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A B S T R A C T   

COVID-19 patients are oftentimes over- or under-treated due to a deficit in predictive management tools. This 
study reports derivation of an algorithm that integrates the host levels of TRAIL, IP-10, and CRP into a single 
numeric score that is an early indicator of severe outcome for COVID-19 patients and can identify patients at-risk 
to deteriorate. 

394 COVID-19 patients were eligible; 29% meeting a severe outcome (intensive care unit admission/non- 
invasive or invasive ventilation/death). The score’s area under the receiver operating characteristic curve 
(AUC) was 0.86, superior to IL-6 (AUC 0.77; p = 0.033) and CRP (AUC 0.78; p < 0.001). Likelihood of severe 
outcome increased significantly (p < 0.001) with higher scores. The score differentiated severe patients who 
further deteriorated from those who improved (p = 0.004) and projected 14-day survival probabilities (p <
0.001). 

The score accurately predicted COVID-19 patients at-risk for severe outcome, and therefore has potential to 
facilitate timely care escalation and de-escalation and appropriate resource allocation.   

1. Introduction 

Globally as of January 2022, there have been over 400 million 

confirmed cases of severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infection and 5.8 million deaths attributed to the result
ing coronavirus disease 2019 (COVID-19) (https://coronavirus.jhu.edu/ 

Abbreviations: SARS-CoV-2, severe acute respiratory syndrome coronavirus 2; COVID-19, coronavirus disease 2019; ICU, intensive care unit; IL-6, interleukin-6; 
PCT, procalcitonin; TRAIL, tumor necrosis factor-related apoptosis inducing ligand; IP-10, interferon gamma inducible protein-10; CRP, C-reactive protein; ED, 
emergency department; AUC, area under the receiver operating characteristic curve; CA, Cochran-Armitage; MERS, middle east respiratory syndrom. 

* Corresponding author at: MeMed Diagnostics, 7 Nahum Heth, Tirat Carmel 3508506, Israel. 
E-mail address: tanya.gottlieb@me-med.com (T.M. Gottlieb).   

1 Contributed equally. 

Contents lists available at ScienceDirect 

Cytokine 

journal homepage: www.elsevier.com/locate/cytokine 

https://doi.org/10.1016/j.cyto.2023.156246 
Received 13 February 2023; Received in revised form 11 May 2023; Accepted 21 May 2023   

https://coronavirus.jhu.edu/map.html
mailto:tanya.gottlieb@me-med.com
www.sciencedirect.com/science/journal/10434666
https://www.elsevier.com/locate/cytokine
https://doi.org/10.1016/j.cyto.2023.156246
https://doi.org/10.1016/j.cyto.2023.156246
https://doi.org/10.1016/j.cyto.2023.156246
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Cytokine 169 (2023) 156246

2

map.html). With vaccination campaigns taking time to implement, 
hospitals world-wide are still dealing with COVID-19 patients. More
over, global herd immunity seems improbable given vaccination ineq
uity and hesitancy combined with the emergence of variants [1,2]. 
Accordingly, it is predicted that SARS-CoV-2 will become endemic [3]. 

An unusual feature of SARS-CoV-2 is that it causes a broad spectrum 
of disease severity, ranging from asymptomatic infection to critical 
illness. While the vast majority of patients with SARS-CoV-2 infection 
develop mild to moderate disease (https://www.cdc.gov/coronavir 
us/2019-ncov/hcp/clinical-guidance-management-patients.html), 
without requiring supplemental oxygen therapy or hospitalization, up to 
20% of patients experience life-threatening disease [4]. The advanced 
acute phase of SARS-CoV-2 infection includes a dysregulated immune 
response that can rapidly progress to severe symptoms and critical 
complications including respiratory failure and death [5–13]. Despite 
major advances in COVID-19 patient management, predicting which 
patients have increased risk for severe outcome remains challenging. 
Early prediction in COVID-19 is of particular importance because high- 
risk patients may benefit from earlier escalation of care (i.e., intensive 
care unit (ICU) placement, immunomodulation treatment) [3], whereas 
low-risk patients may benefit from avoiding unnecessary treatments or 
hospital admission. Accurate risk stratification is also helpful when 
assessing response to treatment and for discharge decisions. 

Current clinical scores that incorporate patient demographics (e.g., 
age, sex), vital signs, comorbidities and radiographic images, are either 
indicative of organ damage that has already occurred (i.e., not predic
tive), fail to capture the complexity of COVID-19 disease (i.e., not ac
curate) or are difficult to integrate in routine decision making (i.e., not 
practical) [14]. Multiple studies indicate that individual markers, 
including Interleukin-6 (IL-6), procalcitonin (PCT), ferritin, D-dimer, 
creatinine, CD3 and CD4 T-cell counts are associated with severe 
COVID-19 disease outcome [13,15,16]. However, the utility of indi
vidual biomarkers is typically constrained by uncertainty regarding 
result interpretation or poor potential to identify severe disease at early 
stages [17]. Further, combining these markers is either impractical 
(difficult to measure, time consuming or requires multiple technologies) 
or has not proven to significantly increase predictive performance as the 
composite parameters provide overlapping information and are not 
viral-specific [14]. Given the complexity of the immunopathogenesis of 
COVID-19, a score combining several markers from distinct biological 
pathways is more likely to serve as a broadly applicable and accurate 
tool [15,16]. 

Recently, a platform was developed that measures in fifteen minutes 
two viral-induced biomarkers - tumor necrosis factor-related apoptosis 
inducing ligand (TRAIL) and interferon gamma inducible protein-10 (IP- 
10; also known as CXCL10) – as well as the inflammatory biomarker C- 
reactive protein (CRP). TRAIL regulates immune responses via 
apoptosis, with lower levels associated with severe infection, including 
sepsis [18–21]. TRAIL levels increase in viral infection [22–24] and are 
reduced in severe bacterial and viral infections, making it a particularly 
useful biomarker for severe viral infection. In COVID-19 disease, low 
TRAIL levels are associated with inability to clear the virus and disease 
severity [25,26]. IP-10 expression is also induced by viral infection 
[22–24]. A regulator of inflammatory and endothelial cells, IP-10 has 
been implicated as a player in the lung injury during dysregulated re
sponses to severe viral infection [27]. Accumulating evidence identifies 
IP-10 as an early marker of COVID-19 progression, with maintained high 
levels associated with mortality [15,25,26,28–30]. Induced expression 
of CRP, a regulator of inflammation [31]. is typically observed in 
response to bacterial infection [32,33] but also found to be associated 
with severe SARS-CoV-2 infection [34–36]. As each of these biomarkers 
captures a different dimension of disease progression to severe outcome, 
their computational integration has the potential to produce a high 
performing severity score. 

This study reports derivation of an algorithm that computationally 
integrates the levels of TRAIL, IP-10, and CRP into a single numeric score 

that is an early indicator of severe outcome for COVID-19 patients 
(‘severity score’). Such a score can identify patients likely to deteriorate 
or not and in this way, help with objective decision making as to who 
may benefit from escalation or de-escalation of care as well as targeted 
(personalized) therapies [37] (https://www.covid19treatmentguideline 
s.nih.gov/critical-care/oxygenation-and-ventilation/). Taken together, 
the severity score along with the rapid measurement platform, have 
potential to serve as an accurate and actionable test for early indication 
of COVID-19 disease progression. 

2. Materials and methods 

2.1. Study design 

This was an observational, convenience sampling study. Study 
cohort was composed of SARS-CoV-2-positive adult patients recruited 
retrospectively at 6 medical centers in the emergency department (ED), 
wards, and intensive care unit (ICU) between March and November 
2020. 

Inclusion criteria were: aged 18 years or older; SARS-CoV-2-positive 
reverse transcription polymerase chain reaction (RT-PCR) result; and a 
serum blood sample drawn within a week from ED arrival. 

Patient data including past medical history, physical examination, 
laboratory data and medical treatment during hospitalization course 
were extracted from electronic medical records. Follow-up phone calls 
and verification of hospital re-admission status were performed to 
complete the 14-day observation period for patients discharged earlier. 

Alignment with the Transparent Reporting of a multivariable pre
diction model for Individual Prognosis Or Diagnosis (TRIPOD) State
ment is indicated by responses given in the TRIPOD checklist (Table S1) 
[38]. 

2.2. Definition of clinical outcomes 

Severe outcome was defined as mortality or respiratory failure 
requiring ICU admission, non-invasive ventilation (high flow nasal 
cannula, continuous positive airway pressure or bi-level airway pres
sure) or intubation with mechanical ventilation before or within 14 days 
from blood draw. 

Levels of severe outcomes:  

• level 1, ICU admission or non-invasive ventilation  
• level 2, intubation with mechanical ventilation  
• level 3, mortality 

Among patients who met a severe outcome prior to blood draw, 
clinical deterioration was defined as transition from level 1 to level 2 or 
3, and clinical recovery was defined as successful de-escalation of care (i. 
e., treatment termination and/or hospital discharge). 

2.3. Sample processing and measurement 

See Supplementary Methods. 

2.4. Missing data 

See Supplementary Methods. 

2.5. Multivariable model construction and score bin definition 

The score is based on a model trained using L2-regularized logistic 
regression with balanced class weights. An additional transformation 
was applied to elevate the model-predicted probability as a non-linear 
function of CRP concentration. The resulting probability is rounded to 
an integer between 0 and 100. 

Cross-validation was performed using logistic regression with the 
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same configuration used to train the model, in a “leave-site-out” fashion: 
in each iteration all patients from one of the medical centers were left 
out as a test set, and a model was trained based on patients from the 
remaining five sites and used to predict the probability of meeting a 
severe outcome for patients in the test set. Predicted probabilities from 
the six test sets were then combined into a single list for AUC calculation. 
Leave-site-out cross-validation evaluates the performance of a model in 
medical centers it was not trained on. 

To generate a clinically intuitive tool for risk stratification, four score 
bins were defined. Each patient was assigned to a specific bin based on 
their score, and within the bin according to their severity outcome 
(Table S3). 

The score is called MeMed COVID-19 Severity™. 

2.6. Statistics 

See Supplementary Methods. 

2.7. Study approval 

Ethical approval was obtained from each medical center with 
informed consent covered by the original protocol. 

3. Results 

3.1. Study population 

Between March and November 2020, 518 Israeli, German, and USA 
SARS-CoV-2 positive patients were enrolled across six participating 
medical centers (Table S4). This period encompassed the first and sec
ond COVID-19 waves in Israel, the first wave in Germany and the first 
and second waves in the US (Fig. S1). After exclusion of 124 patients that 
failed to meet eligibility criteria, the resulting derivation cohort 
comprised 394 patients (Fig. S2). A composite severity outcome was 
defined based on mortality or respiratory failure requiring ICU level of 
care. 113 (29%) patients met the composite severity outcome, of whom 
30 patients (27%) died. 

Age ranged from 19 to 98 years, with 59.1% male (Table 1). Patients 
who met severe outcomes were older, more likely to be male, and 
exhibited abnormal vital signs and elevated inflammatory markers on 
the day of blood draw as compared to non-severe patients. 18.8% of 
cohort patients (74/394) were hospitalized for a short duration (1–2 
days) and did not meet a severe outcome. 

3.2. A score that integrates TRAIL, IP-10 and CRP accurately stratifies 
COVID-19 patients by disease severity 

The host proteins TRAIL, IP-10 and CRP were differentially 
expressed in sera of severe versus non-severe COVID-19 patients 
(Fig. 1A, Table S5). Patients meeting severe outcomes exhibited signif
icantly higher levels of CRP (median 167 vs. 42 mg/L; p < 0.001) and IP- 
10 (median 1632 vs. 420 pg/ml; p < 0.001) and lower levels of TRAIL 
(median 31 vs. 61 pg/ml; p < 0.001). 

A score integrating the serum concentrations of the three proteins 
was developed using the entire derivation cohort (Methods). The score 
ranges from 0 to 100, with higher levels reflecting a higher likelihood for 
severe outcome. Scores were significantly higher in severe as compared 
to non-severe patients (median 78 vs. 26 score units; p < 0.001; Fig. 1B). 
The score performance as indicated by area under the receiver operating 
characteristic curve (AUC) was 0.86 (95%CI: 0.81–0.91). 

To assess the score’s potential for generalization its performance was 
compared to that of cross-validation based on the same cohort of pa
tients (Methods) [38]. Cross-validation AUC was 0.86 (95%CI: 
0.81–0.90), indistinguishable from that of the score, indicating the 
model was not overfitted and is generalizable. 

To generate a clinically intuitive tool for severity stratification, four 

Table 1 
Clinical characteristics of the derivation cohort.   

Statistics Study 
population 
(n = 394) 

Severe, S 
(n =
113) 

Non- 
Severe, 
NS (n =
281) 

S vs NS  

p-value 

Age (years) median 
(IQR) 

61.5 (25.8) 65.0 
(21.0) 

60.0 
(27.0) 

0.009 

Male sex n (%) 233 (59.1%) 80 
(70.8%) 

153 
(54.4%) 

0.003 

Time from ED 
arrival to 
blood draw 
(days) 

median 
(IQR) 

1.0 (2.0) 2.0 (2.0) 1.0 (2.0) <0.001 

Length of 
hospital stay 
(days)A 

median 
(IQR) 

6.5 (10.0) 11.0 
(13.8) 

5.0 (8.0) <0.001 

Short hospital 
stay (1–2 
days) A 

n (%) 76 (19.9%) 2 (1.9%) 74 
(26.8%) 

<0.001 

OutcomeB     

ICU admission n (%) 51 (12.9%) 51 
(45.1%) 

0 (0.0%) N/A 

Non-invasive 
ventilation 

n (%) 65 (16.5%) 65 
(57.5%) 

0 (0.0%) N/A 

Intubation with 
mechanical 
ventilation 

n (%) 49 (12.4%) 49 
(43.4%) 

0 (0.0%) N/A 

Mortality n (%) 30 (7.6%) 30 
(26.5%) 

0 (0.0%) N/A 

Comorbidities      
Hypertension n (%) 163 (41.4%) 54 

(47.8%) 
109 
(38.8%) 

0.114 

Diabetes 
mellitus 

n (%) 114 (28.9%) 39 
(34.5%) 

75 
(26.7%) 

0.140 

Chronic heart 
failure 

n (%) 18 (4.6%) 7 (6.2%) 11 (3.9%) 0.423 

Malignancy n (%) 19 (4.8%) 10 
(8.8%) 

9 (3.2%) 0.034 

Vital signsA,C      

Heart rate >100 
beats per 
minute 

n (%) 51 (17.3%) 16 
(18.4%) 

35 
(16.9%) 

0.739 

Temperature 
≥37.8 ◦C 

n (%) 45 (18.1%) 19 
(28.4%) 

26 
(14.4%) 

0.015 

Systolic blood 
pressure <90 
mmHg 

n (%) 8 (3.0%) 6 (7.5%) 2 (1.1%) 0.010 

Respiratory 
rate >20 
breath/ 
minute 

n (%) 32 (29.6%) 20 
(44.4%) 

12 
(19.0%) 

0.006 

Oxygen 
saturation on 
room air 
(SpO2) 
≤93%D 

n (%) 91 (36.3%) 32 
(54.2%) 

59 
(30.7%) 

0.002 

BiomarkersA,C      

WBC (K/ml3) median 
(IQR) 

6.4 (3.3) 7.8 (3.2) 5.8 (3.0) <0.001 

Ferritin (ng/ml) median 
(IQR) 

438.4 
(1281.4) 

888.8 
(1237.7) 

392.2 
(864.2) 

0.026 

CRP (mg/L) median 
(IQR) 

66.0 (139.8) 166.8 
(178.0) 

42.4 
(83.7) 

<0.001 

PCT (ng/ml) median 
(IQR) 

0.1 (0.2) 0.3 (0.5) 0.1 (0.1) <0.001 

IL-6 (pg/ml) median 
(IQR) 

19.2 (44.3) 50.9 
(113.6) 

14.5 
(34.6) 

<0.001 

AMissing data for a subset of cohort patients (detailed in Methods and Supple
mentary Table 2). 
BOutcomes met before or within 14 days of blood draw. 
CMeasured on day of blood draw. 
Dhttps://https://www.covid19treatmentguidelines.nih.gov/ [39]. 
IQR, interquartile range. ICU, intensive care unit. WBC, white blood cells. CRP, 
C-reactive protein. PCT, procalcitonin. IL-6, interleukin-6. 
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score bins were defined. Each patient was assigned to a bin based on 
their score, and within the bin according to their severity outcome. In 
this framework, the score’s performance was demonstrated by a signif
icant increase of the likelihood of COVID-19 severe outcome across the 
four bins (Cochran-Armitage, CA p < 0.001; Table 2). Only 3 severe 
patients (3% of all severe patients) were assigned to the lowest bin; 
clinical details for these patients are given in Table S6. The proportion of 
patients intubated with mechanical ventilation or died increased across 
the four bins (Table S7). 

4. Score maintained high performance across different sub- 
populations 

To test whether the relationship between score and severe outcome is 
confounded by known risk factors, performance was inspected across 
sub-populations. Potential confounders evaluated included sex, age, and 
number of comorbidities. The time from emergency department (ED) 
arrival to blood draw was also evaluated as a surrogate for time from 
symptom onset. A significant increase in the likelihood of severe 
outcome with increasing score was observed in each of the sub- 

Fig. 1. Differential expression of TRAIL, IP-10, CRP (A) and score (B) in severe and non-severe COVID-19 infection. Dots represent patients and boxes denote median 
and IQR (interquartile range). 
TRAIL, tumor necrosis factor-related apoptosis inducing ligand. IP-10, interferon gamma inducible protein-10. CRP, C-reactive protein. 

Table 2 
Distribution of patients across score bins.   

LR, likelihood ratio. PPV, positive predictive value. NPV, negative predictive value. CI, confidence interval. 
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populations tested (Table S8; p < 0.001 for each of the eight sub- 
populations). Furthermore, adding each of these risk factors to the 
host proteins did not improve the performance (Table S9), indicating 
that the information contained in sex, age, number of co-morbidities and 
time from ED arrival is already captured by the status of the immune 
response. 

4.1. The score outperforms known risk factors and candidate severity 
tools 

Several parameters (e.g., age, oxygen saturation) [40] and bio
markers (e.g., IL-6) [34] have been proposed as candidate tools to aid 
the clinician in COVID-19 severity stratification. The score AUC 
compared favorably with various biomarkers and parameters (Fig. 2). 
The score AUC was higher also when the comparison analysis was 
restricted to the subset of patients with available measurements for each 
comparator (Table S10), and when the definition of severe outcome was 
limited to intubation with mechanical ventilation or death (Table S11). 

4.2. Prognostic value of the severity score 

For a severity stratification tool to be predictive, its output must not 
only correlate with observable disease severity, but also identify those 
individuals who appear stable but have a high likelihood to deteriorate. 
To test the score’s potential to predict future severe outcomes, the sub- 
group of patients who met a severe outcome for the first time after the 
day of blood draw (n = 29) was identified. The time from blood draw to 
first outcome was 1–13 days with a median of 4 days and the likelihood 
of future severe outcome increased significantly (p < 0.001) across the 
score bins (Table S12). This trend was significant also with the definition 
of future severe outcome restricted to intubation with mechanical 
ventilation (Table S13). 

To further evaluate the score’s predictive value, patients were 
stratified according to the time between blood draw and meeting the 
first severe outcome. Three groups of severe patients were defined: those 
meeting a first severe outcome on the day of blood draw (n = 29), 1–3 
days after (n = 14), or >3 days after blood draw (n = 15). Deterioration 
occurring in proximity to blood draw was associated with a higher score; 

median scores were 87, 72, and 60 for the same-day, 1–3 days after, and 
>3 days after groups, respectively (Fig. 3). Notably, the scores of each of 
the three severe patient groups, including the group meeting a first 
outcome over 3 days after blood draw, were significantly (p < 0.001) 
higher than the scores of patients who did not meet a severe outcome (n 
= 281). 

Finally, it was examined if the score provides added value beyond 
one of the parameters measured to assess the respiratory status of 
COVID-19 patients, namely SpO2 values. Six patients were identified 
with SpO2 > 93% on the day of blood draw who subsequently met a 
severe outcome, all of whom were assigned a score falling within the 
upper two bins (score range 60–85; Table S14). This finding supports the 
score’s potential to detect early-on patients who are at risk of future 
deterioration albeit with normal saturation (SpO2 > 93%) at time of 
blood draw. 

4.3. Score’s potential to predict further deterioration and mortality 

To evaluate the score’s potential to predict further deterioration of 
severe patients, we identified the sub-group of severe patients who were 
admitted to the ICU and/or required non-invasive ventilation before 
blood draw (n = 19). For this sub-group, deterioration was defined as 
requiring intubation with mechanical ventilation and/or death 
following the time of blood draw. Six out of the nineteen patients 
deteriorated, the time from blood draw to deterioration ranging be
tween 0 and 13 days, with a median of 6.5 days. The remaining thirteen 
patients recovered, based on treatment termination and hospital 
discharge. The patients who deteriorated exhibited higher scores 
compared to those who recovered, with a median score of 94.5 vs. 65 
(Fig. S3; p = 0.004). Lastly, the predictive value of the score was 
assessed by examining survival prognosis. Thirty patients (8% of the 
cohort) died within 14 days of blood draw. 14-day survival probability 
was calculated using Kaplan-Meier estimator across the score bins. 
Survival distribution was significantly different comparing score bins 1 
+ 2 (score < 40) versus bins 3 + 4 (score ≥ 40) (Fig. S4; p < 0.001). 

5. Conclusions 

The present study describes derivation of a host-protein score 
comprising TRAIL, IP-10 and CRP for accurately stratifying the severity 

Fig. 2. Receiver operating characteristic (ROC) curve of the score compared to 
known risk factors and candidate severity tools. In each of the plots, the ROC 
curve and area under the curve (AUC) were calculated for all patients that had 
the specific measurement available. 
CRP, C-reactive protein. IL-6, interleukin-6. PCT, procalcitonin. 

Fig. 3. Score in severe patients meeting severity outcome on or after the day of 
blood draw stratified by time to first severe outcome, in comparison to non- 
severe patients. 
Dots represent patients and boxes denote median and IQR (interquartile range). 
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of COVID-19 disease based on a multinational cohort recruited across 
multiple COVID-19 waves. The score was shown to accurately predict 
clinical deterioration among patients throughout the acute disease 
course. Patients with a score falling in the upper bins had higher like
lihood to meet the composite severity outcome. 

The severity score demonstrated higher performance than other 
candidate severity tools examined herein and performed irrespective of 
known risk factors and potential confounders, including age, sex, time 
from ED arrival, and comorbidities. Importantly, high performance was 
attained in the sub-cohort of patients meeting the severity outcome after 
the sampling day, supporting the score’s prognostic value. Furthermore, 
the score predicted deterioration even for patients that met severe out
comes more than three days after blood draw, supporting capability to 
detect severe outcomes early-on. Patients that deteriorated in proximity 
to the day of blood draw exhibited higher scores than patients who 
deteriorated later. The trend in score distribution across time suggests 
that higher scores may not only indicate the probability of severe out
comes but also give timing information. The tool’s prognostic value is 
further corroborated by two additional findings. First, among patients 
admitted to the ICU or subjected to non-invasive ventilation before the 
day of blood draw, those that deteriorated further exhibited a signifi
cantly higher score. Second, in the sub-group of patients with normal 
saturation levels (SpO2 > 93%), all patients who deteriorated following 
the day of blood testing were assigned a high score. The latter un
derscores the added clinical value of this tool beyond today’s standard of 
care in stratifying the severity of patients that present with similar vital 
signs. 

In addition to detecting early-on who is likely to deteriorate, a 
severity tool can help reduce unnecessary treatments or hospital 
admission for low-risk patients. It is notable that almost 20% of the 
cohort was hospitalized for 1–2 days and did not meet any of the severe 
outcomes, potentially representing patients that may not have required 
admission. 

It has been recognized since the discovery of CRP as an inflammation 
marker [31], that host responses to infection have potential to serve as 
clinical decision-making tools. Advancements in host-response profiling 
and machine learning have enabled development of a new generation of 
algorithm-based scores, including one based on TRAIL, IP-10 and CRP 
for differentiating bacterial from viral infection [23,24,41]. Multiple 
studies have shown that these immune proteins change expression in 
response to infection etiology [22–24,32,33] and in response to the 
severity of infection [18–20,27]. The fact that these three proteins 
specifically change expression in the progression of COVID-19 disease 
[15,25,28–30,34–36,42], prompted the present study to leverage a 
platform for their rapid measurement to derive a COVID-19-specific 
severity stratification score. It appears that immune dysregulation is 
pivotal to disease progression in SARS-CoV-2 infections and that IP-10 
may be important in the development of lung damage, possibly when 
its expression is dissociated from interferon gamma levels [13,25,26]. 
Notably, IP-10 and CRP have been shown to exhibit severity-related 
expression changes in SARS-CoV and middle east respiratory syn
drome (MERS) infections, supporting that their response is not strain- 
specific but likely associated with viruses causing lung pathology 
[30,43,44]. Generally, the window into the immune response to SARS- 
CoV-2 infection provided specifically by TRAIL, IP-10 and CRP, as in
dividual biomarkers and as an integrative score, has potential to provide 
clinicians with insight into disease course and patient management. 

COVID-19 patients with severe or critical disease typically suffer 
respiratory failure and frequently require non-invasive or invasive res
piratory support (https://www.covid19treatmentguidelines.nih.gov/). 
Accordingly, the rationale for the composite severity endpoint which 
guided score development was to identify patients likely to exhibit 
respiratory insufficiency and require intense respiratory support. 
Treatment protocols have been dynamic during the pandemic and 
therefore multiple respiratory support methods were included [45,46]. 
Given that the multiple respiratory methods included in the composite 

endpoint represent varying levels of respiratory insufficiency, patients 
already meeting one of the severe outcomes before sampling were 
included in the derivation cohort, as these cases may deteriorate further 
and in a real-world setting may benefit from a risk stratification tool. 
This assumption was supported by our finding that severe patients who 
deteriorated further exhibited higher scores compared to those who 
recovered. While the purpose of the proposed score is prognostic, in
clusion of such patients in the derivation data is useful on the basis that 
an immune response observed in patients who are already at a severe 
state may be detectable also in patients who are to meet a severe 
outcome in the next several days following sampling. 

A major strength of the study is that the population was recruited 
across multiple international settings and multiple waves of the 
pandemic, supporting the generalizability of the findings. Broad appli
cability is also supported by similarity of the score performance to cross- 
validation performance. Typically, studies that evaluate risk stratifica
tion tools for COVID-19 patient management focus on two severity 
outcomes, intubation with mechanical ventilation and/or mortality. 
Another strength of this study is the composite severity outcome, as 
prediction of requirement for non-invasive ventilation and ICU admis
sion gives healthcare providers additional information that may not be 
obvious at patient evaluation, enabling better patient management. 

Future studies are required to validate the performance of this novel 
severity score and to establish its utility in the evolving workflow of 
COVID-19 patient management, specifically the prognostic capability in 
deterioration prediction within 14 days and accordingly in supporting 
decisions on escalation and de-escalation of care. A notable benefit of 
this immune-based tool, as compared to severity scores already in use, is 
that it predicts immune dysregulation associated with lung damage 
[25–27]. Furthermore, unlike other severity scores, the three constituent 
proteins and score can be easily and rapidly measured at the point-of- 
need using one platform. 

An inherent limitation of this study is its retrospective design 
allowing only routinely measured data parameters to be evaluated. As a 
result, score performance could not be compared to other commonly 
used severity scores or biomarkers and certain data points were not 
available or missing (e.g., time from symptom onset, viral load, etc.). 
Additionally, the occurrence of co-infections in the study cohort may 
have confounded the levels of the biomarkers and impacted the severity 
score. Nonetheless, the occurrence of co-infections in COVID patients 
during the study period was estimated to be between 1.5% and 11% 
[47–49]. Also, the study period did not encompass multiple genetic 
variants of SARS-CoV-2. The score was derived based on a population 
treated under protocols applied in the first and second waves of the 
pandemic, and its performance has not yet been evaluated in pop
ulations treated with newer approaches or in populations that have been 
vaccinated. These limitations may result in constrained generalizability 
and the extent of impact can be evaluated in future independent score 
validation studies. 

The derived severity score together with the rapid measurement 
platform have potential to serve as a practical predictive tool for early 
indication of COVID-19 patients at-risk for severe outcome, facilitating 
improved patient management and outcomes. 
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