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Abstract

The biological age of the brain differs from its chronological age (CA) and can be used as biomarker of neural/cognitive disease processes 
and as predictor of mortality. Brain age (BA) is often estimated from magnetic resonance images (MRIs) using machine learning (ML) that 
rarely indicates how regional brain features contribute to BA. Leveraging an aggregate training sample of 3 418 healthy controls (HCs), we 
describe a ridge regression model that quantifies each region’s contribution to BA. After model testing on an independent sample of 651 HCs, 
we compute the coefficient of partial determination R̄2

p for each regional brain volume to quantify its contribution to BA. Model performance 
is also evaluated using the correlation r between chronological and biological ages, the mean absolute error (MAE  ) and mean squared error 
(MSE) of BA estimates. On training data, r = 0.92, MSE = 70.94 years, MAE = 6.57 years, and R̄2 = 0.81; on test data, r = 0.90, MSE = 81.96 
years, MAE = 7.00 years, and R̄2 = 0.79. The regions whose volumes contribute most to BA are the nucleus accumbens (R̄2

p = 7.27%), inferior 
temporal gyrus (R̄2

p = 4.03%), thalamus (R̄2
p = 3.61%), brainstem (R̄2

p = 3.29%), posterior lateral sulcus (R̄2
p = 3.22%), caudate nucleus (R̄2

p = 3.05%), 
orbital gyrus (R̄2

p = 2.96%), and precentral gyrus (R̄2
p = 2.80%). Our ridge regression, although outperformed by the most sophisticated ML approaches, 

identifies the importance and relative contribution of each brain structure to overall BA. Aside from its interpretability and quasi-mechanistic insights, 
our model can be used to validate future ML approaches for BA estimation.

Keywords:   Brain aging, Cognitive decline, Human aging, Imaging

Magnetic resonance imaging (MRI) brain scans have been lever-
aged to estimate brain age (BA) in living humans (1) using statistical 
models (2). The difference between chronological age (CA) and BA,  
often called age gap (AG), reflects atypical brain aging (3). The utility 
of BA and AG to capture phenotypic aging has been explored in 
Alzheimer’s disease, traumatic brain injury, and in other conditions 
where these measures parallel changes in neuroanatomy and cogni-

tive functioning (4,5). Classical statistical models (eg, multivariate 
and univariate regression, general linear models, etc.) and machine 
learning (ML) techniques have been used to predict BA from brain 
MRIs (2). When calibrating such techniques, an immediate goal is 
to minimize AG (model error) in reference cohorts of healthy con-
trols (HCs). In contrast to standard statistical models, ML tech-
niques cannot typically provide neuroanatomical interpretability and  
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specificity, in the sense that most ML cannot reveal aging-related re-
gional alterations in brain structure or their contributions to BA (1). 
This is of particular concern for researchers attempting to extend the 
use of ML to diseases and clinical conditions whose pathoanatomical  
deviations from typical aging may feature both global and focal alter-
ations (6,7). Since the macroscale structural covariance of the brain 
is relatively high (8), methods are needed to quantify the unique 
contributions of distinct brain regions, while accounting for the stat-
istical covariance and interaction between regions. Furthermore, in-
terpretable statistical models of neuroanatomical contributions to BA 
can be useful as reference models when validating interpretable ML 
approaches (9,10). To address these needs, we implement, test, and 
validate a ridge regression model that uses brain MRIs to identify, 
quantify, and interpret the specific contributions of distinct neuro-
anatomical structures to BA while accounting for their covariance.

Method

Participants
Participant demographics are summarized in Table 1. Briefly, our 
training set includes n = 3 418 HCs aged 22–95 years, comprising 513 
participants from the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI), 508 from the Human Connectome Project Aging (HCP-A), 
1 112 from HCP Young Adults (YA), and 1 285 from the UK Biobank 
(UKBB). The test set for the trained model includes n  =  651 HCs 
aged 18–88 years, selected from the Cambridge Centre for Ageing 
and Neuroscience (Cam-CAN) repository. The ADNI was launched 
in 2003 as a public–private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to test 
whether serial MRI, positron emission tomography, other biological 
markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment and 
early Alzheimer’s disease. MRI acquisition protocols for HCP-A and 
HCP-YA have been described previously (11,12). For UKBB data, 
our study uses preprocessed images generated by a UKBB pipeline 
whose output included FreeSurfer reconstructions (13). Cam-CAN 
data were obtained from the repository at http://www.mrc-cbu.cam.
ac.uk/datasets/camcan/ (14,15). The test data set was used not only to 
validate our predicted ages against CA but also to quantify the ability 
of BA to capture cognitive functioning phenotype. Thirteen cogni-
tive measures assessing emotional processing, executive functioning, 

memory, and motor functioning were obtained from the Cam-CAN 
repository ((14,15); Supplementary Table 2).

Image Processing
All cortical reconstructions of T1-weighted MRIs were obtained using 
FreeSurfer with enhancement to improve segmentation accuracy (16). 
For ADNI, HCP-A, and Cam-CAN participants, FreeSurfer versions 
7.1.1 and 6.0.0 were used with T2-weighted enhancement (Table 1). 
For HCP-YA, T2-enhanced FreeSurfer reconstructions were obtained 
from the HCP repository (https://www.humanconnectome.org/
study/hcp-young-adult). For UKBB, FreeSurfer reconstructions were 
obtained from the UKBB repository (https://www.ukbiobank.ac.uk/). 
These reconstructions had been enhanced using fluid-attenuated in-
version recovery MRIs, rather than T2-weighted MRIs. We used the 
connectogram processing pipeline of Irimia et  al. (17) to compile 
FreeSurfer-generated regional brain measures and to normalize sub-
ject measures by total intracranial volume.

Number of Regional Features
The 4 regional brain feature types quantified by FreeSurfer and in-
cluded here are volume (165 values, one for each structure), sur-
face area, mean cortical thickness, and mean curvature (148 values 
for each of the latter 3). Because left and right brain features are 
collinear (8), their values were averaged across hemispheres. 
Structural collinearity between different regions’ feature variables 
motivated the use of a regularization technique, as described fur-
ther below. Let m denotes the number of regional features avail-
able for each subject after this averaging. For volumes, one obtains 
m = (165− 1)/2+ 1 = 83 regional volumes for each subject. 
To account for the brainstem (which is not in either hemisphere), a 
factor of 1 is subtracted from the numerator above and then added 
to the fraction to obtain m. When averaging surface area, mean cor-
tical thickness, or mean curvature across hemispheres, one must 
account for the fact that FreeSurfer does not compute these meas-
ures for the subcortex, cerebellum, or brainstem. Thus, m is equal 
to 148/2 = 74 for each of these feature types. Our analysis also 
explored the unique combination of two or more feature types.

Covariate Adjustments
In what follows, a statistical model is implemented separately for 
each feature type; in other words, age is predicted separately using 

Table 1.  Participant Demographics for (A) Training Data and (B) Testing Data

  CA (y) Sex Ratio FreeSurfer Version

Data Source n* min max µ† σ‡ M:F 5.3.0 6.0.0 7.1.1 

(A) Training data
ADNI 513 56 95 75.1 7.2 0.46 0 260 253
HCP-A 508 36 80 55.8 12.0 0.42 0 309 199
HCP-YA 1 112 22 37 28.8 3.7 0.46 1 112 0 0
UKBB 1 285 45 83 62.7 10.1 0.47 0 1 285 0
all 3 418 22 95 52.6 19.3 0.46 1 112 1 854 452
(B) Testing data
Cam-CAN 651 18 88 54.2 18.6 0.496 0 0 651

Notes: CA  =  chronological age; Cam-CAN  =  Cambridge Centre for Ageing and Neuroscience; F  =  female; HCP-A  =  Human Connectome Project Aging;  
HCP-YA = Human Connectome Project Young Adult; M = male; max = maximum; min = minimum; UKBB = UK Biobank. Listed are the sample size n, the min, 
max, mean µ, and standard deviation σ of the sample CA, the M:F ratio, and FreeSurfer version used for preprocessing.

*n = sample size
†µ = mean CA of sample
‡σ = standard deviation of CA of sample
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regional volumes, surface areas, etc. First, we regressed out the con-
founding effects of sex, cohort, FreeSurfer version, and the cohort 
× CA interaction. Then, ridge regressions were implemented both 
across sexes and for each sex. Both procedures are described in the 
Supplementary Material.

Ridge Regression Model Training
We used the fitrlinear function in MATLAB R2019a to fit a ridge re-
gression model CA = Xβ̂ + ε, where β̂ is the empirical estimate of 
β. The objective function of the ridge regression (see Supplementary 
Table 1) involves λ (a regularization parameter) and the L2 
(Euclidean) norm || · ||2of both CA− Xβ and β. The objective func-
tion has a first term quantifying the mean squared loss of the model 
and a second one that is proportional to the squared magnitudes of 
the regression coefficients. Minimization of the objective function 
considers not only the model’s fit to the data but also the cumula-
tive sum of regression coefficients, such that larger coefficients are 
penalized. The objective function is minimized using a least-squares 
Bayesian optimization learner, 50 iterations for hyperparameter op-
timization, and 10-fold cross validation. Data are repartitioned in 
each round of cross-validation to increase model robustness by redu-
cing statistical noise due to random partitioning. We also implement 
least absolute shrinkage and selection operator (LASSO) regression, 
which differs from ridge regression in its objective function for com-
puting β̂, and which involves the L1 norm of both CA− Xβ and β 
(see Supplementary Table 1). The estimated β̂ of LASSO regression 
lacks a closed-form solution. Because LASSO regression coefficients 
may be set to zero, computing LASSO R2

p values and comparing 
them to those obtained using ridge regression can be misleading. For 
this reason, R2

p values were not compared across ridge and LASSO 

regressions. For both, we computed ”BA = Xβ̂, and ÂG =”BA−CA.

CA Bias Correction
Due to regression to the mean, AGs estimated using ridge regres-
sion exhibit a CA-dependent bias (18). For this reason, on average, 
subjects with CAs younger than the mean CA of the sample have 
positive AGs, whereas subjects with CAs older than the mean 
CA of the sample have negative AGs. Due to the profile of linear 
regression’s influence functions (19), mean AG magnitudes become 
larger with increases in the absolute difference between subjects’ CAs  
and the sample mean CA. Among the available methods to adjust 
predicted ages for this bias (20,21), we used a zero-correlation con-
straint method previously described (22). In the first step, this fits a 
simple linear regression model ÂG = a+ bCA+ ε. AGs can then be 

adjusted by scaling down CA (21) to obtainÂGB = ÂG− (a+ bCA),  
where the subscript of ÂGB indicates that AGs have been adjusted 
according to this approach. The zero-correlation constraint method 
(22) can be used to convert ÂGB values into AGs that are adjusted 
by scaling up ”BA  (20), to obtain the vector of zero correlation 
constraint-corrected age gaps ÂGC , whose formula is provided in 

Supplementary Table 1. Corrected ”BAC values can then be computed 
as ”BAC = ÂGC + CA. This procedure was applied to all models 

considered.

Performance Statistics
To assess model performance, we compute Pearson’s product-

moment correlation coefficient r(CA,”BA), the mean squared error 
(MSE), the mean absolute error (MAE), and the adjusted coef-
ficient of determination R̄2 (here, the bar denotes adjustment; 

Supplementary Table 1). Each statistic was computed for both un-

corrected ”BA  values and for CA bias-corrected ”BAC values.

Brain Regions’ Contributions to Brain Age
To estimate the unique variance explained by each feature (ie, brain 
structure), we compute that feature’s adjusted coefficient of partial 
determination R̄2

p, which is expressed as a percentage of R̄2 for the 
full model (Supplementary Table 1). When used as subscripts, f  and r 
stand for full and reduced, respectively. For each structure j, this model 
is defined after removing the column vector of f j from X f . This yields 
an n × m reduced design matrix Xr that is used in place of X  to fit 
the reduced ridge regression model and to compute SSEr. For com-
parison, we also computed the unadjusted R2

p (Supplementary Table 
1). Adjusted R̄2

p values are plotted on the cortical surface and on the 
surfaces of subcortical structures using the ENIGMA Toolbox (23).

Model Testing
To validate our models and evaluate their robustness, we estimate the 
BAs of participants in an independent test data set from the Cam-CAN 
repository. We use the same covariate correction procedure described 
above, yielding a test design matrix X t for these data (t stands for test). 
BAs and bias-corrected CAs are computed as previously described. 
To test the ability of estimated BAs to reflect cognitive phenotypes, 
we calculate the statistical significance of Spearman’s rank correlation 
coefficient ρ quantifying the relationship between cognitive measures 
and (each of) BAC, AGC, and CA. A Bonferroni correction for mul-
tiple comparisons is applied to control the false discovery rate.

Results

Model Fit to Chronological Age
Four separate models were trained, each using only regional vol-
umes, surface areas, mean cortical thicknesses, or mean curvatures, 
respectively. Performance statistics are listed for all models in Table 
2A. Excluding models which suffered from extreme regression to the 
mean, the volumetric model typically performed best in terms of the 4 
computed performance statistics. Exceptions are the following: (a) the 
test set for the CA bias-corrected sex-combined model (where mean 
thickness performed best); (b) the training set for the uncorrected 
female model as well as both (c) the training and (d) test sets for 
the CA bias-corrected female model (mean curvature performing best 
in these 3 cases). Whereas we considered models using each unique 
combination of feature types (12 in total), all these models suffered 
from extreme regression to the mean, and therefore all these com-
bined models were excluded from further analysis for simplicity and 
brevity. Unregularized linear regression models were also computed 
to assess whether the presence of CA-dependent bias was of concern 
beyond models that involved regularization. However, this bias was 
also found in the unregularized model, leading us to conclude that 
regularization itself does not imply this bias. We chose to perform 
further analysis on our sex-agnostic volumetric model, as this was the 
best-performing model (which incidentally also included all subjects). 
This model achieved r = 0.92, MSE = 70.94 years, MAE = 6.57 
years, and R̄2 = 0.81 on the training data. The CA bias-corrected 
BAs and AGs of subjects in the training set are plotted against CAs 
in Supplementary Figure 1. Performance statistics are listed in Table 
2B for all models evaluated on test data. On our sex-combined test 
sample, the volumetric model achieved r = 0.90, MSE = 81.96 years, 
MAE = 7.00 years, and R̄2 = 0.79. The CA bias-corrected BAs and 
AGs of subjects in the test set are plotted against CAs in Figure 1. 
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The LASSO regression model was found to suffer from extreme re-
gression to the mean for all metric types considered. Bias-correcting 
these results yields overfit predictions. Although seeming to have 
nearly perfect performance (r � 1, R̄2 � 1;MSE, MAE � 0), these 
models are in fact uninformative and lacking in utility. In addition, 
whereas LASSO does perform pseudo-feature selection, our goal was 
to compute feature-level contributions to overall model performance. 
This would have confounded our ability to compute leave-one-out re-
duced models, as many features would have been effectively selected 
out of the full model, thus removing our ability to compute R̄2

p values 
for the corresponding regions. For these reasons, ridge regression was 
preferred over this family of models, and the latter were not con-
sidered for further analysis.

Individual Feature Contribution
For each feature in the sex-agnostic volumetric model, adjusted 
partial coefficients of determination R̄2

p values are tabulated 
(Supplementary Tables 1 and 3), depicted in bar plots (Figure 1, 
Supplementary Figure 2), and mapped on brain surfaces (Figure 2). 
To summarize, 8 structures are associated with the 10% largest R2

p 

values: the nucleus accumbens(R̄2
p = 7.27%), inferior temporal gyrus 

(R̄2
p = 4.03%), thalamus (R̄2

p = 3.61%), brainstem (R̄2
p = 3.29%), pos-

terior lateral sulcus (R̄2
p = 3.22%), caudate nucleus (R̄2

p = 3.05%), or-
bital gyri (R̄2

p = 2.96%), and precentral gyrus (R̄2
p = 2.80%). In addition, 

12 regions exhibit negative R̄2
p values due to adjustments for changes in 

the number of features across distinct models.

Correlations With Cognitive Measures 
Supplementary Table 4 lists Spearman’s rank correlation coefficients ρ 
between each cognitive measure and each of BAc, AGc, and CA. After 
Bonferroni correction for multiple comparisons, we obtained a cor-
rected α value of 0.0013 corresponding to an uncorrected significance 
threshold α = 0.05. Significant correlations were found between both 
CA and BAC and the cognitive measures for each of the following 
tasks: emotional memory, fluid intelligence, hotel task (quantifying 
multitasking), unfamiliar face recognition, famous face recognition, 
picture priming, tip-of-the-tongue, visual short-term memory, force 
matching, motor learning, and reaction time choice and simple tasks. 
For the proverbs task, the cognitive outcome measure was significantly 
correlated only with CA. AGc values were not significantly correlated 

Table 2.  Ridge Regression Performance Statistics in the (A) Training Data Set and (B) Test Data Set

    ”BA

    Uncorrected model Corrected model

Measure m* Sex n† r‡ R̄2§ MSE‖ (y2) MAE¶ (y) r‡ R̄2§ MSE‖ (y2) MAE¶ (y) 

(A) Training data
Volume 83 m&f 3 418 0.90 0.82 69.36 6.66 0.92 0.81 70.94 6.57

m 1 565 0.93 0.87 57.52 6.16 0.94 0.87 57.03 6.01
f 1 853 0.69 0.05 340.33 16.10 1.00 1.00 0.01 0.08

Surface area 74 m&f 3 418 0.82 0.67 123.61 8.89 0.86 0.67 125.30 8.88
m 1 565 0.54 0.05 405.97 17.77 1.00 1.00 0.01 0.08
f 1 853 0.45 0.04 341.59 16.11 1.00 1.00 0.01 0.08

Mean thickness 74 m&f 3 418 0.88 0.78 85.25 7.27 0.90 0.77 87.40 7.28
m 1 565 0.70 0.05 405.39 17.76 1.00 1.00 0.01 0.06
f 1 853 0.59 0.04 341.52 16.12 1.00 1.00 0.01 0.06

Mean curvature 74 m&f 3 418 0.88 0.77 86.39 7.43 0.90 0.77 86.34 7.37
m 1 565 0.89 0.80 84.39 7.33 0.91 0.81 82.21 7.17
f 1 853 0.87 0.77 83.38 7.24 0.90 0.77 82.69 7.19

(B) Testing data
Volume 83 m&f 651 0.86 0.74 100.60 8.25 0.90 0.79 81.96 7.00

m 332 0.87 0.68 147.30 9.62 0.93 0.88 54.16 5.63
f 328 0.78 0.25 354.41 16.17 1.00 1.00 0.00 0.04

Surface area 74 m&f 651 0.54 0.36 247.95 12.87 0.70 0.08 356.13 14.85
m 332 0.57 0.22 342.20 16.00 1.00 1.00 0.01 0.07
f 328 0.50 0.22 354.98 16.19 1.00 1.00 0.01 0.06

Mean thickness 74 m&f 651 0.70 0.55 175.69 10.89 0.91 0.82 71.82 6.89
m 332 0.39 0.22 342.67 16.01 1.00 1.00 0.02 0.08
f 328 0.42 0.22 355.73 16.20 1.00 1.00 0.01 0.07

Mean curvature 74 m&f 651 0.76 0.57 166.42 10.62 0.86 0.68 123.19 8.74
m 332 0.76 0.29 309.64 14.44 0.90 0.81 80.96 6.92
f 328 0.74 0.36 291.80 13.71 0.91 0.84 71.82 6.89

Notes: BA = biological age; f = female; m = male. Twelve models were fit, one for each combination of brain measure types (volume, surface area, mean thickness, 
and mean curvature) and sex-dependent model type (ie, males-only model, females-only model, and the sex-agnostic model with sex effects regressed out). Fitted 
values of β̂ were used to estimate BA in the Cam-CAN independent test set.

*m = number of model features
†n = sample size
‡r = Pearson product-moment correlation coefficient between CA and ”BA
§R̄2= coefficient of determination
‖MSE = mean squared error
¶MAE = mean absolute error
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with any cognitive measures. Correlations with CA were stronger than 
those with BAC across all participants, regardless of their AG.

Discussion

Motivation and Purpose
The primary reason for our development and implementation of 
the ridge regression model presented here is the current paucity of 

models that can provide insight into the relative contributions of dis-
tinct brain regions to BA. In recent years, ML models have become 
better and better at BA estimation, whether using Gaussian process 
regression (5), support vector regression (24), U-Nets (10), or other 
approaches. Such models can achieve MAEs as low as ∼4  years 
(2,10) without the need for complex and computationally intensive 
preprocessing to segment and parcel the brain. However, few models 
provide insights into the relative contributions of distinct regions 

Figure 1.  Adjusted coefficients of coefficient of partial determination R̄2
p for the 46 structures with the largest R̄2

p values included in the sex-agnostic ridge 
regression model estimating age using regional volumes. Plotted are adjusted R̄2

p values, expressed as percentages of the total variance R̄2 explained by the 
full model that includes all predictors (regions or structures). Cortical structures are plotted in darker hues (blue online); extra-cerebral structures, including the 
subcortex, cerebellum, and brainstem, are plotted in lighter hues (orange online).
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to BA (25). By contrast, our ridge regression model is interpretable 
due to our ability to identify and quantify the relative contributions 
of various neuroanatomic structures to BA (albeit at the price of 
computationally intensive brain segmentation and parcellation). 
Another tradeoff of regression models is that, whereas they are typ-
ically easier to understand than many state-of-the-art ML models, 
they are also less sophisticated. Considering this, it is perhaps un-
surprising that our model’s bias-corrected MAE is only ∼6  years, 
whereas some ML models achieve MAEs as low as ∼4 years (2,10). 
Nevertheless, despite its inferior BA estimation ability in our aggre-
gate data set, our model remains valuable for its original intended 
purpose of providing neuroanatomic interpretability. Because the 
theoretical framework of regression is well understood, our model 
can also be valuable for validating interpretable ML models cur-
rently being developed to provide interpretability based on salience 
maps or on other strategies (25,26). In one scenario, the developers 
of interpretable ML models may choose to train their models on 
data different from ours. In this case, our model can provide a refer-
ence specification of regional contributions to BA based on training 
using an independent data set. In the alternative scenario, ML model 
developers may choose to train and/or validate their models on the 
same data used here, since these data are freely available. In this 
second scenario, our model could be even more valuable because 
the insights provided by interpretable ML models can be compared 
to ours without the confound of different data sets being used for 
training. Thus, although a lower MAEis desirable for a model as 
long as BA estimates are accurate, providing neuroanatomic insight 
in a reference HC cohort remains as desirable; our study is arguably 
most valuable because it provides the latter.

Interpretation
For any neuroanatomic structure, the partial coefficient of determin-
ation R̄2

p conveys how much variance the full model explains that is 
not already explained by a reduced model that excludes the structure 
in question. Thus, if that structure has a relatively large R̄2

p com-
pared to other structures, then the structure in question has a rela-
tively large amount of unique covariance with CA that is not shared 
with the covariance of all other regions. In this study, the nucleus 
accumbens exhibits the largest R̄2

p value, corresponding to 7.27% 
of the covariance explained by the full model (Supplementary Table 
3). This is nearly twice as much covariance as that explained by the 
region with the second largest R̄2

p, that is, by the inferior temporal 
gyrus (R̄2

p = 4.03%). In addition, 8 of the 9 extra-cerebrocortical 
structures in the model are among the top 19 (∼23%) of 83 regions, 
sorted by R̄2

p in descending order (Supplementary Table 3, Figure 
1). Several studies have evaluated the age-related volume trajec-
tories of the nucleus accumbens and of other subcortical structures 
(27–29). Possibly due to factors pertaining to neurodevelopmental 
profile (30), cytoarchitecture (31), susceptibility to disease (32), and/
or anatomic location, these structures may be exposed to different 
age-related processes, in both kind and quantity, resulting in aging 
trajectories that are distinct from those observed across the cere-
bral cortex. Partly due to the large amount of unique covariance 
in volume between these structures and CA (as quantified by R̄2

p), 
pathological processes may affect the aging trajectories of these re-
gions—and therefore their estimated BAs—more strongly than the 
trajectories of other structures, for which our model yields smaller 
R̄2
p values. Importantly, we did not observe a significant relation-

ship between a region’s mean volume and its R̄2
p (Spearman’s rank 

Figure 2.  Surface overlays of region- and structure-specific adjusted coefficients of partial determination R̄2
p obtained using a sex-agnostic ridge regression 

model to estimate age using regional volumes. (A) R̄2
p values for the 148 gyral/sulcal structures of the cerebral cortex (74 structures per hemisphere). (B) R̄2

p 
values for the 7 subcortical structures included in the model.
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correlation coefficient ρ = −0.19, p =  .9), indicating that the vari-
ance in regional volumes does not explain variance in R̄2

p to a sig-
nificant extent. This suggests that a brain region’s size is not critical 
in determining that region’s contribution to BA. In other words, BA 
depends far more on the biological ages of a few structures whose 
contributions to overall BA are larger than expected given their 
physical size.

There may be more than one cause for the relatively high con-
tributions of subcortical structures to BA, and our findings may re-
flect the relative sensitivity of subcortical structures to aging-related 
disease processes. Such sensitivity could translate into the prominent 
role played by neuroanatomic changes across subcortical structures 
in determining BA. For example, excessive atrophy of the nucleus 
accumbens has been implicated in Parkinson’s disease (33–36), 
schizophrenia (36,37), Alzheimer’s disease (36,38), Huntington’s 
disease (36,39), frontotemporal dementia (40), and other condi-
tions. Since our model was only tested on HCs, the potential utility 
and applicability on cohorts with disease is hypothetical. However, 
because the nucleus accumbens (which has the highest R2

p among 
all considered regions) has been implicated functionally in all these 
diseases, our model could be useful for assessing atypical aging in 
this structure. Future studies should clarify the extent to which the 
role of the basal ganglia in determining BA reflects typical aging 
rather than neuropathological processes targeting the subcortex. 
Interpretable models like ours should also be used to quantify how 
brain structures change with disease-related brain aging, and to 
determine whether disease-related changes in structures which are 
important for BA estimation can result in commensurate disease-
related increases in BA.

Among cortical structures, the most prominent contributors to 
BA are localized to orbitofrontal cortex, to the medial aspect of 
the occipital and parietal lobes, to the inferolateral portion of the 
temporal lobe (inferior temporal gyrus) and to the precentral gyrus. 
This pattern is consistent with previous research that mapped the 
most significant structural differences between typical aging and 
Alzheimer’s disease (41). Notably, however, aside from the inferior 
temporal gyrus, the contributions of other temporal structures to 
BA are relatively weak in this large HC cohort. This is perhaps sur-
prising given the relevance of broad areas across the lateral and 
medial aspects of the temporal lobe to neurodegeneration. For this 
reason, future studies should investigate these structures’ contribu-
tions to BA in neurodegenerative disease to clarify their importance 
in modifying BA above and beyond typical aging processes.

Model Selection, Parsimony, and Other 
Considerations
Of note, our model is not fully parsimonious because 12 regions 
exhibit adjusted R̄2

p values that are negative. Although R2 is al-
ways positive, adjusted R̄2

p values can be negative (see the Method 
section) and adjusting R2

p is recommended to correct for the effect 
of R2 increasing spuriously when a new predictor variable is added 
to a model (42). The fact that 12 structures have negative R̄2

p values 
after adjustment conveys that these structures do not uniquely 
improve model performance. This is likely because each of these 
regions covaries with others to such an extent that the variance ex-
plained by the former is also explained collectively by the latter. 
For all 12 structures, R2

p is relatively quite low, often by more than 
an order of magnitude than the mean R2

p. All adjusted R̄2
p values 

that are negative are also very near zero, such that their signs may 
be unusually sensitive to noise in the training data and to model 
stochasticity arising from optimization of hyperparameters such as 

the regularization parameter λ, even though regularization serves 
to alleviate this effect. If model selection was implemented, many 
structures with negative adjusted R̄2

p values would be removed from 
the model, such that no data on their relative importance would 
be provided despite potential interest by researchers studying these 
structures. Additionally, since these structures explain very little 
variance, their removal would likely improve model performance 
very marginally at considerable computational cost, which is not 
our objective. For all these reasons, we report all R̄2

p here to provide 
the reader with insight on the relative prominence of all regions. 
This sidesteps the task of model selection in our setting, where the 
complex covariance structure of the data suggests that model selec-
tion, required to achieve parsimony, is accordingly difficult despite 
being of very limited practical utility.

Inspection of Supplementary Table 3 reveals that, occasionally, 
the sign of the multivariate regression coefficient β̂j describing the 
relationship between predictor j and the response variable (CA) 
is positive despite the expected negative sign of the univariate re-
gression coefficient β̂ between these quantities. In the latter case, a 
negative β̂ indicates that, on average, regional volume decreases with 
age in cross-section, as reported elsewhere (43–45). In our model, 
the multivariate regression coefficient β̂j is not always negative be-
cause β̂j conveys the conditional effect of a predictor (regional brain 
volume) on the response (BA) in the presence of all other predictors. 
In a multivariate model, a predictor’s conditional effect on the re-
sponse differs from its unconditional effect because the conditional 
effect depends on the covariance between predictors, whereas the 
unconditional effect depends on the correlation between the single 
predictor and the response. In a univariate model, the sign of β̂ is that 
of the correlation coefficient r because β̂ = r(sy/sx), where sy and sx 
are the variances of the response and predictor variables, respect-
ively. In a multivariate model, however, the sign of β̂j is additionally 
dependent on the covariance between predictors. Occasionally, this 
covariance is strong enough to affect the sign of β̂j, such that β̂j and 
the corresponding univariate β̂ have different signs.

In settings like ours, bias corrections must be interpreted care-
fully. For example, as Table 2 indicates, surface area and cortical 
thickness might both appear to predict CA almost perfectly after bias 
correction. One could draw this incorrect conclusion because (a) the 
MAEs and MSEs of the models based on these measures are consid-
erably smaller than those of the model predicting BA using regional 
volumes, and because (b) the r and R̄2 values of the former 2 models 
are very close to 1. However, prior to bias correction, the area and 
thickness models exhibit very large MAEs and MSEs, as well as r and 
R̄2 values that are much smaller than those of the models based on 
volume and curvature (Table 2). Thus, the improvements in perform-
ance statistics (MAE, MSE, r, and R̄2) exhibited by the models for 
surface area and thickness can be attributed to the bias correction 
procedure. Specifically, before bias correction, BAs estimated using 
cortical surface area or thickness are predicted almost entirely by 
the sample mean CA. Similarly, after bias correction, BAs estimated 
using mean surface area or thickness are predicted almost entirely by 
CAs. Ultimately, each type of metric (volume, mean curvature, sur-
face area, mean cortical thickness) can predict age only to the extent 
to which the metric type in question reflects variability in ages across 
the sample. Whereas volume and mean curvature are relatively sen-
sitive to age, surface area and mean cortical thickness are not. This 
explains why the former 2 metrics provide BA estimation models 
that are more useful than those provided by the latter. These con-
siderations highlight the importance of interpreting bias correction 
results properly in the context of regression models.
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Correlations With Cognition
Spearman’s rank correlations between cognitive measures and age 
exhibit no significant differences when computed using BA versus 
CA. Because we trained and tested our model on HCs, this is unsur-
prising because the model is fit by minimizing an objective function 
that includes AG, that is, the difference between BA and CA. In add-
ition, we obtained high correlation between BA and CA, and the 
correlations between neuroanatomic measures and BA are therefore 
expected to be similar to those between neuroanatomic measures 
and CA. By contrast, correlations between AG and cognitive meas-
ures are expected to be weak, since bias correction ensures that AGs 
are centered around 0 for all CAs. Nevertheless, our model could be 
useful for estimating BA and AG in diseased cohorts whose mem-
bers have much larger AGs than HCs (4,5). In such cohorts, system-
atic changes in BA due to disease may correlate more strongly with 
cognitive changes that with CA. Thus, correlations between BA and 
cognitive measures can be leveraged to forecast cognitive decline for 
individuals based on their AGs. Our modeling approach is particu-
larly useful for this purpose since it can facilitate quantifying how 
various regions’ R̄2

p values (ie, brain regions’ relative importance in 
estimating BA) change with disease.

Limitations
Because our model quantifies the contributions of distinct 
neuroanatomic structures to BA, our implementation required the 
segmentation of these structures using specialized software (eg, 
FreeSurfer). Thus, although more interpretable than black-box ML 
implementations, our ridge regression model may not be as attractive 
from a translational or clinical standpoint due to its dependence on 
computationally intensive preprocessing of MRIs to obtain regional 
segmentations. Additionally, our model’s interpretability is counter-
balanced by the fact that its best MAE (6.57 years) is relatively large 
compared to the MAEs of the best existing ML models, which are 
smaller than ours by ∼2 years (2,28). However, we emphasize that 
the motivation for our study is to provide neuroanatomic interpret-
ability in the context of a standard statistical framework that is well 
understood, rather than to outperform existing ML models of BA.

Large samples like ours are often aggregated across open-access 
neuroimaging cohorts and data repositories. This often leads to the 
need for data curation and harmonization with respect to sources 
of variance arising from the inclusion of data from different studies, 
scanners, sequence parameters, etc. In this study, we included training 
from 3 major imaging consortia (HCP, ADNI, and UKBB), and the 
statistical effects of cohort and sub-cohort (eg, HCP Young Adult 
vs HCP Aging) were regressed out prior to further analysis (see the 
Method section). However, we acknowledge that the heterogeneity 
of our aggregate data set is not fully captured by a linear model, and 
that residual variance due to residual heterogeneity may persist.

As already stated in the context of model selection, noise can have 
notable effects in multivariate models like ours and dimensionality 
reduction approaches (eg, principal or independent component ana-
lysis) can help to exclude predictors from a regression model if their 
presence is redundant. These and similar methods, however, often 
require data standardization and may reduce interpretability by ab-
stracting features into principal or independent components. In add-
ition, these methods can also introduce additional hyperparameters, 
and may even require subjective modeling decisions. For example, in 
principal and independent component analysis, one must select and 
discard components whose presence reflects noise in the data. This 
selection, however, can be arbitrary because it is not always clear 
which components correspond to noise versus weak signal.

In the full model, 12 predictors do not explain variance above 
and beyond variance explained by all other predictors together. 
However, these 12 predictors’ contributions to the model are also 
very small, suggesting that their inclusion does not have substan-
tial effects either. Because these predictors presumably covary with 
others already in the model, model selection can be arbitrary and 
subjective. For example, suppose that 2 predictors covary substan-
tially, such that including only one increases the amount of vari-
ance explained by the model, whereas including both does not. The 
choice of the predictor to remove can be subjective, partly because 
different researchers may be interested in including and studying 
the effects of different predictors. To avoid such arbitrary decisions 
and to report results comprehensively, we included all predictors 
in this study. However, the drawback of such inclusion is that the 
full model is not parsimonious, a limitation that we acknowledge. 
Future studies should further investigate the relative prominence of 
neuroanatomic predictors in estimating BA, as well as how these 
predictors covary.

Conclusion

We introduced an interpretable model for BA estimation using 
ridge regression. Using R̄2

p to quantify unique neuroanatomic con-
tributions to BA, we found that the nucleus accumbens, inferior 
temporal gyrus, and thalamus uniquely explain considerably 
more variance in CAthan most others brain structures. Some 12 
structures do not explain any variance above and beyond that ex-
plained by all the other structures, likely due to multicollinearity 
among predictors. Whether using standard statistical models or 
ML models, future studies should improve BA estimates while 
providing neuroanatomic interpretability. Additionally, the po-
tential utility of other brain features implicated in aging, such as 
myelination measures (46), metrics of white matter connectivity 
or hyperintensity (47), and β-amyloid and tau measures obtained 
from positron emission tomography (48,49) should be explored. 
Whereas macroscale neuroanatomic features can be used to esti-
mate BA, microanatomic and metabolic brain feature changes with 
age should also be considered. Further investigation is required to 
clarify whether our model has utility in detecting atypical aging as 
a result of disease processes. If it does, the clinical utility of ML 
models that detect and even predict atypical brain aging due to 
disease should be compared against models like ours, which are 
standard in quantitative biology and therefore well understood by 
biostatisticians. Usefully, our study provides insight into how brain 
features covary with age, and this can be useful for interpreting 
other models. Finally, our model may be useful for identifying 
brain regions that contribute to the BA s of diseased individuals to 
an extent greater than expected in HCs.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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