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Abstract
The emergence of fluoroquinolone and macrolide resistance in C. jejuni, a recognized zoonotic pathogen, has increased world-
wide. This study aimed to investigate phenotypic resistance to ciprofloxacin and erythromycin, the molecular mechanisms 
involved, and the strain of C. jejuni isolated from broiler carcasses. Eighty C. jejuni isolates from broiler carcasses in south-
ern Brazil were investigated for their susceptibility to ciprofloxacin and erythromycin at minimal inhibitory concentrations. 
Mismatch amplification mutation assay–polymerase chain reaction (MAMA-PCR) was performed to detect substitutions 
of Thr-86-Ile, A2074C, and A2075G of domain V in the 23S rRNA. The presence of ermB gene and CmeABC operon were 
investigated by PCR. DNA sequencing was used to detect substitutions in the L4 and L22 proteins of the erythromycin-
resistant strains. The Short Variable Region (SVR) of flaA was used to type all the strains resistant to both antimicrobials. 
Ciprofloxacin and erythromycin resistance were detected in 81.25% and 30.00% of the strains, respectively, and minimal 
inhibitory concentration values ranged from ≤ 0.125 to 64 µg/mL for ciprofloxacin and 0.5 to > 128 µg/mL for erythromycin. 
The Thr-86-Ile mutation in gyrA was observed in 100% of the ciprofloxacin-resistant strains. Mutations in both the A2074C 
and A2075G positions of 23S rRNA were observed in 62.5% of the erythromycin-resistant strains, while 37.5% had only the 
mutation A2075G. None of the strains harbored CmeABC operon, and ermB was not detected. Using DNA sequencing, the 
amino acid substitution T177S was detected in L4, and substitutions I65V, A103V, and S109A were detected in L22. Twelve 
flaA-SVR alleles were identified among the strains, with the most common SVR-flaA allele, type 287, covering 31.03% of 
ciprofloxacin- and erythromycin-resistant isolates. The present study revealed a high incidence and high levels of resistance 
to ciprofloxacin and erythromycin, as well as broad molecular diversity in C. jejuni isolates from broiler carcasses.
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Introduction

Campylobacteriosis is the most reported gastrointestinal bac-
terial infection in humans in the European Union [1] and the 
third in the USA [2] and Campylobacter jejuni is the species 
commonly associated with human cases. Chicken meat is a 
major source of Campylobacter infection in humans [3] and is 
recognized as a significant risk factor for acquiring this disease 
[4]. Human campylobacteriosis is a self-limiting illness that 
does not require antimicrobial treatment. However, in cases 
of invasive diseases and infections in immunosuppressed and 
young individuals, antibiotic therapy can be performed using 
erythromycin and ciprofloxacin as alternative drugs [5]. In 

Responsible Editor: Mariana X Byndloss

 * Thomas Salles Dias 
 thomassalles@id.uff.br

1 Postgraduate Program in Veterinary Medicine (Veterinary 
Hygiene and Processing Technology of Animal Products), 
Faculdade de Veterinária, Universidade Federal Fluminense, 
Rua Vital Brasil Filho, 64, Zip Code: 24230340, Niteroi, RJ, 
Brazil

2 Department of Preventive Veterinary Medicine, Faculdade de 
Veterinária, Universidade Federal Fluminense, Niteroi, RJ, 
Brazil

3 Laboratory of Molecular Epidemiology, Faculdade de 
Medicina Veterinária, Universidade Federal de Uberlândia, 
Uberlândia, MG, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/s42770-023-00969-5&domain=pdf
http://orcid.org/0000-0001-8815-3316


1066 Brazilian Journal of Microbiology (2023) 54:1065–1073

1 3

Brazil, there is little information on human campylobacteri-
osis because this bacterium has not been routinely investigated 
in human diarrhea. However, an outbreak of Escherichia coli 
O:157 infection associated with C. jejuni that resulted in the 
death of two children has been reported in southern Brazil. 
The authors reported that the deaths were attributed to E. coli 
O157, but that co-infection with C. jejuni could contribute to 
the severity of the symptoms [6].

Since the 1980s, an increase in Campylobacter fluoroqui-
nolone-resistant strains has been reported in many countries 
[7–9], coinciding with the introduction of fluoroquinolones in 
veterinary medicine [10]. Currently, fluoroquinolone-resistant 
Campylobacter is classified as a high-priority pathogen in the 
Global Priority Pathogens List of Antibiotic-Resistant Bacteria 
by the World Health Organization [11] and fluoroquinolone- and 
macrolide-resistant Campylobacter are listed as serious threats 
to public health by the Centers for Disease Control and Preven-
tion [12]. The main mechanism of resistance to fluoroquinolones 
in Campylobacter is a mutation in the Quinolone Resistance 
Determinant Region (QRDR) of the gyrA gene [5]. Resistance 
to macrolides is related to mutations in positions 2074 and 2075 
of domain V of 23 s rRNA. In both cases, the efflux pump Cme-
ABC has been described as a secondary mechanism that acts 
synergistically by expelling toxic compounds such as antimicro-
bials, metals, and bile. Other mechanisms, such as ermB gene, 
which encodes a methylase that confers a high level of resistance 
to this class [13], and mutations in the L4 and L22 ribosomal 
proteins, have been reported in Campylobacter strains and are 
associated with low levels of resistance [14].

Several studies have reported high genetic diversity in C. 
jejuni [15–17]. Short variable regions of flaA gene sequence 
(SVR-flaA), Pulsed Field Gel Electrophoresis (PFGE), 
multilocus sequence typing (MLST), and whole genome 
sequencing (WGS) [18, 19] are typing methods commonly 
used to differentiate Campylobacter isolates. Although 
MLST and WGS are more recent typing techniques, SVR-
flaA typing is considered a very useful tool for epidemio-
logical studies of Campylobacter [20], in addition to being 
more affordable.

When compared to the other countries Brazil, has less 
data about Campylobacter jejuni. In this context, this study 
aimed to investigate the phenotypic resistance to ciprofloxa-
cin and erythromycin, the molecular mechanisms involved, 
and the type of C. jejuni isolated from broiler carcasses.

Material and methods

Sample collection

A total of 80 C. jejuni strains isolated from broiler carcasses 
in slaughterhouses under federal inspection in three neigh-
boring states (Parana = 28 strains; Santa Catarina and Rio 

Grande do Sul = 26 strains each) in southern Brazil between 
2017 and 2018 [21] were included in this study. After spe-
cies identification by Matrix-Assisted Laser Desorption Ion-
ization-Time of Flight (MALDI-TOF) mass spectrometry, 
the strains were stored in skim milk at − 80 °C for further 
analysis.

Antibiotic susceptibility test

The Minimum Inhibitory Concentrations (MIC) of erythro-
mycin and ciprofloxacin (Sigma-Aldrich, Brazil) were deter-
mined according to the method reported by the Clinical and 
Laboratory Standards Institute [22]. MIC breakpoints for 
erythromycin and ciprofloxacin were ≥ 4 µg/mL and ≥ 32 µg/
mL, respectively. The concentrations of erythromycin and 
ciprofloxacin ranged from 0.5 to 128 µg/mL and can be 
checked in Table 2. C. jejuni ATCC 33,560 was used as a 
quality control strain.

Molecular characterization of antimicrobial 
resistance

DNA extraction was performed using the Wizard® Genomic 
DNA Purification Kit (Promega, Brazil) following the manu-
facturer’s recommendations. The concentration and quality 
of genomic DNA were measured using a Nanodrop spectro-
photometer (Biodrop®).

The strains were subjected to MAMA-PCR to detect 
gyrA mutation in codon 86 (Thr-Ile) [23] and A2075G/
A2074C mutations in the 23S rRNA gene [24]. DNA 
sequencing to evaluate the presence of mutations in 
the rplD and rplV genes encoding the L4 and L22 ribo-
somal proteins was performed in erythromycin-resistant 
strains, according to Corcoran et  al. (2006) [14]. The 
presence of the ermB gene was investigated as described 
by Wang et al. (2014) [13]. All strains were subjected to 
PCR to detect the genes cmeA, cmeB, and cmeC follow-
ing the protocol described by Lin et al. (2002) [25]. The 
PCR reactions had a final volume of 25 µl containing:1X 
PCR buffer, 1.5 mM MgCl2, 5µL of DNA, 0.2 µM of each 
primer. All reactions were performed with GoTaq® G2 
Hot Start Taq Polymerase (Promega, Brazil) in a T100 
(Biorad) thermocycler. C. jejuni strains identified as car-
riers of the investigated genes and/or mutations were used 
as positive controls and ultrapure water was used as a 
negative control. The details of all primers used and their 
references are listed in Table 1. The obtained amplicons 
were loaded onto a 1.5% agarose gel (Lwt Biotec, Brazil) 
stained with ethidium bromide, submerged in Tris-Ace-
tato-EDTA Buffer (Ludwig, Alvorada, Brazil), and sub-
jected to electrophoresis in a horizontal electrophoresis 
system (Loccus, São Paulo, Brazil) at 90 V for 40 min.



1067Brazilian Journal of Microbiology (2023) 54:1065–1073 

1 3

Genetic diversity

Genetic diversity was assessed by DNA sequencing 
of the Short Variable Region (SVR) of the f laA gene 
according to Meinersmann et al. 1997 [26]. All eryth-
romycin- and ciprofloxacin-resistant strains detected by 
the MIC test (n = 24) and five full susceptible strains 
were addressed. The amplicons were purified using 
a QIAquick PCR purification kit (Qiagen, USA) and 
sequenced with an ABI 3730 DNA sequencer (Applied 
Biosystems) using the RPT/Fiocruz Sequencing Plat-
form. Sequences were manually edited and compared 
with those in current databases using the BLAST suite of 
programs. Nucleotide alignments were generated using 
ClustalW in the Unipro UGENE software [27]. For L4 
and L22, the sequences were aligned to the correspond-
ing sequence of the parent strain NCTC 11,168 using 
the same software to identify specific mutations, and the 
flaA-SVR nucleotide allele was obtained in the database 
found at PubMLST database (http:// pubml st. org/ organ 
isms/ campy lobac ter- jejun icoli) [28]. The dendrogram 
was generated with the CLC GenomicsWorkbench 23.0.2 
(Qiagen, The Netherlands), using the UPGMA method 
with the Jukes and Cantor distance correction model and 
bootstrap values calculated in 1000 replicates.

Statistical analysis

The chi-square test was performed using Epi Info, version 
6.0, software (Centers for Disease Control and Prevention, 
Atlanta, Ga.) to evaluate the differences in resistance levels 
to erythromycin, ciprofloxacin, and their combination in 
strains from different states. A significant level of 0.05 was 
considered statistically significant.

Results

Of the 80 C. jejuni isolates, 81.25% (65/80) were resist-
ant to ciprofloxacin, 30% (24/80) were resistant to eryth-
romycin, and 18.75% (15/80) were susceptible to both 
the antimicrobials. The resistance observed in the Par-
aná state to ciprofloxacin and erythromycin was 53.57% 
(15/28) and 7.14% (2/28), respectively; in the Santa Cata-
rina state 92.31% (24/26) and 30.77% (8/26); and 100% 
(26/26) and 53.85% (14/26) in the Rio Grande do Sul 
state, respectively. Strains from Paraná were more sensi-
tive to both antimicrobials than those from Santa Cata-
rina and Rio Grande do Sul (pciprofloxacin = 0.0000006; 
perythromycin = 0.00003). MIC values for ciprofloxacin 
ranged from ≤ 0.125 to 64 µg/mL and for erythromycin 

Table 1  Target genes/mutation, 
primer sequence, annealing 
temperature (°C), amplicon size, 
and reference of the primers 
used in this study

* Mutation detection position 2074, **mutation detection position 207

Gene Primer sequence (5′-3′) Sense Annealing 
temperature

Size (pb) Reference

cmeA TTT GGA TCC TTG ATG GCT AAG GCA ACT TTC Forward 54° 771 [25]
CTC CAA TTT CTT AAG CTT CGC TAC CAA Reverse

cmeB GGT ACA GAT CCT GAT CAA GCC Forward 820
AGG AAT AAG TGT TGC ACG GAA ATT Reverse

cmeC GCT TGG ATC CTT ATC TTG GGA AAA A Forward 624
TTT TTA AAG CTT TAA GGT AAT TTT CTT Reverse

ermB GGG CAT TTA ACG ACG AAA CTGG Forward 55° 421 [13]
CTG TGG TAT GGC GGG TAA GT Reverse

gyrA TTT TTA GCA AAG ATT CTG AT Forward 50° 265 [23]
CAA AGC ATC ATA AAC TGC AA Reverse

23sRNA TTA GCT AAT GTT GCC CGT ACCG Forward 59° 485 [24]
TAG TAA AGG TCC ACG GGG TCGC* Reverse
AGT AAA GGT CCA CGG GGT CTGG** Reverse

L4 TTA TCC CTC TTT TGT AAT AGA TTC TAA Forward 51° 614 [14]
ATG AGT AAA GTA GTT GTT TTA AAT GAT Reverse

L22 TTA GCT TTC CTT TTT CAC TGT TGC TTT Forward 55° 425
ATG AGT AAA GCA TTA ATT AAA TTC ATAAG Reverse
TGA GAA GTT AAG TTT TGG AGAG Reverse

SVR-flaA CTA TGG ATG AGC AAT TWA AAAT Forward 60° 402 [26]
CAA GWC CTG TTC CWA CTG AAG Reverse

http://pubmlst.org/organisms/campylobacter-jejunicoli
http://pubmlst.org/organisms/campylobacter-jejunicoli
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0.5 to > 128 µg/mL. Most ciprofloxacin-resistant strains 
(55/80) showed MIC ≥ 16 µg/mL and almost all eryth-
romycin-resistant strains (22/24) showed MIC > 128 µg/
mL (Table 2).

All ciprofloxacin-resistant strains (65/80) had a mutation 
at codon 86 (Thr-86-Ile) in the QRDR of gyrA, whereas the 
sensitive strains had no substitution. Regarding the erythro-
mycin-resistant strains, 62.5% (15/24) had a mutation in both 
the A2074C and A2075G positions of 23S rRNA, and 37.5% 
(9/24) had only the A2075G mutation. None of the sensi-
tive strains harbored the A2074C or A2075G mutations. Six 
strains had amino acid substitutions in three codons (I65V, 
A103V, and S109A), and seven had two substitutions (I65V/
S109A) in the L22 ribosomal protein. Seven strains harbored 
T177S substitutions in the L4 protein, and no strain had L4 
and L22 substitutions concurrently. The ermB gene was not 
detected in the present study and all strains (80/80) harbored 
the cmeABC operon.

SVR-flaA typing revealed 12 different alleles in the 29 
investigated strains. Allele 287 was the most predominant, 
covering 31.03% (9/29) of the isolates, followed by alleles 
975 and 54 with four isolates each (4/29). The five SVR-flaA 
alleles detected in the five susceptible strains differed from 
those detected in resistant strains. Table 3 lists flaA alleles, 
antimicrobial resistances, and molecular markers associated 
with the 29 sequenced strains (Fig. 1). Two clusters were 
identified with a similarity greater than 84.11%. Only the 
Cj89 strain was grouped alone in one cluster and the other 
28 strains evaluated were grouped in another cluster with a 
similarity ≥ 94.70%.

Discussion

High incidence and levels of resistance to both antimicrobi-
als tested were detected in the C. jejuni strains tested in this 
study. The presence of these resistant strains represents an 
additional risk to public health, as infections may be more 
difficult to treat in cases where antimicrobial therapy is 
required. Strains from Paraná were more sensitive to both 

antimicrobials than those from Santa Catarina and Rio 
Grande do Sul. This may be related to the level of aware-
ness of antimicrobial use by chicken producers, biosecurity 
in poultry farms leading to lower antimicrobial use, or even 
aspects related to differences in Campylobacter strains that 
circulate in each state. Several studies have detected fluoro-
quinolone-resistant strains isolated from chicken carcasses 
in Brazil and worldwide, with MIC exceeding 128 µg/mL [5, 
29]. In our study, 81.25% (65/80) of the strains were resist-
ant to ciprofloxacin with MIC reaching 64 µg/mL. Studies 
show that a single mutation at position Thr-86-Ile in the 
QRDR of gyrA is considered the main mechanism of resist-
ance to fluoroquinolones and leads to the replacement of the 
amino acid threonine for isoleucine [5, 30, 31]. All resistant 
strains in our study harbored this mutation, which was not 
observed in the susceptible strains. This mutation confers a 
fitness benefit to Campylobacter in chickens by reducing the 
supercoiling activity of gyrA, which may help in the emer-
gence, maintenance, and spread of fluoroquinolone-resistant 
isolates in poultry farms [32] and can overcome the coloni-
zation of susceptible strains [33]. Previous results obtained 
by our research group [29–31, 34] suggested the substitution 
of susceptible strains with resistant strains over time in the 
poultry production chain of Rio de Janeiro State, located in 
the southeast region of Brazil. The results obtained in the 
present study, including strains isolated between 2017 and 
2018 from three other states, suggest that the replacement 
of susceptible strains with fluoroquinolone-resistant strains 
is widespread.

In our study, high levels (MIC ≥ 64 µg/mL) of erythromy-
cin resistance were detected in 30% (24/80) of the strains. 
In previous studies in Brazil, erythromycin resistance in 
Campylobacter spp. isolated from poultry, ranged from 
0 to 42.60% [35–38]. All resistant strains had the muta-
tions A2074C/A2075G simultaneously or only A2075G. 
These mutations are considered to be the main mechanisms 
involved in the high levels of resistance to macrolides and 
do not represent any advantage for bacterial cells. Studies 
comparing colonization capacity demonstrated that strains 
without mutations supplanted mutant strains, indicating that 

Table 2  Distribution of the minimal inhibitory concentration values for 80 C. jejuni isolates from broiler carcasses

Antimicrobial State MIC(μg/mL) Susceptible 
isolates (%)

Resistant isolates (%) Total

 ≤ 0.125 0.25 0.5 1 2 4 8 16 32 64  > 128

Ciprofloxacin Paraná 12 0 1 0 0 0 1 10 4 0 0 13 (46.42) 15 (53.58) 28 (100)
Santa Catarina 2 0 0 0 0 0 6 7 11 0 0 2 (7.70) 24 (92.30) 26 (100)
Rio Grande do Sul 0 0 0 0 0 0 3 9 13 1 0 0 (0) 26 (100) 26 (100)

Erythromycin Paraná 0 0 4 7 13 0 2 0 0 0 2 26 (92.85) 2 (7.15) 28 (100)
Santa Catarina 0 0 2 5 9 2 0 0 0 0 8 18 (69.23) 8 (30.77) 26 (100)
Rio Grande do Sul 0 0 1 2 8 1 0 0 0 2 12 12 (46.15) 14 (53.85) 26 (100)
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in the absence of macrolides, these mutations decrease cell 
fitness [39]. ErmB encodes a ribosomal RNA methylase 
capable of methylating the macrolide-binding site and has 
also been linked to high levels of resistance in Campylobac-
ter [13]. Since its first detection in China [13], reports of 
ermB-positive Campylobacter isolate have occurred in sev-
eral countries [40–43]. Although one report was published 
in Latin America [44], this gene has not been detected in 
Campylobacter isolates from Brazil [36, 45, 46].

We detected the I65V, A103V, and S109A in L22 amino 
acid substitutions, and only the T177S substitution in the L4 
ribosomal protein, as previously reported [14, 47, 48]. Muta-
tions in L4 and L22 have been associated with a lower level 
of resistance to macrolides (erythromycin MIC = 32 μg/
mL) in the absence of mutations in 23S rRNA genes [39]. 
In our study, it was difficult to estimate the real contribution 
of these substitutions to the level of resistance because the 
erythromycin-resistant strains had other mutations at posi-
tions 2074 and/or 2075 in the 23S rRNA, and low levels of 
resistance were not detected.

In addition to mutations in sites of antimicrobial action, 
such as gyrA and domain V of the 23S rRNA, the presence of 
efflux pumps in Campylobacter spp. is recognized as a sec-
ondary mechanism of resistance to ciprofloxacin and eryth-
romycin and has been considered a factor that may potentiate 

resistance to these classes [49]. We detected genes related 
to the CmeABC efflux pump in 100% (80/80) of the strains, 
similar to the results obtained in other studies [50, 51]. The 
high prevalence of these genes is probably due to the known 
participation of efflux pumps in bacterial cell metabolism, 
mediation of resistance to bile salts in the intestinal tract, 
uptake of essential nutrients and ions, and excretion of bac-
terial metabolism products and toxic substances, which play 
a fundamental role in colonization by Campylobacter [49, 
52].

Campylobacter is characterized by its high genetic vari-
ability, and the formation of new combinations of genetic 
alleles can be accelerated because this bacterium is naturally 
competent for DNA uptake and transformation [53]. Despite 
the wide use of MLST and PFGE, flaA typing is a com-
monly-employed technique offering discriminatory power, 
high reproducibility even if performed in different labora-
tories, and the possibility of comparison with strains from 
other countries deposited in the databases [18, 54]. How-
ever, SVR-flaA typing is a single-locus analysis method that 
does not assess the entire genome. Twelve different alleles 
of C. jejuni were identified. Although many strains clustered 
into the same allele, such as those belonging to the SVR-
flaA alleles 287, 975, and 54, few differences in mutations 
and antimicrobial resistance levels to ciprofloxacin were 

Fig. 1  Phylogenetic tree based on 29 SVR-flaA gene sequences of C. 
jejuni isolates from chicken carcasses in southern Brazil. The dendro-
gram was inferred by using the UPGMA method with Jukes and Can-
tor distance correction model and bootstrap values calculated in 1000 

replicates. “PR” Paraná, “SC” Santa Catarina, “RS” Rio Grande do 
Sul, “CIP” Ciprofloxacin, “ERY” Erythromycin, “R” resistant strain, 
and “S” a susceptible strain
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observed. Frequent intra-and interspecies genetic mutations 
in C. jejuni result in different molecular variants, as deter-
mined by SVR-flaA typing [55]. The flaA allele type 287 was 
the most common, occurring in 31.03% (9/29) of the strains, 
although it was not detected in the Parana state. Other studies 
[56, 57] have detected this allele in samples from chickens 
and cases of human campylobacteriosis, reinforcing the role 
of chickens as a source of Campylobacter. Wieczorek et al. 
(2019) [55] found that this SVR-flaA type was the most com-
mon among numerous multidrug-resistant profiles, including 
resistance to ciprofloxacin in Campylobacter isolates from 
poultry chains. However, it was not clear whether there was 
a correlation between flaA-SVR 287 genotype and antimi-
crobial resistance. Other flaA allele types detected in this 
study, such as 34 and 45, have also been associated with 
human cases and chicken meat [57–59]. Additional research 
is necessary to investigate the connection between antimicro-
bial resistance and genotypes. Apart from the strains clus-
tered into alleles 287, 975, and 54, we observed variability 
among alleles in the three different states. Since evolution 
is a dynamic process, monitoring the genotypes of Campy-
lobacter is vital, as several anthropogenic factors such as 
intensive animal production and antibiotic use can act as 
selective pressures, changing epidemiological chains and 
how this microorganism interacts with its hosts.

Conclusion

A high incidence and level of resistance to ciprofloxa-
cin and erythromycin and related point mutations were 
detected in C. jejuni. These results are of public health 
concern when antibiotic therapy is required for human 
campylobacteriosis caused by poultry strains. We also 
detected variability in the SVR-flaA alleles among the 
resistant strains, corroborating the high diversity reported 
in several Campylobacter studies. Owing to the high 
plasticity and genetic diversity of Campylobacter jejuni, 
whole-genome sequencing should be performed on strains 
circulating in the Brazilian poultry industry to investigate 
the possible relationship between certain genotypes and 
antimicrobial resistance.
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