placenta, testis, and thymus), as well as
biological duplicate samples of six embryonic tissues (mESC,
brain, heart, liver, limb, and fibroblasts) (Shen et al. 2012). An
abundance table (in TPM) containing all of these samples was ob-
tained from recount3 using the Monorail analysis pipeline with
default parameters (Wilks et al. 2021). The expression status for
mouse host genes was defined the same way as with human host
genes. The final mouse input features were thus composed of
snoRNA global stability, terminal stem stability, box score, and
host gene expression status. Based on these four features, redun-
dant snoRNAs (i.e., those with exactly the same four feature val-
ues) were filtered out to limit positive or negative bias when
computing the predictor accuracy on the mouse data set.

Collection of snoRNA features across other vertebrate species

snoRNA features were collected for the chimpanzee (P. troglodytes,
Pan_tro_3.0), gorilla (Gorilla gorilla, gorGor4), macaque (Macaca
mulatta, Mmul_10), rabbit (Oryctolagus cuniculus, OryCun2.0), rat
(Rattus norvegicus, mRatBN7.2), cow (Bos taurus, ARS-UCD1.2),
platypus (Ornithorhynchus anatinus, mOrnAna1.p.v1), chicken
(G. gallus, GRCg6a), western clawed frog (Xenopus tropicalis,
Xenopus_tropicalis_v9.1), and zebrafish (D. rerio, GRCz11) based
on their respective Ensembl GTF file (version 105). Species
snoRNA global stability, terminal stem stability, box score, host
gene definition, and host gene expression status were defined as
described above for mouse snoRNAs, except for the fact that the
abundance data sets (in TPM) were obtained directly from the
Bgee expression database (Bastian et al. 2021). The proportion of
snoRNAs predicted to be expressed or not, depending on the
snoRNA type or the host gene biotype, is shown per species in
the Supplemental Table S2.

Input feature processing and spliting into tuning, training,

and test data sets

For human snoRNAs, all categorical and numerical features were
merged into a single table (Supplemental Table S1). Categorical
features were then one-hot-encoded into separate features, and re-
dundant features were removed (e.g., the “intergenic” feature was
kept only once, although it was generated every time a feature re-
lated to host gene was one-hot-encoded). The same procedure was
applied to mouse and vertebrate species snoRNAs. For human
snoRNAs only, the resulting input feature table was shuffled and
split into three sets in a stratified way (i.e., keeping the same ratio
of expressed vs. not expressed labels in each set): the tuning, train-
ing, and test sets (respectively, 10%, 80%, and 10% of all human
snoRNAs) (Fig. 3A). This process was performed in parallel 10 dif-
ferent times, ensuring that all the snoRNAs were partitioned in
one of the 10 test sets (each test set having its unique set of
snoRNAs) (Supplemental Fig. S5). Then, the remainder of

snoRNAs was split between the tuning and validation sets, allow-
ing the prediction of the expression status of all snoRNAs one
time across the 10 iterations. Feature scaling was then applied in
each separate set using standardization. For mouse and other ver-
tebrate species snoRNAs, features were scaled using the mean
and variance of the human snoRNA training set selected iteration.

Hyperparameter tuning, training, and testing of models

Five types of predictive models were tuned, trained, and tested in
this study: logistic regression, support vector machine, k-nearest
neighbors, random forest, and gradient boosting. For human
snoRNAs, a total of 50 different models were optimized (five mod-
els across 10 iterations) for each combination of input features that
was tested (all input features, only box score, top three or top four
features). Hyperparameter tuning was performed for each model
using the grid search algorithm on their respective tuning set
and search space (with a stratified threefold cross-validation strat-
egy). Using their respective tuned hyperparameters, the models
were then trained on their respective training set to optimize their
parameters. Prediction accuracy of these trained models was then
assessed through their prediction of the expression status of hu-
man snoRNAs present in their respective test set. The final predict-
ed value (and its corresponding value in the confusionmatrix, i.e.,
TP, TN, FP, or FN) was defined based on an ensemble approach,
meaning that it was chosen based on themost commonprediction
across the three selectedmodels (logistic regression, support vector
machine, and random forest).

Model prediction on the mouse and other vertebrate

species data sets

To determine whether the predictive models could be applied to
species other than human such as the mouse, 25 new models
were optimized (the same five model types across five new itera-
tions). The tuning and training sets were composed of, respective-
ly, 10% and 90% of the human snoRNAs, which was followed by a
stratified nested fivefold cross-validation approach, whereas the
test set was composed of all the filtered mouse snoRNAs.
Hyperparameter tuning, training, and testingwas performed as de-
scribed earlier with human snoRNAs. Because of its high predic-
tion accuracy and stability across the five iterations, the logistic
regression model (iteration with random state [seed] of 42 to split
the data sets) was chosen to predict the expression status of
snoRNAs in the 10 vertebrate speciesmentioned above. All of these
steps were implemented using the version 0.23.2 of the scikit-learn
library (Pedregosa et al. 2011).

Model interpretability via SHAP values

Model interpretability was assessed using the SHAP package (ver-
sion 0.39.0) (Lundberg and Lee 2017). For eachmodel, a SHAP val-
ue was computed for all features across the human snoRNAs
present in their respective test set. The mean of SHAP value
(SHAP values being in absolute value) distribution per feature
was computed, and the predictive rank per feature was defined
based on these means: the highest mean corresponding to the
most predictive rank (i.e., rank 1) and the lowest being the least
predictive rank.

Visualization and statistical analyses

Graphs were generated using either pandas (version 1.2.0),
Matplotlib (version 3.3.4), seaborn (version 0.11.1), logomaker
(version 0.8) (Tareen and Kinney 2020), SHAP (version 0.39.0)
(Lundberg and Lee 2017), and exported images from the
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IntegrativeGenomics Viewer (IGV; version 2.4.18) (Robinson et al.
2011). Statistical analyses were performed with SciPy (version
1.5.2); statistical significance was defined at (∗) P<0.05, (∗∗) P<
0.01, and (∗∗∗) P< 0.001.

Software availability

All code is available within a reproducible Snakemake workflow
(version 6.0.5) (Köster and Rahmann 2012) that is available at
GitHub (https://github.com/etiennefc/Abundance_determinants_
snoRNA) and as Supplemental Code.
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