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Abstract
Bacterial resistance to multiple drugs is a worldwide problem that afflicts public health. Various studies have shown that 
silver nanoparticles are good bactericidal agents against bacteria due to the adherence and penetration of the external bacterial 
membrane, preventing different vital functions and subsequently bacterial cell death. A systematic review of ScienceDirect, 
PubMed, and EBSCOhost was conducted to synthesize the literature evidence on the association between the bactericidal 
property of silver nanoparticles on both resistant Gram-positive and Gram-negative bacteria. Eligible studies were original, 
comparative observational studies that reported results on drug-resistant bacteria. Two independent reviewers extracted the 
relevant information. Out of the initial 1 420, 142 studies met the inclusion criteria and were included to form the basis of 
the analysis. Full-text screening led to the selection of 6 articles for review. The results of this systematic review showed 
that silver nanoparticles act primarily as bacteriostatic agents and subsequently as bactericides, both in Gram-positive and 
Gram-negative drug-resistant bacteria.
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Introduction

One of the greatest challenges facing the global health-
care systems today is drug-resistant pathogenic species [1]. 
Drug-resistant bacterial infections are on the rise and pose 
a severe risk to the public’s health [2]. Antimicrobial resist-
ance (AMR) in strains is genetically determined and most 
mediated by the acquisition of extrachromosomal genetic ele-
ments through horizontal gene transfer, low outer membrane 
permeability, production of degradative enzymes, and target 

modification, as examples of mechanisms used by bacteria 
to resist antibiotic toxicity [3-5]. Bacterial resistance affects 
human and animal health worldwide, so new alternatives are 
being sought to help successfully address the different types 
of drug-resistant bacteria. AMR is a growing public health 
problem that is caused by the overuse and misuse of antibi-
otics. While antibiotics offer a safe and efficient treatment 
option for patients with bacterial infections, their availability 
also poses a risk of overuse, which can lead to the evolu-
tion of antibiotic-resistant bacteria at a population level [6]. 
Additionally, the widespread use of antibiotics in animal hus-
bandry has also contributed to the development of AMR, as 
it creates an environment that selects for resistant bacteria [7, 
8]. Other factors that contribute to the development of AMR 
include poor infection control practices, the lack of access to 
clean water and sanitation [9], and inadequate surveillance 
systems. In the same way, bacterial persistence also occurs. 
Persistent bacteria are a subpopulation of cells that are not 
killed by antibiotics [10-12]. This phenotype arises when 
bacteria enter a dormant state, making them less susceptible 
to antibiotics. Once the antibiotic concentration decreases, 
the dormant cells can resuscitate and regrow, potentially 
acquiring resistance genes in the process. Thus, understand-
ing the mechanisms that contribute to bacterial persistence is 
crucial for developing new strategies to combat AMR.
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Most bacteria can be divided into two separate classifica-
tions according to their cell wall structure: Gram-positive 
and Gram-negative [13]. Gram-positive bacteria contain a 
thick peptidoglycan layer in their cell walls, while Gram-
negative bacteria have a thin peptidoglycan layer with an 
additional outer membrane consisting of lipopolysaccharide 
[14]. The outer membrane of Gram-negative bacteria is a 
critical component that plays a significant role in the resist-
ance of these bacteria to a wide range of antibiotics. The 
outer membrane acts as a protective barrier against various 
antibiotics, preventing them from entering the bacterial cell 
and exerting their antibacterial activity. As a result, the outer 
membrane is considered the primary factor responsible for 
the high level of drug resistance observed in Gram-nega-
tive bacteria. New treatments have been developed to fight 
against Gram-negative resistant bacteria such as β-lactamase 
inhibitor antibiotic adjuvants which deactivate the mecha-
nism of resistance [15]. In the same sense, Gram-positive 
bacteria have shown an ability to acquire resistance to almost 
all clinically available antimicrobials. Mechanisms of resist-
ance include alteration of bacterial structures, such as thick-
ening of peptidoglycan, and efflux of drugs by overexpres-
sion of efflux pumps [16]. Research efforts have resulted 
in the discovery of innovative antibiotics and alternative 
treatments like peptidic benzimidazoles, quorum sensing 
(QS) inhibitors [17-20], and Ru complexes [21, 22] to target 
novel bacterial processes in Gram-negative bacteria, while 
teixobactin [23, 24], malacidins [25], nanostructured materi-
als [26, 27], and microemulsions [28] have been studied in 
Gram-positive bacteria, and DCAP [29], odilorhabdins [30], 
and bacteriophages [31] have been studied in both [15, 16].

Antibiotics are chemical substances used to treat bacterial 
infections. Antibiotics kill bacteria or inhibit their growth 

by blocking key cellular pathways [32]. They also allow 
our natural defenses, including the host immune system, 
to eliminate invading microorganisms [33, 34]. They tar-
get specific cellular components or processes in bacteria, 
disrupting their growth and replication. There are several 
main classes of antibiotics, each with different mechanisms 
of action and molecular targets. For example, beta-lactams, 
such as penicillins and cephalosporins, target bacterial cell 
wall synthesis by inhibiting the enzymes that cross-link pep-
tidoglycan strands [35]. Aminoglycosides, like streptomycin 
and gentamicin, bind to bacterial ribosomes, inhibiting pro-
tein synthesis [36]. Tetracyclines, such as doxycycline, also 
target the bacterial ribosome, but at a different site than ami-
noglycosides [37]. Fluoroquinolones, such as ciprofloxacin 
and levofloxacin, inhibit bacterial DNA synthesis by binding 
to the enzyme DNA gyrase [38-40]. Macrolides, such as 
erythromycin and azithromycin, bind to the bacterial ribo-
some and inhibit protein synthesis by preventing peptide 
bond formation [41-44]. These are just a few examples of the 
different classes of antibiotics and their targets in bacteria. 
Long-term use of antibiotics leads to bacterial resistance. 
It is important to note that with the rise of antibiotic resist-
ance, some antibiotics may no longer be effective against 
certain bacterial strains. Acquired resistance develops with 
genetic mutations or by external genetic acquisition from 
nearby resistant organisms through horizontal gene transfer 
[45] (Fig. 1).

Drug-resistant bacteria increase the risk of failure of con-
ventional therapies, resulting in increased morbidity, higher 
mortality, longer duration of hospitalization, and higher 
treatment costs. Currently, researchers are focusing on the 
development of new antimicrobial agents [47] such as anti-
microbial peptides and vaccines [48], combination therapy 

Fig. 1  Scheme of the mechanism by which bacteria transmit drug resistance [46]
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[49], antibiotics hybrids [50], molecularly imprinted poly-
mers [51], complex phytochemicals [52], carbon dot-based 
therapeutics [53], heterostructures 2D [54], nanoparticles 
[55] including silica-based nanosystems [56], alumina [57], 
and metallic nanoparticles [58]. For several years, silver 
nanoparticles (AgNP) have attracted attention and their 
antibacterial properties have been extensively investigated, 
although many of the studies are conducted in combina-
tion with other antimicrobial agents [59-63]. Therefore, it 
is necessary to elucidate their effectiveness on their own in 
drug-resistant bacteria.

Resistance to nanomaterials is less likely to develop in 
bacteria [64, 65]. Therefore, there is a lot of interest in non-
traditional antibacterial medicines to combat the resistance 
that diverse harmful microbes develop against the most 
common antibiotics. Although AgNP’s strong antimicrobial 
impact has been extensively characterized, its mechanism 
of action is still not completely understood [66]. In fact, a 
complex mechanism by which nanoparticles interact with 
germs appears to relate to the strong antibacterial and broad-
spectrum activity against morphologically and metabolically 
distinct microorganisms. Furthermore, their structure and 
various ways of interacting with bacterial surfaces may pre-
sent a novel and underutilized antibacterial mechanism to 
take advantage of. The fabrication and synthesis parameters, 
such as temperature, the presence of a substrate, pH, and the 
flow velocity of the growth material, have a major impact on 
the morphology and structure of AgNPs [67]. AgNP nano-
particles have a crystalline structure and can be synthesized 
in various shapes and sizes, ranging from a few nanometers 
to hundreds of nanometers. The size of nanoparticles plays 
a critical role in their interaction with bacterial cell wall 
and membranes [68]. The size of nanoparticles can influ-
ence the surface area available for interaction with bacterial 
membranes [69]. Enhanced interaction with microorganisms 
and an amplified antimicrobial effect can be attributed to 
the larger surface area of nanoparticles. In addition, surface 
charge of nanoparticles can also influence their interaction 
with bacterial membranes. Positively charged nanoparticles 
can adhere to the negatively charged bacterial membrane and 
destabilize it, leading to bacterial cell death [70].

The purpose of this work is to determine the antibacte-
rial efficacy of AgNPs, without combining with other agents, 
on resistant bacteria. Considering that the antibacterial effect 
of silver nanoparticles has been extensively studied and that 
there are several species of resistant bacteria that can be clas-
sified as Gram-positive or Gram-negative. Therefore, we pose 
the research question: In what type of drug-resistant bacteria 
(Gram-positive or Gram-negative) are silver nanoparticles 
more effective as bactericides? The results of this research, if 
validated by larger studies, may help to develop nanomaterials 
to mitigate the risk of infections by drug-resistant bacteria.

Methods

This systematic review follows the Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses 
(PRISMA) guidelines and follows the protocol registered 
elsewhere [71]. A comprehensive search for relevant evi-
dence was conducted following the search strategy (“Silver 
nanoparticles” OR AgNPs) AND (“Antibacterial activity” 
OR “Antimicrobial agents” OR “Bactericidal activity”) 
AND (“Drug resistant” OR “Multidrug resistant”) AND 
(“Gram positive” OR “Gram negative”). The following 
databases were searched: ScienceDirect, PubMed, and 
EBSCOhost. The paper that met the inclusion criteria was 
included in the review. The inclusion criteria were that it 
was a study applying silver nanoparticles in drug-resist-
ant bacteria, that it clearly indicated the Gram-positive or 
Gram-negative classification of the strain used, that it had 
a publication date of 2015 onwards, that we had access 
to the full text, and that it was written in English. On the 
other hand, the paper was not included in the review if it 
met any exclusion criteria. The exclusion criteria deter-
mined that the paper was excluded if it was a publication 
other than a research article (e.g., reviews, book chapters, 
or editorials) or that silver nanoparticles were used in com-
bination with any other component or drug in the study.

Records identified were exported to bibliographic soft-
ware (Mendeley Reference Manager). Duplicate records 
were excluded. Titles and abstracts of all associated arti-
cles were screened for eligibility against the review selec-
tion criteria. Screening of articles and data extraction were 
independently carried out by two reviewers (C. C. G. and 
L. I. G. G), with a third reviewer asked in case of disagree-
ment. Data were extracted on the characteristics of the 
AgNP, such as their synthesis method, the size, and mor-
phology. In the same way, data such as the type of bacteria, 
Gram classification, incubation time, minimum inhibitory 
concentration, or zone of inhibition were also extracted 
from the sources of evidence. All the information on indi-
cated variables of the included articles were listed in tables 
built in Microsoft Excel. Last of all, the content of those 
Excel tables was checked by a third reviewer (JMC-A), 
attesting the registry compliance.

Results and discussion

Our primary search identified a total of 1420 articles. 
The screening of the papers is depicted in Fig. 2. Data-
base automation tools, such as publication date, filtering 
of records other than research articles, resulted in the 
removal of 1211 records. Duplicates screening led to 67 
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articles being excluded resulting in 142 remaining for full-
text screening. Full-text screening led to 6 articles being 
selected for the review.

All 6 studies used both Gram-positive and Gram-negative 
bacteria for their respective investigations, which allowed a 
comparison between the results. Of the 6 studies, the one 
that obtained a smaller average size of AgNP corresponds 
to Yuan et al. 2017 [72] with an average of 11 nm, which 
was achieved by a green synthesis that was performed 
using quercetin. The influence of AgNP nanoparticle size 
on bacterial interaction and antimicrobial efficacy has been 
extensively studied in the literature. The literature suggests 

that nanoparticle size has a significant impact on their 
antimicrobial activity against bacteria [69]. However, it is 
important to note that other factors such as shape [73, 74] 
as well as surface charge [75] can also affect their interac-
tion with bacterial cells. Studies have shown that smaller 
AgNPs have greater inhibitory activity compared to their 
counterparts. This is attributed to the fact that AgNPs with a 
size of approximately 10 nm can easily penetrate the nucleus 
of microorganisms, leading to an accumulation of envelope 
protein precursors in bacterial cells, which is indicative of 
the dissipation of the proton motive force, leading to bacte-
rial death [76]. Other studies agree that the size close to 

Records identified from:
ScienceDirect (n = 1 281)
PubMed (n = 50)
EBSCOhost (n = 89)
1420

Records removed before screening:
Duplicate records removed (n =
67)
Records marked as ineligible by
automation tools (n =1 211)

Records screened
(n = 142)

Reports sought for retrieval
(n = 1)

Reports not retrieved
(n = 1)

Reports assessed for eligibility
(n = 142)

Reports excluded:

The formulation included AgNP 
with other components (n = 44) 
The article is a review type (n = 15)
The bacterial strains under study
are not drug resistant. (n = 68)
Other reasons (n = 9)

Studies included in review
(n = 6)

Identification of studies via databases and registers
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Fig. 2  PRISMA flowchart
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10 nm has a greater impact on antibacterial efficacy over the 
range 5–100 nm [77].

On the other hand, the Gram-negative bacterial strains 
that were repeated in more studies were Pseudomonas aer-
uginosa, being used by Cavassin et al. 2015 [78], Yuan et al. 
2017 [72], Arul et al. 2017 [79], and Mahmod et al. 2021 
[80] (Table 1). While in Gram positives all 6 studies used 
Staphylococcus aureus, as shown in Table 1. Pseudomonas 
and Staphylococcus are commonly found in various stud-
ies due to their high prevalence as pathogenic bacteria and 
their ability to develop resistance to antibiotics [81]. Sev-
eral studies have shown that Pseudomonas aeruginosa and 
Staphylococcus aureus are two of the most common bacteria 
associated with hospital-acquired infections, and both are 
known for their high levels of antibiotic resistance [82-84]. 
The mechanisms of resistance in these bacteria have been 
extensively studied, and it has been found that they pos-
sess various genetic and biochemical mechanisms that allow 
them to resist the action of antibiotics [85-89]. In addition, 
Pseudomonas and Staphylococcus are both opportunis-
tic pathogens, meaning they can cause infection in people 
with weakened immune systems, such as those with chronic 
diseases or who have undergone surgery [90, 91]. There-
fore, it is important to study the interaction of AgNPs with 
these bacteria as they are responsible for a significant por-
tion of hospital-acquired infections and are known for their 
resistance to antibiotics. In five of the studies included in 
the review the samples were incubated for 24 h after being 
exposed to AgNP [72, 78, 79, 92, 93] in which the mini-
mum inhibitory concentration (MIC) was evaluated. Paosen 

et al. 2019 [93] reported the lowest MIC of 0.02–0.09 μg 
/mL against the Gram-negative Acinetobacter baumannii 
as well as for the Gram-positive E. faecalis and S. aureus. 
Regarding the results of Mahmod et al. 2021 [80], Gram 
negative had an inhibition zone of 12 mm for both strains, 
while the Gram-positive Staphylococcus has an inhibition 
zone of 8.67 mm.

Table 2 presents the objectives and a summary of the 
findings of the 6 included studies. Overall, the main objec-
tives of these studies were to successfully synthesize AgNP 
and then apply and evaluate their effectiveness on drug-
resistant bacteria. The studies by Yuan et al. 2017 [72] and 
Paosen et al. 2019 [93] report that the bacteria suffered dam-
age to the cell membrane, which causes them instability, thus 
inhibiting their respiration and thus preventing them from 
growing. Finally, AgNP in all 6 studies presents a greater 
effect on Gram-negative strains, according to the findings 
shown in Table 2.

The findings of this systematic review indicate that more 
studies are needed to focus AgNP specifically on drug-resist-
ant strains. It was also found that as new alternatives such as 
silver nanoparticles to combat bacterial resistance are found 
to be in demand to meet the needs of modern medicine, it 
is important to find ways to synthesize such nanoparticles 
in an environmentally friendly and cost-effective manner. 
Additionally, studies found different ways to perform green 
synthesis by bioresources such as extract of flowers, leaves, 
stems, plants, and even in microorganisms such as bacteria 
obtained from seawater as in the case of Arul et al. 2017 
[79]. In the study of Mahmod et al. 2021 [80], it was found 

Table 1  Summary of data on Gram-negative and Gram-positive bacteria extracted from evidence sources

*MIC, minimum inhibitory concentration; ZOI, zone of inhibition

Ref Morphology, size (nm) Type of test, hours 
of incubation

Drug-resistant bacteria used with their Gram 
classification and notable MIC or ZOI results

[72] Well-dispersed and highly spherical in shape with an average size 
of 11 nm

MIC, 24 P. aeruginosa ( −), 1 μg/ml
S. aureus ( +), 2 μg/ml

[78] Spherical, 40 nm MIC, 24 A. baumannii ( −), 3.4 μg/ml
P. aeruginosa ( −), 3.4 μg/ml
S. aureus ( +),6.7 μg/ml

[79] Spherical in shape and the sizes ranged between 24 and 46 nm MIC, 24 E. coli ( −), 6.25 μg /mL
K. pneumoniae ( −), 3.12 μg /mL
P. aeruginosa ( −), 3.12 μg /mL
S. aureus ( +),12.5 μg /mL

[80] ––––– ZOI, 18 K. pneumoniae ( −), 12.00 ± 0.58 mm
P. aeruginosa ( −), 12.00 ± 1.00 mm
S. aureus ( +), 7.00 ± 1.00 mm
S. mutans ( +), 8.67 ± 1.53 mm

[92] Nearly triangular geometry with a mean size of 18 ± 3 nm MIC, 24 E. coli ( −), 4 μg /mL
S. aureus ( +), 8 μg /mL

[93] Spherical shaped with an average size of 17.51 nm MIC, 24 A. baumannii ( −), 0.02–0.09 μg /mL
E. coli ( −), 0.04–0.18 μg /mL
E. faecalis ( +),0.09–0.36 μg /mL
S. aureus ( +),0.09–0.36 μg /mL
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that with such bioactive natural compounds could serve 
as supporting materials for the formulation of new drugs 
against various bacterial infections.

Moreover, the size of nanoparticles was also found to 
influence the effectiveness on multidrug-resistant bacteria, 
according to Paosen et al. 2019 [93] smaller AgNP with 
larger specific surface area caused more damage to the cell 
membrane, which resulted in stronger antibacterial potency 
as they could achieve closer contact with bacterial cells. 
This can be observed in studies that successfully synthe-
sized smaller nanoparticles, leading to improved results in 
tests conducted by Yuan et al. in 2017 [72] and Paosen et al. 
2019 [93]. The results suggest that smaller-sized silver nano-
particles have greater ease of addition and penetration into 
bacteria, thus blocking cell respiration and inhibiting cell 
growth and reproduction, acting as a bacteriostatic agent, 
and followed by bactericidal activity.

A positive response was found in the studies regarding 
the effectiveness of silver nanoparticles on drug-resistant 
bacteria, both in Gram-positive and Gram-negative bacteria. 
According to the findings of the studies shown in Table 2, 
AgNP nanoparticles have demonstrated a greater efficacy 
against drug-resistant Gram-negative bacteria, mainly attrib-
uted to the structural differences between Gram-positive 
and Gram-negative bacterial cells. Even in studies such as 
Cavassin et al. 2015 [78] where AgNP obtained by different 
methods were compared, drug-resistant Gram-negative bac-
teria showed a greater effect than on drug-resistant Gram-
positive bacteria. According to Das et al. 2015 [92], these 
results can be explained based on differences in the cell wall 
of each strain; the cell wall of Gram-positive strains is wider 
than the cell membrane of Gram-negative strains.

It is well known that Gram-negative bacteria pos-
sess an outer membrane outside the peptidoglycan layer, 
which is not present in Gram-positive organisms [94]. 
The outer membrane of Gram-negative bacteria is com-
posed of lipopolysaccharides and phospholipids, which 
creates a formidable barrier for compounds to penetrate 
and reach the cytoplasm [95]. The important role of the 
outer membrane is to serve as a selective permeability 
barrier to protect bacteria from harmful agents such as 
detergents, drugs, toxins, degrading enzymes, and pen-
etrating nutrients to sustain bacterial growth [96]. How-
ever, AgNPs can traverse this membrane due to their 
small size and interact with the cell wall and cytoplasmic 
membrane. This implies that in drug-resistant bacteria 
again the outer cell membrane plays an important role in 
the interaction with silver nanoparticles. This interaction 
leads to the disruption of membrane integrity, resulting 
in the release of intracellular contents and cell death. 
Additionally, AgNPs have been found to attach to the 
negatively charged cell surface of Gram-negative bacte-
ria, increasing their uptake and accumulation within the 
cells. These unique properties make AgNPs an attractive 
therapeutic option for targeting Gram-negative bacteria, 
which are often more resilient to antibiotics due to their 
outer membrane barrier. In Gram-positive bacteria, the 
peptidoglycan layer is thick and directly exposed to the 
extracellular environment, whereas in Gram-negative 
bacteria, the peptidoglycan layer is thinner. The pepti-
doglycan layer in both Gram-positive and Gram-negative 
bacteria contains cross-linked peptides and polysaccha-
ride chains. The structural difference in the polysaccha-
ride chains of Gram-negative and Gram-positive bacteria 

Fig. 3  Silver nanoparticle interaction with Gram-negative and Gram-
positive bacteria. (A) Schematic representation of the interaction 
between silver nanoparticles and Gram-positive bacteria. The thick 
and cross-linked peptidoglycan layer in Gram-positive bacteria cre-
ates a formidable barrier for silver nanoparticles to traverse and inter-
act with the cell membrane, resulting in lower efficacy compared to 

Gram-negative bacteria. (B) Schematic representation of the inter-
action between silver nanoparticles and Gram-negative bacteria. 
The small size of silver nanoparticles allows them to cross the outer 
membrane and interact with the cell wall and cytoplasmic membrane, 
leading to membrane damage and cell death
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may also explain why silver nanoparticles have a harder 
time penetrating the peptidoglycan layer in Gram-posi-
tive bacteria. The peptidoglycan layer in Gram-positive 
bacteria is thicker and more cross-linked, making it more 
difficult for silver nanoparticles to traverse this layer and 
interact with the cell membrane. This may explain why 
silver nanoparticles are generally less effective against 
Gram-positive bacteria compared to Gram-negative bac-
teria (Fig. 3).

Conclusion

The overall evidence is not sufficiently conclusive to affirm 
that silver nanoparticles, applied specifically to drug-resistant 
bacteria, are a reliable option for use as antimicrobial agents 
against infections caused by these microorganisms. Most of 
the studies included in this review performed a green syn-
thesis to obtain the AgNP, which uses different plant extracts 
to obtain these nanoparticles. The findings of these studies 
indicated that these synthesized AgNP inhibited the growth 
of Gram-negative bacteria more than that of Gram-positive 
bacteria. Although biosynthesis is environmentally sustain-
able and less toxic than other syntheses such as chemical 
synthesis, more research working on this type of synthesis is 
still required to better understand it and to exploit its poten-
tial in various health applications. No records were found in 
the studies suggesting or mentioning a possible generation 
of bacterial resistance to silver nanoparticles. However, it 
has been objectively demonstrated that silver nanoparticles 
have both a bactericidal and bacteriostatic effect against 
multidrug-resistant bacteria. These metallic nanoparticles 
have a greater effect on Gram-negative bacteria. This is 
since AgNP exert antibacterial effects more easily on these 
bacteria because they cause a greater loss of cell membrane 
stability in Gram-negative strains, causing the inactivation 
of vital functions of the microorganism, such as respiration 
and growth, which ultimately leads to the death of the bacte-
ria. Therefore, it is concluded that AgNP are more effective 
in drug-resistant Gram-negative strains, which concretely 
answers the initial research question.
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