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Abstract

Purpose

Cerebral vasospasm following aneurysmal subarachnoid hemorrhage (aSAH) is a signifi-

cant complication associated with poor neurological outcomes. We present a novel, semi-

automated pipeline, implemented in the open-source medical imaging analysis software

ITK-SNAP, to segment subarachnoid blood volume from initial CT head (CTH) scans and

use this to predict future radiological vasospasm.

Methods

42 patients were admitted between February 2020 and December 2021 to our tertiary neuro-

sciences center, and whose initial referral CTH scan was used for this retrospective cohort

study. Blood load was segmented using a semi-automated random forest classifier and active

contour evolution implemented in ITK-SNAP. Clinical data were extracted from electronic

healthcare records in order to fit models aimed at predicting radiological vasospasm risk.

Results

Semi-automated segmentations demonstrated excellent agreement with manual, expert-

derived volumes (mean Dice coefficient = 0.92). Total normalized blood volume, extracted

from CTH images at first presentation, was significantly associated with greater odds of

later radiological vasospasm, increasing by approximately 7% for each additional cm3 of

blood (OR = 1.069, 95% CI: 1.021–1.120; p < .005). Greater blood volume was also signifi-

cantly associated with vasospasm of a higher Lindegaard ratio, of longer duration, and a

greater number of discrete episodes. Total blood volume predicted radiological vasospasm

with a greater accuracy as compared to the modified Fisher scale (AUC = 0.86 vs 0.70), and

was of independent predictive value.
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Conclusion

Semi-automated methods provide a plausible pipeline for the segmentation of blood from

CT head images in aSAH, and total blood volume is a robust, extendable predictor of radio-

logical vasospasm, outperforming the modified Fisher scale. Greater subarachnoid blood

volume significantly increases the odds of subsequent vasospasm, its time course and its

severity.

Introduction

Outcomes following aneurysmal subarachnoid hemorrhage (aSAH) remain poor, with an esti-

mated mortality of approximately 30% [1]. An important contributor to both morbidity and

mortality following aSAH is cerebral vasospasm, the spasmodic narrowing of intracranial

arteries which can lead to delayed cerebral ischaemia (DCI). Symptomatic vasospasm occurs

in 20% of patients [2], and typically occurs at a delay of 3 to 12 days after the haemorrhagic

event [3]. Whereas angiographic or radiologically-detected vasospasm can be detected in as

many as 50–70% of aSAH patients, not all are associated with neurological deficits. As such,

the prediction and forward recognition of clinically significant vasospasm represents a sub-

stantial challenge in the management of these patients.

One predictor of future vasospasm is the total volume of blood seen on the CT head scan at

presentation [4–8]. Furthermore, intraventricular hemorrhage (IVH) has been shown to inde-

pendently predict cerebral vasospasm [6, 8–13], and total blood volume is associated with

worse functional outcomes [14]. Drawing on these key findings, aSAH severity is frequently

graded in clinical practice using the modified Fisher scale (mFS) [8]—a subjective assessment

of bleed extent on CT head scans. However, the modified Fisher scale only crudely notes blood

distribution and blood load, and accordingly, its qualitative nature limits its predictive power.

Troublingly, the modified Fisher scale has recently been demonstrated to lack inter-rater reli-

ability [15], and thus may not provide an objective metric of blood burden and distribution

following aSAH.

Further work has introduced similar qualitative or semi-quantitative severity scores for the

purposes of predicting vasospasm from cisternal blood volume [5], intraventricular blood vol-

ume [16], and intraparenchymal blood volume [17]. Yet, these scales are also observer-depen-

dent and can exhibit poor inter-rater agreement [18, 19]. Further, although the presence and

degree of blood in cerebral compartments is associated with clinical, symptomatic vasospasm

[8, 12, 19], little work has looked at the prediction of radiological vasospasm from routinely

acquired neuroimaging data. Although the precise relationship between radiological vaso-

spasm and DCI is contested [20], there is strong recent evidence of its association with clinical

and functional outcomes [21, 22]. As the onset of DCI is difficult to diagnose and frequently

missed, especially in patients of poor clinical grade whose neurology is difficult to assess [23],

such radiological outcomes remain important to guide decisions regarding clinical interven-

tion, including angioplasty [24].

Quantitative image segmentation approaches, such as those used to segment other organ

systems [25], can detail both the volume and morphology of blood load and would overcome

the aforementioned difficulties, potentially offering a more accurate method for vasospasm

prediction. Novel developments in medical image segmentation mean that precise and robust

estimates of blood volume and distribution are easier to calculate. These include semi-auto-

mated tools such as active contour evolution and clustering based algorithms [26] which are

more efficient and have precedent in delineating vascular structures in other areas [27].
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Here, we present a working pipeline, implemented in ITK-SNAP, for the efficient, semi-auto-

mated segmentation of blood on a non-contrast, routine plain CT head scan, obtained at first

presentation of patients with aSAH. We demonstrate that semi-automated segmentations align

well with clinical expert impressions of blood distribution and require minimal correction. Our

model is compared against the current standard of the modified Fisher scale in correlating

against occurrence of any radiological vasospasm as the primary outcome. Secondary outcomes

included time to, duration and number of discrete vasospasm episodes and general reported

outcome measures of length of intensive therapy unit (ITU) stay, hospital stay and mortality.

Methods

Protocol

The study was performed in accordance with the STROBE checklist [28] and the European

Society of Radiology statement on imaging biomarkers [29] where relevant.

Ethics

This retrospective cohort study was approved by the institutional review board (53-

202122-CA) in the context of a wider service evaluation regarding radiological assessment of

vasospasm in patients with aSAH at our tertiary neurosciences center. The need for consent

for anonymised data usage was waived whereas all patients gave their written consent for any

interventional procedures.

Participants

A list of candidate patients were identified from the institutional electronic healthcare record

(EHR) Patients were included in this study if they (i) were treated for an aneurysmal subarach-

noid hemorrhage at the academic neurosciences center between February 2020—December

2021; (ii) the initial CT head (CTH) scan performed at first presentation was available on the

clinical imaging repository; and (iii) the patient had no prior medical history of aSAH or intra-

cranial hemorrhage, no previous intracranial coil embolisation, or any other intracranial

implant in situ that would degrade CT image quality.

Image processing and segmentation pipeline

The steps regarding image pre- and post-processing and hemorrhage segmentation, alongside

the software packages used have been outlined in Fig 1. Briefly, the first CT head (CTH) scan

performed following the SAH ictus was obtained from the Picture Archiving and Communica-

tion System (PACS). DICOM CT files were anonymised and converted to NIfTI format using

the command line tool dcm2niix [30]. dcm2niix includes an inbuilt Gantry tilt correction rou-

tine that was used to ensure NIfTI files were correctly oriented. NIfTI files were loaded into

the FMRIB software library (FSL) [31] and a binary mask image was generated to delineate the

brain using FSL’s Brain Extraction Tool (BET). To perform BET, images were initially

smoothed using a Gaussian kernel of size 1mm3 and thresholded between 0 to 120 Hounsfield

Units (HU) [32] and parameterised for optimal extraction of brain tissue from CT images

[32]. The extracted brain image was binarised to generate a brain mask that could be used in

subsequent analysis, and was manually inspected for adequacy before being used.

All segmentations were performed in ITK-SNAP, an open-source and multi-platform 3D

medical image analysis software, optimized for user-guided segmentation [33]. All images

were resampled using linear interpolation such that voxels were cubic in size to ensure consis-

tency between patients and diverse scanner types. Briefly, to segment the image, a random
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forest classifier (tree depth = 30, number of trees = 50, classifier bias = 0.5) was initially trained

on examples within each image, which were labeled by the experimenter (J.S.S.) for each scan,

to classify voxels into one of four tissue subtypes: CSF, bone, parenchyma, or blood (Fig 1).

HU values at each labeled voxel and the 2-voxel wide neighborhood around each labeled voxel

were used to train the classifier. This was used to generate a speed image, which encoded at

each pixel the desired rate of growth or retraction of the contour. Spherical seeds were manu-

ally placed on the image to initialize the contour, which was then allowed to actively evolve

over approximately 500 iterations. Segmentations took, on average, 12 minutes to perform for

each brain. Example series of axial slices through four brains are shown in Fig 2, which display

the segmentation output for all blood detected by this process.

Fig 1. Image processing pipeline describing data collection, pre-processing, segmentation, quality control and information extraction.

(yellow font = software library; DICOM = Digital Imaging and Communications in Medicine; nii = nifti file type; FSL = FMRIB Software

Library; ITK-Snap = Insight Segmentation and Registration Toolkit; RF = random forest; HU = Hounsfield Units. ‘CT-scan’ designed using

resources from Flatiron.com).

https://doi.org/10.1371/journal.pone.0286485.g001
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Quality assessment

All segmentations were reviewed and manually corrected by an academic neurosurgical resi-

dent with a decade of post-doctoral neuroimaging experience (A.S.P.) and consultant neuro-

vascular surgeon (A.K.T.) to provide finalized segmentations to act as the ground truth for

subsequent analyses. We ensured that the experimenter who labeled the training data (J.S.S.)

was different from the experimenters who provided expert corrections (A.S.P. and A.K.T.) so

as to minimize the introduction of bias into the training data provided to the model. Dice

overlap coefficients were calculated between the original and expert-corrected segmentations

to assess the quality of the semi-automated segmentation pipeline.

Clinical data extraction

Relevant clinical data were extracted from the EHR and from radiology reports available on

PACS. This data included, as the primary outcome, the presence of radiologically detectable

vasospasm via: transcranial doppler (TCD) ultrasound imaging of the major intracranial ves-

sels, CT angiogram (CTA), or digital subtraction angiography (DSA). The majority of patients

received repeat TCD imaging during recovery, with documented Lindegaard ratios (n = 30),

with CTA and DSA performed based on assessment of clinical need. Secondary outcomes

included time to vasospasm, vasospasm duration (defined as the number of days with any pos-

itive radiological vasospasm), number of discrete vasospasm episodes (defined as the number

of detected vasospasm that were separated by at least one day of exclusively negative tests),

vasospasm severity, length of ITU stay, length of hospital stay, and mortality. Vasospasm sever-

ity was quantified in two ways. Firstly, the consultant neuroradiologist’s subjective impression

Fig 2. Examples of semi-automated subarachnoid hemorrhage segmentations for each modified Fisher grade. (yellow = segmentation overlay,

mFS = modified Fisher Scale).

https://doi.org/10.1371/journal.pone.0286485.g002
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of vessel caliber (using CTA or DSA) was extracted and categorized as: ‘none’, ‘mild’, ‘moder-

ate’, or ‘severe’. Secondly, the greatest Lindegaard ratio was extracted from radiology records

for all patients who received TCD imaging and where this was documented. Given that many

of the patients were intubated and sedated during their initial hospital admission and the data

was retrospectively collected, clinical vasospasm or delayed clinical ischaemia (DCI) could not

be reliably ascertained. The modified Fisher grade was recorded by author A.S.P following

manual review of the images.

Data and statistical analysis

Generalized linear models were fitted in MATLAB (R2019b, Mathworks Inc., Natick, MA) to

assess for significant associations between predictors and response variables. Where response

variables were binary values, logistic regression was used, otherwise a linear regression model

was used.

For logistic models, (McFadden’s) pseudo-R2, was calculated to estimate the model’s pre-

dictive power [34], with values between 0.2–0.4 representing an “excellent” model fit [35].

Model goodness-of-fit was calculated in reference to a null model fit with constant (intercept)

terms alone. To compare model performance, we used previously described methods to esti-

mate a z-score for the difference in each model’s area under the curve (AUC) [36]. Additional

comparisons between nested models were performed using the likelihood-ratio test, alongside

evaluation of the Akaike information criterion (AIC) and Bayesian information criterion

(BIC). Hosmer-Lemeshow and Stukel tests were used to assess for model fitting and misspeci-

fication (Supplementary Methods in S1 File).

All values are reported as mean ± standard deviation, unless otherwise specified. Data were

tested for normality using the one-sample Kolmogorov-Smirnov test. All significance tests,

unless stated otherwise, were two-tailed with a significance threshold of 5%. Total blood vol-

ume was normalized and scaled (total blood volume x mean participant brain volume / partici-
pant brain volume) using the brain volume estimated from the BET images derived above.

Blood volume reported is normalized to participant brain volume unless stated otherwise. The

sample size was determined pragmatically, namely the maximum number of images obtained

within the specified study period. Scatter plots, unless stated otherwise, are color-coded

according to the radiological vasospasm status of the patient (maroon: vasospasm detected by

any modality during hospital stay; blue: no vasospasm detected by any modality during hospi-

tal stay).

Results

Participant demographics

Data from 42 patients were used for this study (see Table 1 for a summary of demographics).

71.4% (n = 30) of the included patients developed radiological vasospasm, detected via TCD,

CTA, or DSA during their hospital stay, comparable to previously reported rates of radiologi-

cal vasospasm [3]. There was no evidence of a difference in vasospasm risk in patients follow-

ing endovascular coil embolisation versus aneurysm clipping (χ2 = 1.45; p = 0.23), nor was

vasospasm risk associated with patient gender (χ2 = 26; p = 0.61) or age (t = -1.00, p = 0.32).

Patients with radiological vasospasm experienced similar ITU stays (360±202 hours vs

288±381 hours; p = 0.46), but remained in hospital for significantly longer as compared to

those who did not (59.8±46.6 days vs 23.7±24.2 days; 95% CI [4.6, 67.6], t = 2.33, p = 0.026).

Length of ITU stay was neither significantly correlated with the duration (r = 0.25; p = 0.14) or

number of distinct vasospasm episodes (r = 0.09; p = 0.56).
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Subarachnoid blood volume can be accurately and reliably segmented and

estimated using a semi-automated pipeline

In general, all segmentations agreed with the expert-corrected segmentations (Dice coefficient:

median = 0.994; mean = 0.920) with a mean volumetric error of (mean = 2.49±5.82 cm3).

Segmented subarachnoid blood volume is associated with radiological

vasospasm risk

Patients who developed radiological vasospasm had a significantly greater non-normalised

blood load on the CT head scan at initial presentation (vasospasm mean blood volume = 60.3

±30.5 cm3; non-vasospasm mean blood volume = 24.2±21.4 cm3, t = 3.74, p< .001; Fig 3).

Similarly, logistic regression demonstrated a significant association between normalized

blood volume and vasospasm risk (OR = 1.069 [95% CI: 1.021–1.120]; p = .0049; df = 40). This

indicates that the odds of radiological vasospasm occurring following admission increase by

approximately 7% for each cm3 of blood present in the subarachnoid spaces. Based on our

cohort, this model predicted that the threshold (for above 50% risk) for radiological vasospasm

would occur at approximately 24.9cm3 of blood load, with 75.5cm3. This model explained a

reasonable proportion of variance (pseudo-R2 = 0.30) and significantly more variance than a

constant model (F = 15.2; p< .0001). There was no evidence that the model was misspecified

(Stukel test: pza = 0.61, pzb = 0.51; Hosmer-Lemeshow test: χ2 = 3.49, df = 8, p = 0.90). A

Table 1. Descriptive information regarding each patient’s demographics, aneurysm, treatment and hospital

outcomes.

Number of patients 42

Mean age (SD) 57.8 (11.6) years

Female sex (%) 27 (64.3)

Aneurysmal location (%) AComm 17 (40.5)

PComm 5 (11.9)

MCA 7 (16.7)

ICA 5 (11.9)

PICA 6 (14.3)

SCA 2 (4.8)

Radiological vasospasm frequency determined by (%) TCD 23 (54.8)

CTA 30 (71.4)

DSA 16 (38.1)

Any modality 30 (71.4)

Treatment frequency: CSF diversion (%) External ventricular drain 30 (71.4)

Lumbar drain 11 (26.2)

No CSF diversion 11 (26.2)

Treatment frequency: Neurovascular (%) Coil embolisation 32 (76.2)

Aneurysmal clipping 9 (21.4)

*Other 1 (2.4)

Mean length of ITU stay (SD) 343 (251) hours

Mean hospital stay (SD) 50.3 (44.6) days

Mortality (%) 4 (9.5)

(*patient passed away before coil embolisation organized. AComm = anterior communicating artery,

PComm = posterior communicating artery, MCA = middle cerebral artery, ICA = internal carotid artery,

PICA = posterior inferior cerebellar artery, SCA = superior cerebellar artery).

https://doi.org/10.1371/journal.pone.0286485.t001
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retriever operator characteristic (ROC) curve was constructed for this model (Fig 4). This

demonstrated that the fitted model reliably separated the binary classes using normalized

blood volume alone, and the ROC curve accordingly shows a high area-under-the-curve

(AUC = 0.86). Furthermore, the significance of the relationship between blood volume and

vasospasm was preserved after adding potential confounding variables into the model (see

Table 2). Leave-one-out cross validation over this full model demonstrated a classification

accuracy of 71.4% for subsequent vasospasm, and precision, sensitivity, and F1 of 80.0%. The

full model maintained a high predictive power (AUC = 0.89) and good proportion of

explained variance (pseudo-R2 = 0.41).

For comparison, a logistic regression model using only mFS scores was also fitted (see Sup-

plementary Results S1 Table in S1 File). For dummy coding, mFS scores 1 and 2 were com-

bined. While this also outperformed a constant model (χ2 = 6.31; p< .043), it had less

predictive ability (AUC = 0.70) as compared to the previous models described (Fig 4). When

directly comparing the two models [36], we found that the AUC of the univariate model using

Fig 3. Greater segmented blood load is associated with greater radiological vasospasm risk. Boxplot of blood

volume in patients who developed radiological vasospasm (maroon) and those who did not (blue). (*** = p< .001).

https://doi.org/10.1371/journal.pone.0286485.g003
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normalized blood volume was significantly greater than that using modified Fisher score

(z = 1.86, p = 0.031), indicating that normalized blood volume model significantly outper-

formed the mFS model at predicting radiological vasospasm.

Greater scores on the mFS were significantly associated with larger volumes of subarach-

noid blood (normalized blood volume for mFS 1: 8.5±5.7 cm3; mFS 2: 23.6±12.8 cm3; mFS 3:

53.9±37.8 cm3; mFS 4: 61.3±29.0 cm3; one-way ANOVA: F = 7.35, p< .001). Following Bon-

ferroni correction for multiple comparisons, scans of mFS grade 4 contained significantly

Fig 4. Receiver operating characteristic (ROC) curve demonstrating the performance characteristics of the binary

classifier fit in the logistic regression model. Black = univariate logistic regression model using normalized total

blood volume; gray = logistic regression model using dummy-coded modified Fisher score values.

https://doi.org/10.1371/journal.pone.0286485.g004

Table 2. Logistic regression fit parameters for all variables in the full predictive model including confounding variables.

Estimate (log odds) Confidence interval t value p value

Intercept 2.3975 [-4.40, 9.20] 0.69 0.49

Age -0.099725 [-0.22, 0.02] -1.69 0.09

Gender 1.4887 [-0.57, 3.54] 1.42 0.16

Treatment: coiled 0.14742 [-2.03, 2.33] 0.13 0.89

EVD inserted 0.78481 [-1.43, 3.00] 0.70 0.49

Lumbar drain inserted 0.08629 [-2.26 2.43] 0.072 0.94

Normalized blood volume* 0.0741 [0.0077, 0.1406] 2.19 0.03

Following inclusion of potential confound variables into the logistic regression against radiological vasospasm, the only significant predictor remained the estimate for

blood volume (*, p < .05, italic typeface). Note that estimates for logistic regression are given in the form of log odds. χ2-statistic vs. constant model: F = 20.6, p-

value = 0.00215.

https://doi.org/10.1371/journal.pone.0286485.t002
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larger blood volume than scans of mFS grade 1 (p = .001) and grade 2 (p = .037). To assess

whether blood volume contained additional independent information, it was added to a logis-

tic regression model containing mFS alongside confounding variables (see Table 2, S2, S3

Tables in S1 File for full models). In doing so, model predictive power was improved (Likeli-

hood ratio = 8.00; p< .0047) and predictive error was reduced (mFS only: AIC = 47.5,

BIC = 58.0; mFS and blood volume: AIC = 41.55, BIC = 53.7). However, when the mFS was

added to the blood volume model, no increase in predictive power was shown (Likelihood

ratio = 1.94; p = 0.16). Similarly, leave-one-out cross validation of the full model demonstrated

a classification accuracy of 78.6%, greater than the classification error for models containing

blood volume (71.4%) or mFS (69.0%) alone. Taken together, these results indicate that the

normalized blood volume contains additional information to the mFS, and constitutes a signif-

icant and independent predictor of radiological vasospasm.

Greater subarachnoid blood volume is associated with worse vasospasm

severity

To investigate whether segmented blood load was associated with the severity of radiological

vasospasm, we extracted the subjective impression of severity from radiologist reports. A one-

way ANOVA demonstrated a significant association between normalized blood volume and

subjective severity (F = 5.42; p = 0.003). Post-hoc testing using the Tukey-Kramer method for

multiple comparisons demonstrated that patients with reported ‘moderate’ and ‘severe’ radio-

logical vasospasm had significantly greater blood load than those without vasospasm

(p = 0.028 and p = 0.004, respectively; Fig 5A). However, no significant difference in blood

Fig 5. Associations between subarachnoid blood volume and metrics of severity of radiological vasospasm. A: Boxplots of blood volume grouped

by radiologist’s impression of subjective severity of vasospasm. B: Scatter plot showing the greatest recorded Lindegaard ratio from TCD plotted against

normalized blood volume. (* = p< .05, ** = p< .01).

https://doi.org/10.1371/journal.pone.0286485.g005
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volume was found between patients with mild, moderate, and severe vasospasm (p> .05

throughout).

To further probe this result, we evaluated quantitative metrics of vasospasm severity (Fig

5B). We extracted the largest Lindegaard ratio observed for all patients who received docu-

mented TCDs (n = 30 patients received at least one TCD positive or negative for vasospasm

following admission). Similarly, blood volume was significantly correlated with higher Linde-

gaard ratios (r = 0.45; p = 0.014), indicating that blood load was related to the severity of ultra-

sonographic changes seen in vasospasm-positive patients. This relationship remained

significant when only TCD-positive vasospasm patients were included (n = 23; r = 0.46;

p = 0.027).

Subarachnoid blood volume influences the duration and frequency of

vasospasm episodes

Of patients who developed vasospasm, radiological evidence of vasospasm was first reported

an average of 5.30±3.41 days after presentation, and persisted for 3.62±3.22 days, consisting of

1.29±1.22 discrete episodes.

Increased blood volume was significantly associated with a greater number of separate epi-

sodes of radiological vasospasm (r = 0.57, p< .001) [Fig 6A]. Similarly, there was a strong asso-

ciation between blood volume and vasospasm duration (r = 0.54, p< .001; Fig 6B). However,

no association was found between subarachnoid blood volume and the time from admission

date to first vasospasm (r = -0.13; p = 0.51).

Association of subarachnoid blood volume with neurosurgical patient

outcomes

Blood volume was not significantly associated with length of ITU stay (r = 0.16; p = 0.34), and

there was no difference in mean blood volume between patients who subsequently died and

those who did not, although this approached significance (fatality group: 77.9±43.9 cm3; non-

fatality group: 47.0±30.2 cm3; t = 1.87; p = 0.07). However, blood volume was significantly corre-

lated with total length of hospital stay (r = 0.36; p = 0.027; Fig 6C), indicating that patients with

larger subarachnoid blood load may experience a more complicated or prolonged recovery.

Fig 6. Associations between subarachnoid blood volume and temporal vasospasm-related outcomes. A: Scatter plot showing the number of discrete

episodes of vasospasm against normalized blood volume. B: Scatter plot showing the duration of vasospasm in days plotted against normalized blood

volume. C: Scatter plot showing the total length of hospital stay plotted against normalized blood volume.

https://doi.org/10.1371/journal.pone.0286485.g006
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Discussion

Summary

In this article, we present a novel ITK-SNAP-based pipeline for reliable and efficient segmen-

tation of subarachnoid blood on initial CT head scans using semi-automated methods and

expertly verified. Utilizing this framework, we show that greater total segmented blood volume

following subarachnoid hemorrhage is significantly associated with a greater probability of

subsequent radiological vasospasm, with the odds of vasospasm occurring increasing by

approximately 7% for each cm3 of subarachnoid hemorrhage. We also demonstrate that sub-

arachnoid blood load influences the natural history of vasospasm both in terms of duration

and number of distinct episodes, and is associated with overall hospital length of stay.

Interpretation and context

Our pipeline successfully produced segmentations of blood from CT head scans for all scans

included in the study. Segmentations were close to ground truth as defined by corrected seg-

mentations provided by a consultant neurovascular surgeon, indicating that our methods were

accurately and reliably delineating blood from other tissue, in spite of its complex and tortuous

morphology and also in spite of a wide array of scanner acquisition protocols from several

referring hospitals. While previous machine learning methods have been used to detect and

classify intracranial hemorrhages [37, 38], by providing saliency maps highlighting probable

regions where blood is distributed [39], these methods do not produce segmentations from

which precise blood volumes can be obtained. Quantitative volumetric segmentations have

typically been applied to haemorrhagic lesions from traumatic brain injuries, with focus on

subdural haematoma, extradural haematoma, and intraparenchymal hemorrhage [40–44].

Less work has attempted the automated segmentation of subarachnoid blood [38], and to our

knowledge this work represents the first use of machine learning techniques to segment blood

from CT head scans in aneurysmal SAH patients.

Our results demonstrate that the initial blood burden following subarachnoid hemorrhage

has future consequences. Previous literature has focused on predicting the risk of symptomatic

vasospasm (or delayed cerebral ischaemia) based on blood volume on CT head scans [4, 7, 8, 11,

12], with few papers addressing angiographic or radiological features. In our cohort, haemorrha-

gic blood load was associated with greater radiological vasospasm risk, episodes, duration, sever-

ity and a longer length of stay in hospital. Radiological vasospasm is itself well known to be

strongly associated with delayed cerebral ischaemia and poorer functional outcomes [21, 22].

Interestingly, although we found a significant association between total blood volume and

the radiologist’s impression of vasospasm severity, post-hoc testing with correction for multi-

ple comparisons did not find a difference in blood volume between subgroups of patients with

mild, moderate, and severe vasospasm. The relationship between blood load and vasospasm is

likely complex, dependent on additional factors such as anatomical distribution of blood, and

it may be that a larger sample size is required to detect associations between total blood load

and subjective severity. Similarly, while we saw no signfiicant association between blood load

and fatality, only four patients died in our cohort, making robust statistical inferences about

this outcome challenging, and larger sample sizes are needed.

To address the clinical utility of our segmentations, we compared the predictive power of

total subarachnoid blood volume with that of the widely-used modified Fisher scale. The mod-

ified Fisher scale alone possesses a number of limitations. Recent work has highlighted its

inherent subjectivity, demonstrating only moderate inter-rater reliability scores [15]. Further,

its predictive power is limited by its qualitative nature, resulting in a low-dimensional and
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low-resolution description of blood load and distribution. In our dataset, the modified Fisher

scores also significantly predicted vasospasm risk but with reduced accuracy. In addition, we

found that normalized blood volume provides additional information to the logistic regression

model that is independent of the modified Fisher scale, and therefore may be incorporated

into the future development of radiological vasospasm risk scales. Nonetheless, it may be that

information about blood volume distribution across compartments (i.e. cisternal and ventricu-

lar blood) is provided by the modified Fisher scale, and this would not be captured by a total

blood volume value. However, as blood segmentations can be further extended to include

information about the spatial distribution of blood in the brain, we suggest that total blood vol-

ume provides a potential powerful regressor for predicting vasospasm.

Limitations and strengths

Our interpretations are limited by the modest number of patients included, alongside the ret-

rospective design of the study. Furthermore, the statistics presented here are exploratory,

although the significance of the associations presented remained so after multiple comparison

corrections. Additionally, we describe several steps to demonstrate that regression models fit-

ted were robust, including the use of leave-one out cross validation methods. Although our fit-

ted and internally validated regression model demonstrates good performance on our single-

center dataset, further work with larger, multi-centre datasets will be required to cross-validate

and confirm the findings reported above. Further, true blood volume may differ from that visi-

ble on standard CT images (for instance, thin blood layers outside the basal cisterns may be

difficult to visualize and segment), further obscuring the notion of a ground truth blood vol-

ume for comparison. However, the results nonetheless highlight important and unexplored

potential areas of further study within the vasospasm literature, and our presented analysis

pipeline can easily be extended to larger datasets, prospective studies, collaborative segmenta-

tions, and more sophisticated statistical models.

The modified Fisher score was validated for prediction of delayed cerebral ischaemia [8]

rather than radiological vasospasm, and so may not be expected to predict radiological vaso-

spasm more accurately than blood volume. DCI remains challenging to diagnose, especially in

sedated or high-grade patients [45], and unsurprisingly its onset is often missed [23]. Further,

the sensitivity and specificity of TCD for detecting arterial vasospasm are variable and opera-

tor-dependent [22], and as such its findings cannot be considered ground truth. Rather, inte-

grating information from a combination of different modalities—such as TCD, invasive

neural monitoring and haemodynamic monitoring—can provide an effective pipeline for the

prediction of poor outcomes such as DCI [46]. Indeed, early angiographic vasospasm is signifi-

cantly associated with the subsequent development of DCI [47, 48], vasospasm as detected on

TCD or CTA is well correlated with clinical deficits [21, 22, 47, 48], and both vasospasm dura-

tion and severity can be used alongside clinical assessment and course to assess the likelihood

of delayed cerebral ischaemia and therefore the need for clinical interventions such as angio-

plasty [21, 24, 49, 50]. Therefore, we propose that one source of information for multimodal

neuromonitoring could be objective imaging biomarkers such as total blood volume and dis-

tribution, alongside an estimated likelihood of radiological vasospasm, to guide clinical deci-

sion making and identify a subpopulation of patients that may require more stringent

monitoring and/or intervention. Further modeling would be necessary to determine the influ-

ence of CSF drainage factors which may assist in reducing subarachnoid blood volume.

Fully manual segmentations drawn out by experts or trained raters, despite being consid-

ered the gold standard method, are time- and labor-intensive, often require lengthy training

periods [51], and risk introducing substantial intra-rater and inter-rater variability and bias
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arising from various sources, including differences in opinion about the ground truth segmen-

tation and in anatomical knowledge about relevant structures [52]. Accordingly, previous work

has shown substantial variation in consistency and reproducibility of manual segmentations

across both raters and structures [53–55]. Over recent years, semi-automated and automated

methods have begun to match and even outperform manual segmentation in metrics of preci-

sion and inter-rater variability across a variety of modalities and structures [51, 54, 56, 57].

Our semi-automated method adds to the growing literature of potential applications for

machine learning methods in radiological interpretation and triage, and removes some of this

intra- and inter-rater variability. Many computer-assisted methods for delineation of blood

volume have previously focused on segmentation of hemorrhages within non-subarachnoid

space [40, 58–61]. However, application of these methods to aSAH has been noted to be chal-

lenging [41, 59], and accordingly Dice scores for segmentations of subarachnoid blood have

been consistently lower than for other hemorrhage subtypes [38, 55, 62, 63], and convolutional

networks used to automatically segment intracranial hemorrhage that includes subarachnoid

blood have only achieved low-to-moderate Dice scores [64, 65].

We attempted to mitigate any bias on behalf of the rater through expert assessment and cor-

rection, and correspondingly our mean Dice score between original and corrected segmentation

was high (0.92), indicating excellent agreement between rater segmentation and expert opinion

that required minimal correction. This score was substantially larger than those comparing

manual segmentations by different observers [55, 63], and in previous literature [38, 55, 62, 63].

In particular, Boers et al. [55] previously utilized similar methods to segment aSAH, but

achieved only moderate Dice scores for its automated segmentations (mean Dice score 0.55,

range 0.00–0.83). We note that a particular advantage of our pipeline was that it allowed for

real-time quality control, as the segmenter can observe the active contour evolution evolve, likely

contributing to our high Dice scores. Nonetheless, some variability remains, as labeling training

data for the classifier and placement of seeds remain as manual steps that may lead to uninten-

tional biases in volumes, and experts may display some variation in their manual segmentations.

We anticipate that a greater number of experts, fully blinded to the patient condition, would

provide more reliable and consistent segmentations to overcome the latter limitations.

Segmentations took on average 10–15 minutes per scan for the rater to perform. While

manual segmentation workload was not explicitly compared in this study, this is notably faster

than fully manual methods would be expected to take, while maintaining high agreement with

our manual corrections. Further, manual segmentation speed depends on operator expertise

and complexity of blood distribution; the same is not necessarily the case with semi-automated

methods, and anecdotally we saw little variation in segmentation time as tortuosity of blood

increased. However, 15 minutes remains a non-trivial period of time that may bottleneck scan

reporting, and may therefore be unfeasible in clinical radiology contexts.

Potential extensions to a fully automated pipeline (such as nnU-Net [66], which has already

seen use in brain tumor segmentation [67, 68]) would address a number of these limitations

and allow for development of a clinically valuable toolkit. Validated, fully automated segmen-

tations would allow for faster, reproducible and accurate delineation of blood distribution and

volume, and may remove variability introduced in manual steps. Nonetheless, these methods

still require training and validation, and this dataset serves as an important repository in facili-

tating this research.

Conclusion

The semi-automated pipeline presented here robustly segments fresh blood from CT head

scans on admission following subarachnoid hemorrhage. Our segmentation pipeline is
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significantly faster than manual segmentations, and demonstrates high accuracy when com-

pared with expertly corrected volumes. Using these methods, we demonstrate that blood load

following aSAH is associated with risk and timeline of radiological vasospasm. Notably, the

odds of developing radiological vasospasm were greater for larger hemorrhage volumes, with a

7% increase in vasospasm odds per additional cm3 of blood on the scan, and observed vaso-

spasm is likely to be more severe and persist for longer. Total blood volume constitutes an

independent predictor for radiological vasospasm from the clinically employed modified

Fisher scale, and carries potential for extension in the future to fully automated segmentation

pipelines, and for the development of more sophisticated radiological risk scores for

vasospasm.
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