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Abstract

Purpose of review—Modern cancer therapies have allowed for a dramatic increase in the 

survival rates in both children and adults. However, a frequent and unfortunate side-effect of 

cancer therapy is a long-term decline in neurocognitive function. Specifically, cranial radiation 

therapy markedly alters memory processes, while chemotherapeutic agents are correlated with 

deficits in attention, concentration, and speed of information processing. Here, we describe the 

putative cellular etiologies of cancer treatment-induced cognitive decline, with an emphasis on the 

role of neural stem and precursor cell dysfunction.

Recent findings—New studies highlight the lasting effects of chemotherapy on memory, 

executive function, attention, and speed of information processing up to 20 years following 

chemotherapy. Cognitive decrements are associated with decreased white-matter integrity as well 

as alterations in stem cell function in humans and rodent models of cancer therapy. Genetic 

polymorphisms may underlie differential sensitivity of certain individuals to the neurological 

consequences of chemotherapy. Increasing data support the concept that disruption of normal 

neural stem and precursor cell function is an important causative factor for the cognitive deficits 

that result from cancer therapy in both children and adults.

Summary—Further studies are needed to elucidate the role of chemotherapy on cell-intrinsic 

processes and cellular microenvironments. Further, the effects of the new generation of targeted 

molecular therapies on neural stem and progenitor cell function remains largely untested. 

Understanding the mechanisms behind cancer therapy-induced damage to neural stem and 

precursor cell populations will elucidate neuroprotective and cell replacement strategies aimed 

at preserving cognition after cancer therapy.
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INTRODUCTION

Cancer therapy is profoundly beneficial; it saves, improves, and extends lives. Yet it is 

dangerous, causing cognitive side-effects in both children and adults that are lasting and 

debilitating. Advancements in cancer treatment are exemplified by the nearly 12 million 

survivors of cancer who live in the USA alone [1]. Although improvements in therapeutic 

protocols for childhood and adult cancers have resulted in a dramatic increase in cancer 

survivors, nearly 40% exhibit long-term sequelae of therapy [2]. The risk of chronic illness 

increases in those treated for central nervous system (CNS) tumors, with 91% reporting 

chronic conditions, including a debilitating neuropsychiatric syndrome characterized by 

impaired memory function, attention, speed of information processing, executive function, 

and multitasking [3].

COGNITIVE DYSFUNCTION IN CHILDREN AND ADULTS TREATED WITH 

RADIATION AND CHEMOTHERAPY

Children:

Many studies have demonstrated neurocognitive decrements associated with cranial 

radiation therapy, including increased incidence of impairments in memory, attention, and 

concentration in children treated for pediatric brain tumors or leukemia [4,5]. The long-term 

neurological impact of cancer therapy on survivors of childhood cancer is not surprising 

as much of the brain’s development occurs after birth. It has been recognized since the 

1960s that the brain does not complete postnatal development until the end of the third 

decade of life, when the frontal lobes finish myelination [6,7]. Five-year survival rates of 

childhood acute lymphoblastic leukemia (ALL) are now over 80%, historically because of a 

combination of cranial irradiation and chemotherapy. (Most therapeutic protocols for ALL 

have eliminated prophylactic radiotherapy in an effort to reduce neurocognitive side-effects.) 

Survivors exhibit neurocognitive deficits in both processing speed and memory function, 

with those treated at younger ages exhibiting increased vulnerability to the neurocognitive 

effects of cancer treatments [8■]. High-risk patients requiring more aggressive therapy 

exhibit a moderate increase in neuropsychological deficits compared to standard risk 

patients, suggesting a dose dependency to cancer treatment-induced neurocognitive deficits 

[9]. Cranial radiation carries a particular risk to memory function, especially the process 

of forming new memories of events or facts that is subserved by the hippocampi in the 

medial temporal lobes. Chemotherapy exposure compounds this memory dysfunction by 

affecting another aspect of memory function – working memory, the conscious manipulation 

of information on short time scales necessary for reasoning and learning. Working memory 

function is highly dependent on certain frontal lobe regions and the integrity of white 

matter connections. Functional neuroimaging (fMRI) studies have shed light on the working 

memory dysfunction that follows chemotherapy. Neural activity is abnormal in the critical 

frontal lobes regions (prefrontal cortex and cingulate cortex) assessed by fMRI during 

a working memory task in survivors of childhood ALL treated with only chemotherapy 

compared to healthy controls, and the abnormal activity correlated with the difficulty of the 

task [10].
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Adults:

The long-term effects of cancer therapy on adult cognition have been increasingly 

recognized. Radiation of the adult brain, particularly when the medial temporal lobes 

are involved in the radiation field, carries a high risk of memory dysfunction [11-14]. 

When patients are exposed only to cancer treatments limited to traditional chemotherapies, 

the symptoms of impaired speed of information processing, attention and concentration 

predominate [15,16]. Much of our understanding of the effects of chemotherapy on 

neurocognitive function in adults comes from breast cancer survivors. Five years after the 

cessation of breast cancer treatment, fMRI studies indicate that survivors had decreased 

activation of frontal lobe regions compared to controls. Those survivors treated with 

chemotherapy had less activation in the left caudal lateral prefrontal cortex and decreased 

processing speed compared to breast cancer survivors not exposed to chemotherapy. 

Interestingly, increased age and decreased education were correlated with the decrements 

in executive function seen in chemotherapy-treated survivors [17]. In another study assessing 

the impact of chemotherapy on breast cancer survivors 10 years following treatment, 

researchers similarly found decreased activity in frontal and medial temporal regions 

(the dorsolateral prefrontal cortex and parahippocampal gyrus) during executive function 

and episodic memory tasks, respectively, in participants who received chemotherapy 

and tamoxifen following local breast surgery and regional breast radiation compared to 

survivors without chemotherapy and tamoxifen treatments. Decreased cortical activity, 

assessed by fMRI, was also seen in bilateral posterior parietal cortex during the two 

neuropsychological tests, indicating possible deficits in visuospatial attention in addition 

to planning performance and memory function [18■]. Even more striking, a longer 

term follow-up study of breast cancer survivors treated with either cyclophophamide, 

methotrexate (MTX), or 5-fluorouracil (5-FU) demonstrated that chemotherapy treatment 

was associated with deficits in immediate and delayed verbal memory, processing speed, 

executive function, and psychomotor speed 20 years after therapy [19■].

Although many studies support the link between cancer therapy and deficits in hippocampal 

and subcortical white matter function, some fundamental questions remain to be 

addressed [20]. Many studies showing an association between neurocognitive deficits 

and chemotherapy are performed in humans in whom pretreatment baselines are not 

assessed. Noteworthy, a prospective, longitudinal study that compared cognition on 

pretreatment and post-treatment measures investigating the effects of 5-FU, doxorubicin, 

and cyclophosphamide on cognition in breast cancer patients found no significant 

group mean differences in cognition between pretreatment and post-treatment cognitive 

assessments. However, a significant decrease in learning, attention, and information 

processing speed following the cessation of treatment was found in a subset of women 

compared to their pretreatment levels [21]. One potential reason for the lack of group 

mean differences between pretreatment and post-treatment and further support for the 

necessity of pretreatment baseline testing is the evidence that tumors themselves can be 

associated with cognitive deficits in attention, executive function, and memory, especially 

in CNS tumors [22-24]. Many human studies also lack the proper control groups, 

whether healthy controls or non-chemotherapy-treated patients with the same tumor type 

[18■]. Further controls are needed for the influences of confounding variables, including 
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hormonal treatments such as tamoxifen and glucocorticoid treatments, that independently 

affect learning, memory, and cell proliferation and differentiation [17,25,26]. Tamoxifen, a 

selective estrogen receptor modulator, is commonly used as part of breast cancer therapy 

but has been associated with deficits in verbal and visual memory, processing speed, 

and visuospatial ability in premenopausal women [27] and verbal memory and executive 

functioning in postmenopausal women [28], while glucocorticoids have been shown to 

suppress hippocampal cell proliferation and neurogenesis in rodent models [25,26].

The role of genetic markers in the predisposition of chemotherapeutic-induced cognitive 

dysfunction has become an important variable to consider. The presence of the human 

E4 allele of the apolipoprotein E gene in cancer survivors exposed to chemotherapeutic 

agents is associated with deficits in visual memory, spatial ability, and executive function 

compared to survivors without the E4 allele [29]. Breast cancer survivors who are carriers 

of the Val158Met variant of the gene for catechol-O-methyltransferase (COMT), an 

enzyme that plays a role in concentration of dopamine in the prefrontal cortex, exhibit 

decreased performance on tests of attention compared to healthy control individuals who 

are also carriers, suggesting an interaction between the polymorphism and chemotherapy 

[30■]. Providing further evidence of the importance of genetic variability in the 

association between chemotherapy and cognitive outcome, childhood survivors of ALL with 

polymorphisms in folate pathway genes have a 7.4-fold increase in developing attention-

deficit disorder [31], and deficits in the ability to shift attention and processing speed [32■]. 

This is not surprising, given that MTX directly affects folate metabolism. These correlative 

studies suggest an association between cancer treatment and neurocognitive dysfunction that 

may be further mediated by genetic predispositions or environment (i.e. education).

CELLULAR ETIOLOGY

The constellation of neuropsychological symptoms attributed to cranial radiation and 

chemotherapy localize neuroanatomically to the hippocampus (memory) and subcortical 

white matter (attention, concentration and speed of information processing), two regions 

in which new cell production from neural precursor populations is critical to postnatal 

neurodevelopment and maintenance [33-35] (Fig. 1). Stem and progenitor cells, originating 

in the subventricular zone and dentate gyrus of the hippocampus, give rise to adult-born 

neurons and glial cells [36,37] (Fig. 1). Numerous lines of evidence suggest an association 

between postnatal neurogenesis and learning and memory function [38-40]. Learning 

improves the survival of postnatal-born neurons in the dentate gyrus [41,42]. Neurogenesis 

is also increased by exposure to enriched environments and voluntary exercise [43,44], 

two lifestyle variables associated with improved cognition [45]. Some of the strongest 

evidence implicating new neuron production in learning and memory processes is found 

in studies inhibiting neurogenesis. Using irradiation to abolish adult neurogenesis in rats 

during a critical period of training for a hippocampal-dependent task results in deficits 

in long-term memory formation, as tested using the Morris water maze [38]. Similarly, 

decreasing neurogenesis affects hippocampal-dependent tasks, such as trace memory tasks, 

but not hippocampal-independent tasks [46]. These studies point to a strong involvement of 

postnatally born neurons in hippocampal-dependent learning and memory function.
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Subventricular zone neural stem cells also play a role in the production and maintenance of 

the glial progenitor cell population found in both white and gray matter. Oligodendroglial 

progenitor cells are found throughout the adult human brain and contribute to myelination 

during postnatal development and adult white matter maintenance and repair [47-49]. The 

marked impact of cancer therapies on neurocognitive function and the role of neural stem 

cells and glial progenitor cells in ongoing brain health and function highlight stem cells as a 

potential target for cancer therapy-related cognitive deficits.

ETIOLOGY OF CANCER TREATMENT-INDUCED MEMORY DYSFUNCTION

The molecular and cellular etiology of memory dysfunction following cranial radiation 

therapy has been thoroughly investigated. Cranial irradiation in rodents results in a 

specific blockade of hippocampal neurogenesis, which is mediated by neuroinflammatory 

disruption of the neurogenic microenvironment [50,51]. Of note, this decrease in 

neurogenesis is not attributed to the depletion of stem cell populations, but instead 

to perturbation of the microenvironment that normally supports neurogenesis. Radiation 

induces microglial inflammation and elaboration of proinflammatory cytokines that inhibit 

neuronal differentiation of stem cells [50-52]. In humans exposed to cranial radiation 

and systemic chemotherapy for acute myelogenous leukemia or medulloblastoma, similar 

inhibition of hippocampal neurogenesis and increases in microglial inflammation are 

also seen [53]. Promisingly, radiation-induced inflammatory inhibition of hippocampal 

neurogenesis can be mitigated by nonsteroidal anti-inflammatory therapy in preclinical 

rodent models [51,54]. On the basis of these findings, multiple clinical trials of nonsteroidal 

anti-inflammatory therapy or other proneurogenic strategies such as aerobic exercise [55,56] 

aimed at preserving memory function after cranial radiation therapy are currently underway 

in both children and adults.

Similarly, chemotherapeutic agents, such as cyclophosphamide [57], MTX [58], and 

doxorubicin [56], are associated with deficits in hippocampal-dependent memory and 

hippocampal neurogenesis. Cyclophosphamide and doxorubicin were found to decrease 

neurogenesis by 80–90%, and this decrease was associated with hippocampal-dependent 

memory deficits in a preclinical rodent model. Cyclophosphamide, but not doxorubicin, was 

also associated with a microglial inflammatory response [59■].

CANCER TREATMENT-INDUCED DEFICITS IN ATTENTION, 

CONCENTRATION, AND SPEED OF INFORMATION PROCESSING

The complex neural circuitry necessary for high-level cognitive and sensorimotor function 

matures throughout childhood and young adulthood. Central to the process of developing 

or strengthening a functional neural circuit is the generation of new glial cells for 

neuronal support, synapse formation, and myelination. It is well known that cancer therapy, 

especially during childhood, damages white matter integrity and that the degree of white 

matter damage correlates with cognitive deficits, such as impaired speed of information 

processing [60,61]. Recent advancements in technology have allowed researchers to more 

thoroughly investigate the impact of chemotherapy on the integrity of white matter tracts 

important to high-level cognition. Diffusion tensor imaging (DTI) allows for visualization 
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and quantification of white matter integrity in the brain based on fractional anisotropy 

(directionality of water diffusion) and mean diffusivity (average amount of diffusion). White 

matter tracts associated with cognition are altered, as assessed by DTI, in chemotherapy-

treated breast cancer patients compared to nontreated or healthy controls soon after cessation 

of treatment. This white matter degeneration of tracts in the frontal and temporal lobes is 

associated with deficits in neuropsychological tests of attention and information processing 

speed [62■].

Chemotherapeutic drugs, which selectively target dividing cells, disrupt normal neural 

precursor cell proliferation. The negative impact of chemotherapeutic agents on dividing 

stem and progenitor cells in the postnatal brain, including oligodendrocyte precursor cells 

(OPCs) in white and gray matter, may be especially detrimental to brain function. Glial 

progenitor cells are the major cycling cell population in the human brain and contribute 

to developmental myelination and likely to white matter maintenance throughout life 

[48,49,63,64].

The variability seen in human studies, as well as the difficulty of controlled, prospective 

human studies, points to the necessity of useful animal models to study the etiology of 

chemotherapy-induced neurocognitive dysfunction. Animal models have underscored the 

importance of stem cells in this process. It is known that pluripotent neural stem cells 

and multipotent or unipotent glial progenitor cells are exquisitely sensitive to traditional 

chemotherapeutic agents in rodents [65,66]. Many chemotherapeutic agents, including 

cisplatin [67] and 5-FU [68], decrease OPC proliferation and oligodendrogliogenesis. MTX 

is especially toxic to glial progenitor cells in frontal white matter that produce myelinating 

oligodendrocytes [65] and to neural stem cells [67,68] (Fig. 1). Short-term treatment 

with the antimetabolite chemotherapeutic agent, 5-FU, causes delayed CNS damage and 

degeneration that, unlike irradiation [50,51], is not associated with chronic inflammation 

or vascular damage. Instead, 5-FU appears to disrupt CNS progenitor cells and mature 

oligodendrocytes. Similarly, Schoenfeld et al. [69] found that oligodendrocytes are sensitive 

to rotenone, an inhibitor of mitochondrial oxidative phosphorylation, suggesting that 

cells with increased mitochondrial turnover, such as oligodendrocytes, may be selectively 

sensitive to antimetabolite chemotherapeutic agents. Indeed, antimetabolites, such as MTX 

and 5-FU, have been the chemotherapeutic agents most strongly linked clinically to 

poor cognitive outcome after chemotherapy. This targeted depletion of oligodendrocytes 

and their precursors by antimetabolite chemotherapeutic agents may play a role in the 

maldevelopment or degeneration of white matter tracts seen in subcortical structures of 

cancer survivors, especially in children who are still undergoing active developmental 

myelination.

CONCLUSION

Future studies aimed at elucidating the molecular and cellular etiology of neurocognitive 

dysfunction following cancer treatment are imperative to improving the lives of millions of 

cancer survivors. Little is known about the mechanisms of chemotherapy-induced damage to 

neural stem and precursor cell populations. Nor is it known whether the damage results from 

cell-intrinsic or microenvironmental effects of the chemotherapeutic agents. Furthermore, 
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the effects of the new generation of targeted molecular therapies on neural stem and 

progenitor cell function are virtually untested, despite the concerning fact that these drugs 

frequently target signaling pathways critical not only to cancer cells, but also to neural stem 

and progenitor cells. Neuroprotective or cell replacement strategies are needed to address the 

long-term effects of cancer therapies on neural stem and precursor populations in the brains 

of both children and adults.
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KEY POINTS

• Cancer therapy involving cranial radiation and chemotherapy is associated 

with neurocognitive deficits, including disruptions in memory, attention, and 

speed of information processing.

• Cognitive dysfunction from chemotherapy alone is evident in some patient 

populations even 20 years after treatment.

• Damage to neural stem and precursor cell function is believed to result in 

cancer therapy-induced cognitive dysfunction.

• Genetic polymorphisms may predispose some individuals to more severe 

radiation or chemotherapy-associated cognitive dysfunction.

• Understanding the mechanisms behind damage to neural stem or precursor 

cell populations and the neurogenic or gliogenic microenvironment are 

imperative to ultimately combat the negative effects of cancer therapy on 

brain integrity and function.
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FIGURE 1. 
Neural precursor populations in the postnatal brain include white matter oligodendrocyte 

progenitor cells (blue cells), subventricular zone stem and progenitor cells (green cells), 

and hippocampal stem and progenitor cells (orange cells). Cognitive functions putatively 

mediated by postnatal maintenance and maturation of neural precursor populations and 

negatively affected by cancer treatments are listed in the left half of the figure. Neural stem 

cells have the ability to differentiate into mature neurons, oligodendrocytes, or astrocytes as 

indicated in the lower right corner of the figure.
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