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Abstract

Breast cancer (BC) is the most common female malignancy reaching a pandemic scale worldwide. A comprehensive interplay
between genetic alterations and shifted epigenetic regions synergistically leads to disease development and progression into
metastatic BC. DNA and histones methylations, as the most studied epigenetic modifications, represent frequent and early
events in the process of carcinogenesis. To this end, long non-coding RNAs (IncRNAs) are recognized as potent epigenetic
modulators in pathomechanisms of BC by contributing to the regulation of DNA, RNA, and histones’ methylation. In turn,
the methylation status of DNA, RNA, and histones can affect the level of IncRNAs expression demonstrating the reciprocity
of mechanisms involved. Furthermore, IncRNAs might undergo methylation in response to actual medical conditions such
as tumor development and treated malignancies. The reciprocity between genome-wide methylation status and long non-
coding RNA expression levels in BC remains largely unexplored. Since the bio/medical research in the area is, per evidence,
strongly fragmented, the relevance of this reciprocity for BC development and progression has not yet been systematically
analyzed. Contextually, the article aims at:

— consolidating the accumulated knowledge on both—the = — highlighting the potential benefits of this consolidated
genome-wide methylation status and corresponding multi-professional approach for advanced BC manage-
IncRNA expression patterns in BC and ment.

Based on a big data analysis and machine learning for individualized data interpretation, the proposed approach demonstrates
a great potential to promote predictive diagnostics and targeted prevention in the cost-effective primary healthcare (sub-
optimal health conditions and protection against the health-to-disease transition) as well as advanced treatment algorithms
tailored to the individualized patient profiles in secondary BC care (effective protection against metastatic disease). Clinically
relevant examples are provided, including mitochondrial health control and epigenetic regulatory mechanisms involved.
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Introduction

Why the paradigm change from reactive medicine
to 3 PM approach is essential for breast cancer
research and overall disease management?

According to the current statistics, breast cancer (BC)
represents the most frequently diagnosed type of malig-
nancy with the highest mortality (mainly due to the BC-
associated metastatic disease) in women worldwide [1,
2]. Despite improved early screening and more effective
therapeutic strategies, more than 90% of BC mortality
is attributable to advanced or metastatic disease [3-5].
Therefore, a better understanding of cellular and molecular
mechanisms regulating BC cell plasticity [6] is crucial to
improve overall BC management reflected in innovative
PPPM strategies comprising individualized patient profil-
ing, predictive diagnostics, targeted prevention in primary
and secondary care, and treatment algorithms tailored to
the person—altogether leading to improved individual
outcomes and healthcare economy [7, 8]. To this end,
epigenetic regulation plays a pivotal role in the interplay
between genotype and phenotype and promoting and pro-
tection against the health-to-disease transition, which is
instrumental for the paradigm change from reactive care
to predictive, preventive, and personalized approach [9].

Evidence towards reciprocity between genome-wide
methylation and long non-coding RNA expression
levels

The study of biological functions of the human genome
encoding non-coding RNAs (ncRNAs) is a subject of
intensive scientific research nowadays (Fig. 1A). Com-
monly, NcRNAs are defined as RNAs with no protein-
coding potential but with a proven significant regulatory
role in various physiological and pathological processes,
including cancer, at the epigenetic, transcriptional, or
post-transcriptional level [10]. Long non-coding RNAs
(IncRNAs) represent one of the largest and most diverse
classes of ncRNAs. Although the research of IncRNAs
is still in infancy, and there is a large gap between the
number of existing IncRNAs and their known relation to
molecular or cellular function, IncRNAs are considered
master gene regulators at the epigenetic level in carcino-
genesis (Fig. 1B). An improved understanding of the
function and role of IncRNAs in cancer is therefore highly
required. In the context of BC, current studies have shown
that specific dysregulation of many IncRNAs is associ-
ated with the development and progression of BC and
significantly correlates with poor outcomes in BC patients
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(Fig. 1C) [11-18]. These discoveries suggest that IncR-
NAs could represent suitable diagnostic and prognostic
biomarkers and potential therapeutic targets for BC man-
agement. However, these conclusions are mainly based on
the study of aberrant IncRNA expression profiles, while
the regulatory mechanisms, e.g., methylation patterns,
conditioning these changes remain largely unexplored.
Most recent BC mechanistic evidence suggests several
plausible mechanisms. Firstly, IncRNAs can regulate the
methylation status of DNA, RNA, and histones. Secondly,
the methylation status of DNA, RNA, and histones can
affect IncRNAs levels. Third, IncRNAs may undergo
methylation in response to medical conditions such as
tumor development and treated malignancies [19, 20].

Aims of the study in the framework of predictive,
preventive, and personalized medicine

Both genetic and epigenetic alterations cause BC devel-
opment and disease progression. Previous studies focused
mainly on identifying methylation patterns of protein-coding
genes concerning BC. However, increasing evidence indi-
cates a potential functional interplay between genome-wide
methylation status and expression levels of IncRNAs. The
latter is considered a hub in regulating epigenetic events
highly relevant for BC development and BC progression
into metastatic disease. Contextually, the current review
article aims at consolidating the accumulated knowledge
on genome-wide methylation status in correspondence
with IncRNA patterns with their reciprocity relevance, spe-
cifically for BC in research and healthcare. The proposed
approach may be of clinical potential to benefit affected
patient cohorts and disease-predisposed individuals. The
results could strongly contribute to BC prediction, devel-
opment of innovative screening programs, targeted pre-
vention, treatment algorithms tailored to the person, and
improved individual outcomes and overall economy of BC
management.

Here, we hypothesize that highlighted innovative bio-
marker panels are of potential clinical utility in primary
(sub-optimal health conditions and protection against the
health-to-disease transition) and secondary (adequate protec-
tion against metastatic BC) care.

Source of data

English-language biomedical literature sources from Pub-
Med bibliographic database were collected and analyzed for
the topic-related items, including all the keywords or medi-
cal subject heading (MeSH) terms listed above. The most
recent scientific publications from 2017 to 2023 were mainly
considered for the final statement presented in this paper.
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Fig.1 A Genome vs transcriptome, and ncRNAs vs protein-coding
RNAs. B Essential functions of IncRNAs in the cell. C The roles
of IncRNAs in breast cancer. A Most of the mammalian genome is
actively transcribed. However, non-coding RNAs, formerly called
“transcriptional noise” or “junk,” form a substantial part of the tran-
scriptome. Besides, less than 2% of the transcripts code for proteins.
B Long non-coding RNAs forming the most prevalent and diverse
class of regulatory ncRNAs are linked to different cellular functions,
including gene activation, chromatin modification and remodeling,

Genome-wide methylation profiling
and its correlation with IncRNA expression
and carcinogenesis

NcRNAs (both groups—housekeeping ncRNAs and regu-
latory ncRNAs) can be genetically or epigenetically regu-
lated (Fig. 2). Many diverse genetic variations affecting
ncRNAs have been identified regarding carcinogenesis
[21, 33—44]. Unlike genetic changes, epigenetic modifica-
tions represent heritable reversible changes that affect gene
activity without changing the DNA and RNA sequence
[45-47]. These modifications related to various DNA,
histone, and chromatin modifications and changes in the
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scaffold for protein complex, shorter ncRNAs generation, mRNA
regulation and suppression, and miRNA sponges. C Numerous IncR-
NAs participated in regulating different stages of breast cancer, for
example, cell cycle progression, proliferation and apoptosis, migra-
tion, invasion, metastasis, EMT, drug resistance, genomic instability,
or breast cancer stem cells. LncRNAs acted as either promoters or
inhibitors of the abovementioned key processes associated with breast
carcinogenesis [15, 16, 21-32]

regulation of ncRNAs play an essential role in different
biological and pathological processes, including cancer
[48].

LncRNAs are RNA transcripts above 200 bp long
(i.e., their size varies from hundreds of base pairs to tens
of kilobases) without open reading frames, characterized
by complicated structures and intrinsic origins, typically
expressed in a tissue-specific manner [52, 53]. LncRNAs
possess mRNA-like characteristics, 5' cap, and 3’ poly(A)
tail but lack protein-coding ability [54]. Moreover,
IncRNAs can interact with other RNAs, DNA, and proteins
and thus affect almost every aspect of gene regulation.
Furthermore, IncRNAs can serve as the precursor of various
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Fig.2 Schematic representation of a classification of non-coding
RNAs based on their structure, function, length, genomic loca-
tion, mechanism of action, and effects on DNA, emphasizing long
non-coding RNAs; NcRNAs can be divided into linear or circular.
According to their function, ncRNAs are recognized as housekeep-
ing or regulatory. Housekeeping ncRNAs are constitutively expressed
in each cell type, required for their viability and primarily regulating
generic and essential functions of cells. The regulatory ncRNAs act
as key regulators of various RNA molecules and gene expression at
the epigenetic, transcriptional, and post-transcriptional levels. Based
on their length, ncRNAs can be divided into small or long. LncRNAs
can be genomically located between two protein-coding genes (inter-
genic IncRNAs), in an intron of a coding region (intronic IncRNAs),
or within 1 kb of promoters and transcribed from the same promoter
as a protein-coding gene yet in the opposite direction (bidirectional
IncRNAs). Other IncRNAs can be transcribed either from the sense
RNA strand of the protein-coding genes (sense IncRNAs) or the anti-
sense RNA strand of a protein-coding gene (antisense IncRNA)
might overlap one or several introns and/or exons. According to the
mechanism of action, IncRNAs can be divided into four groups—
signal, decoy, guide, and scaffold. Signal IncRNAs, with regulatory

small RNAs, e.g., miRNAs, snoRNAs, and piRNAs, and
regulate their expression and function [22, 55, 56]. Within
the cells, IncRNAs are found in the nuclei, cytoplasm,
or mitochondria. In the nucleus, IncRNAs can regulate
chromatin re-modeling, transcription, translation, and
mRNA turnover in the cytoplasm. Moreover, IncRNAs
can pass from one cellular component to another, e.g., in
dependence on environmental changes (Fig. 1B) [5, 57].
The first IncRNA H19 was discovered and characterized
in 1990 [58]. Since then, the number of mammalian non-
coding transcripts has spectacularly increased, and to date,
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function, are expressed at a specific time and in a particular posi-
tion in the cell as a response to stimuli. Signal IncRNAs can mediate
the transcription of downstream genes alone or in combination with
other proteins. Decoy IncRNAs can indirectly repress transcription,
either binding to some functional proteins and blocking them from
regulating DNA and mRNA or binding to miRNA competitively
with mRNA and blocking the inhibitory effect of miRNA on mRNA.
Guide IncRNAs are necessary to organize and locate some functional
proteins at specific genomic loci to perform their functions. Scaffold
IncRNAs are important in assembling multi-protein complexes in the
target area. Moreover, IncRNAs can mediate epigenetic regulation via
chromatin-modifying proteins in cis or trans manner. Cis-acting IncR-
NAs affect target genes located near the IncRNA gene on the same
chromosome, while trans-acting IncRNAs affect target genes situated
distal to the IncRNA gene, often in a different chromosome [22, 24,
26, 28, 30-32, 49-51]; Abbreviations used: crasiRNA, centromere
repeat associated small interacting RNA; miRNA, microRNA; ncR-
NAs, non-coding RNAs; piRNA, piwi RNA; rRNA, ribosomal
RNAs; siRNA, small interfering RNA; snoRNA, small nucleolar
RNA; snRNA, small nuclear RNA; tRNA, transfer RNA; tsRNA,
tRNA-derived small RNAs

according to the NONCODE database (Current Version
v6.0), there are 173,112 human IncRNAs transcribed
from 96,411 genomic loci [19, 59]. These IncRNAs are
classified according to their origin in the genome into 6
groups: (1) sense IncRNA, (2) anti-sense IncRNA, (3)
bidirectional IncRNA, (4) intronic IncRNA, (5) intergenic
IncRNA, and (6) sense-overlapping IncRNA (Fig. 2).
LncRNAs can regulate the major pathways leading to
cancer development and progression at the epigenetic,
transcriptional, or post-transcriptional level [5, 14, 60-64].
Specifically, IncRNAs can regulate critical genes involved in
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malignant transformation and either increase the activation
of oncogenes or limit the expression of tumor-suppressor
genes. Moreover, many IncRNAs are expressed in cell-
type-, tissue-, disease-, or developmental stage-specific
manner [65—69]. From an epigenetic point of view, IncRNAs
are recognized as significant epigenetic regulators in
carcinogenesis. Cancer research has shown that IncRNAs
can regulate DNA, RNA, or histones methylation. On the
contrary, the methylation status of DNA, RNA, and histones
can affect the expression level of IncRNAs. Moreover,
IncRNAs themselves can also be subject to the process of
methylation.

DNA methylation

DNA methylation is the most widely studied epigenetic
alteration known since 1948, with a proven significant
impact on the development of cancer and other diseases
[54, 70-75]. DNA methylation is characterized by adding
a methyl group (CH;) from S-adenyl methionine (SAM)
onto the C5 position of the cytosine residue to form 5SmC.
DNA methylation is regulated by enzymes called DNA
methyltransferases (DNMTs), also known as “writers.” Three
members of DNMTs—DNMT1, DNMT3a, and DNMT3b—
DNA methylation can be removed by enzymes known as
demethylases, also referred to as “erasers.” Demethylases
include TET enzymes (ten-eleven translocation
methylcytosine dioxygenases). Lastly, DNA methylation
can be recognized by three families of proteins, so-called
readers, which include (1) the MBD proteins (containing
a methyl-CpG-binding domain); (2) the UHRF proteins
(ubiquitin-like, containing PHD, and RING finger domains);
and the zinc-finger proteins (containing a zinc-finger
domain) [19, 20, 76, 77]. In mammals, DNA methylation is
typically found in CpG dinucleotides. About 80% of CpG
sites are estimated to be methylated, excluding specific
regions called CpG islands (CGIs). CGIs primarily exist
in the promoter regions of genes. Therefore, methylation
changes (hyper- or hypo-methylation) in the promoter
regions of genes can be associated with alterations in their
expression, either upregulation or downregulation [19, 20,
71]. Current research has shown that differences in DNA
methylation profiles between normal and malignant tissues
have the potential to serve as a diagnostic and/or prognostic
marker in various types of cancer, including BC [72, 73].
Moreover, the interplay between DNA methylation and
IncRNAs represents a critical layer of epigenetic regulation
in carcinogenesis. DNA methylation mediated by IncRNAs
can be crucial in tumor progression, proliferation, invasion,
and metastasis of various tumor cells [19, 20, 78-80]. On
the contrary, DNA methylation can affect the expression and
function of multiple IncRNAs with a significant impact on
the process of carcinogenesis [81, 82].

Histone methylation

Histone methylation is another essential regulatory epige-
netic mechanism closely associated with cancer develop-
ment. Histone methylation mainly occurs on lysine and
arginine residues within proteins. Lysine can be monometh-
ylated (mel), dimethylated (me2), or trimethylated (me3).
Arginine can be mel or me2 symmetrically (mels, me2s) or
me2 asymmetrically (me2a) [83, 84]. Histone methyltrans-
ferases (HMTs) contain three group members. The first one
consists of the SET domain and lysine methyltransferases
(KMTs) (except of DOT1L (KMT4)), the second one con-
sists of a non-SET domain and DOTIL and the PRDM
protein family members with N-terminal PR domain, and
the last one represents PRMT family that shares a common
methyltransferase domain. Eight KDM families are known
among histone demethylases (HDM) [85, 86]. Moreover,
histone methylation can be recognized by various histone
methylation readers, such as PWWP, chromodomain, PHD,
Tudor, and WD40 [87]. Above all, DNA and histone meth-
ylation regulate chromatin structure and function synergisti-
cally [88]. Cancer research confirmed that IncRNAs could
regulate histone methylation via involvement in the recruit-
ment of polycomb proteins or methyltransferases associated
with histone methylation of specific targets. On the contrary,
histone methylation can affect IncRNAs and cause their acti-
vation or repression [§9-92].

RNA methylation modifications

According to the MODOMIC database, more than 170 kinds
of RNA modifications have been confirmed so far [93]. RNA
modifications affect all bases of RNA and the ribose moiety
and are, therefore, more diverse and complex when com-
pared to DNA modifications. Moreover, RNA modifications
can occur in a highly dynamic fashion, thereby increasing
the complexity of the RNA species on different levels, such
as biogenesis, localization, structure, and function of RNAs
[94-96]. Approximately 60% of RNA modifications repre-
sent methylated modifications [97]. RNA methylation is a
reversible post-transcriptional RNA modification found in
various coding and non-coding RNA types, including IncR-
NAs [98-100]. LncRNAs themselves can either undergo
various methylation modifications or participate in devel-
oping some of them within the process of carcinogenesis.
In general, RNA methylation (analogously like DNA meth-
ylation) is characterized by the transfer of CH; from the
cofactor (e.g., S-adenosyl-L-methionine) by methyltrans-
ferases to RNA molecules. Furthermore, RNA methylation
can be removed by the demethylases and recognized by
RNA-binding proteins (‘“readers”) [19, 20, 101]. Although
RNA methylation is a relatively newly discovered mecha-
nism of epigenetic regulation of gene expression, increasing
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evidence has revealed its crucial roles in signaling pathways
regulating physiological and pathological processes. RNA
methylation is involved in many aspects of RNA metabolism
and is associated with regulating RNA splicing, translation,
stability, degradation, translocation, function, and high-level
structure [101, 102]. Within the process of carcinogenesis,
RNA methylation represents a so-called dual-edged weapon.
On the one hand, RNA methylation can act as an activator
and trigger the carcinogenesis process (by promoting the
expression of oncogenes or by inhibiting the expression of
TS genes). But on the other hand, RNA methylation can act
as an inhibitor or suppressor of carcinogenesis (by promot-
ing the expression of TS genes or by inhibiting the expres-
sion of oncogenes) [19, 20, 103—105]. The development of
epi transcriptomic methodologies (e.g., analyses used anti-
modification antibodies or chemical methods coupled to the
RNA methylation sequencing technology (NGS)) enabled to
find and study several types of RNA methylations, such as
N6-methyladenosine (m6A), N1-methyladenosine (m1A),
and 5-methylcytosine (m5C), among others briefly men-
tioned below. There are also known other types of RNA
modifications dysregulated in human cancers such as, e.g.,
5-hydroxymethylcytosine (hm5C), 5-hydroxymethyl-2'-
O-methylcytidine (hm5Cm), 5-methoxycarbonylmethyl-
2-thiouridine (mem’s>U), 5-methoxycarbonylmethyluridine
(mcmSU), pseudouridine (¥), or adenosine-to-inosine (A-to-
I) RNA editing [100, 106]. However, these RNA modifi-
cations are beyond the scope of the interest of this review
(not purely methylation modifications), and therefore, we do
not discuss them further below. Besides, m6A is the most
intensely researched epigenetic RNA modification with a
significant effect on carcinogenesis. However, the research
on other types of RNA methylations is still not systematic
and in-depth, probably owing to the difficulty in mapping
this modification on the transcriptome [99, 107]. Further
studies in RNA methylations are needed and highly required,
especially in the context of BS as the most frequently diag-
nosed type of cancer nowadays.

N6-methyladenosine

N6-Methyladenosine (m6A), first identified in 1974 on
messenger RNA (mRNA), represents one of the most com-
mon, dynamic, and deeply researched epigenetic modi-
fications found in different types of eukaryotic coding as
well as non-coding RNAs, including IncRNAs. M6A is
assumed to occur in~30% of all transcripts [19, 20, 101,
102, 105, 108]. m6A modification arises by methylation of
the 6th nitrogen atom of adenine in RNA. Besides, m6A
primarily mediates post-transcriptional regulation of gene
expression by modifying RNA structure or specific binding
[19, 20, 93, 109]. Importantly, m6A is modified by m6A
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methyltransferases (METTL3/14/16, RBM15/15B, ZC3H3,
KIAA1429 (VIRMA), CBLL1, or WTAP), removed by m6A
demethylases (FTO and ALKBHS or ALKBH3), and recog-
nized by m6A-binding proteins (YTHDF1/2/3, YTHDC1/2,
IGF2BP1/2/3, HNRNPA2B 1, HNRNPC, HNRNPG among
others) [19, 20, 101, 110, 111]. In general, m6A RNA modi-
fication sites tend to be in the termination codons, the 5' cap
structure, and at the 3'- and 5'- untranslated region (3'-UTR
and 5'-UTR) [93, 110-112].

In addition to gene expression regulation, m6A RNA
methylation can influence cancer stem/initiating cell pluri-
potency, cancer cell differentiation and proliferation, cancer
cell migration and metastasis, angiogenesis, tumor micro-
environment, or immune regulation [101, 102, 113, 114].
In experimental and clinical studies, aberrant expression of
m6A RNA regulators promotes tumorigenesis. However,
some researchers also describe the tumor suppressive func-
tion of m6A regulators [99, 106, 107, 112, 115-120].

N1-methyladenosine

N1-Methyladenosine (m1A) was first identified in the total
mixed RNA samples in 1961. As described in 1968, m1A
can rearrange into m6A under alkaline conditions [121].
However, the functional research of m1A has become the
scope of interest only in the last few years. Specifically, m1A
modification involves adding an active methyl group from
the donor to the nitrogen atom in 1st position of the adeno-
sine in RNA [106]. Several m1A RNA writers (TRMT6,
TRMT61A, TRMT10C, Trmt61B, RRP8), m1A erasers
(ALKBH1, ALKBH3, FTO), and m1A readers (YTHDF1,
YTHDF2, YTHDF3, YTHDC1) have been described
[122-125]. Besides, m1A is highly enriched within the
5'-UTR or selectively at the start codon of transcripts [123,
126-130].

Regarding ncRNAs, m1A is a well-known modification in
tRNA, rRNA, and IncRNA [128, 129, 131]. Current cancer
research highlights the potential of m1A regulators to pro-
mote and sustain cancer cell proliferation, migration, and
invasion to affect metabolic heterogeneity in cancer patients
[124, 132—134]. Moreover, m1 A modification patterns can
predict cancer patient survival, stage, and grade. In the con-
text of an immunotherapeutic strategy for cancer patients,
m1A modification can have an essential role in shaping the
immune microenvironment [135].

5-methylcytosine

5-Methylcytosine (m5C) modification, firstly discovered in
the 1970s in ribosomal (rRNA) and transfer (tRNA) RNA,
occurs by methylation of RNA at the position of the 5th
atom of cytidine residues [106, 136]. Notably, m5C modi-
fication can also fulfill different functions depending on the
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RNA subtype. For example, m5C is probably important for
the nuclear export of mature mRNA [137]. Also, m5C can
regulate tRNA structure and stability, or translation effi-
ciency and accuracy, or can affect translational readthrough
of termination codons in rRNA [138, 139]. The group
of enzymes responsible for m5C modification of RNAs
includes several types of m5C methyltransferases, namely
members of the NOL1/NOP2/SUN domain (NSUN) fam-
ily (NSUN1, NSUN2, NSUN3, NSUN4, NSUNS5, NSUNG6,
NSUN?7), further DNMT2, and TRDMT1. Besides, m5C
erasers are represented by TET2, and m5C readers include
YBX1 and ALYREEF [125, 140]. m5C is preferentially accu-
mulated around the translational start codons and 3'-UTRs
of transcripts [141, 142].

Importantly, m5C modifications occur also in other
types of ncRNAs, for instance, in IncRNAs, vault RNAs
(vtRNAs), enhancer RNAs (eRNAs), or small Cajal body-
specific RNAs (scaRNAs) [143]. Based on recent oncologi-
cal studies, m5C RNA modifications possess diverse and
extensive scopes of action. Specifically, m5C has onco-
genic potential and can promote cancer progression, cancer
cell migration, and metastasis and induce chemoresistance
to anticancer therapy by methylation of various ncRNAs.
Moreover, m5C significantly correlated with poor prognosis
in cancer patients [112, 125, 140, 144—149].

7-methylguanosine

7-Methylguanosine (m7G), characterized by methylation of
guanosine on position N7, was first detected in 5' caps of
eukaryotic mRNA and subsequently internally in tRNA and
rRNA [150-152]. More recently, m7G has been identified
internally in miRNA precursors and mature miRNA, mRNA,
and IncRNAs [153-156]. In mammals, several m7G regula-
tors mediate m7G methylation of various RNAs—RNMT/
RAM methyltransferase complex in mRNA, METTL1/
WDR4 complex in tRNAs, and WBSCR22/TRMT112
complex in rRNA [157-159]. However, the research on
identifying other specific m7G regulators is still limited.
The primary role of m7G modification within mRNA is
to sustain the translation process, in contrast with m7G
modification within rRNA in which the effect on transla-
tion is weak. Moreover, m7G modification within mRNA is
dynamically regulated by changes in stress conditions [159,
160]. In tRNA, m7G maintains the structural integrity of
tRNA [161].

METTLI1 (respectively the METTL1/WDR4 complex)
has shown pro-oncogenic and tumor-suppressive activity
within oncological research. The depletion or overexpres-
sion of METTLI significantly affected the viability, pro-
liferation, migration, and metastasis of various tumor cell
types [155, 162—165]. Furthermore, METTL1 was crucial
in regulating resistance to certain chemotherapeutic drugs

such as 5-fluorouracil or cisplatin [166, 167]. In the clini-
cal study of Tian QH et al. [168], METTL1 downregulated
the tumor suppressor gene PTEN. Moreover, mainly within
the integrated analysis and predictive models, METTL]1, in
combination with aberrant expression of other m7G regula-
tors and various m7G-related RNAs, is correlated with poor
prognosis of cancer patients [162, 168—172]. Significant
tumor suppressive potential was also recorded in the case
of other m7G regulators, i.e., WBSCR22 and TRMT112.
Their overexpression significantly suppressed the prolifera-
tion, migration, and invasion of canscer cells in experimental
models of pancreatic cancer [173].

2'-0-methylation

2'-O-methylation (Nm or 2'0-Me in which N stands for any
nucleotide) was first discovered in tRNA and rRNA in the
1960s [174]. Nm has also been found in mRNA, snRNA,
and small non-coding RNAs such as siRNA, piRNA, and
miRNA [175-183]. This type of methylation modifica-
tion has not yet been found in IncRNAs. Recently, Wu H
et al. [179] informed about the important regulatory role
of IncRNA ZFAS]1 in promoting 2'-O-Me modification in
colorectal carcinogenesis. Notably, Nm is characterized by
methylation of ribose at 2'-OH group and occurs in all four
types of canonical nucleotides (i.e., Am, Gm, Um, and Cm)
but also in other modified (non-canonical) nucleotides (i.e.,
Im and ym) [175]. Two alternative enzymatic mechanisms
can form nm modification. First, by stand-alone protein
enzymes (stand-alone methyltransferases), or second, by a
complex assembly of proteins (fibrillarin, or FBL) associ-
ated with snoRNA guides (sno(s)RNPs) (the box C/D (sno(s)
RNPs)) [176]. Nm regulators include human methyltrans-
ferase CMTR1, capable of modifying the mRNA cap’s first
transcribed nucleotide [184, 185]. FBL is the only known
snoRNP 2'-O-methyltransferase [186]. However, we know
no erasers and readers have been discovered and studied for
Nm yet. Nm was observed in the 5’ cap of mRNA, internally
in the coding DNA sequence, further in the decoding or
peptidyl-transferase centers within rRNA, or at the periph-
ery of the ribosomal subunits [185-187]. Ribose methyla-
tion represents dynamic modification with a significant
impact on RNA structure and stability regulation. Indeed,
ribose methylation increases the hydrophobicity of RNA
molecules, thereby protecting them from nuclease activ-
ity, alkaline hydrolysis, and oxidation [188]. Furthermore,
ribose methylation affects mRNA splicing and translation,
interactions of RNA with proteins or other RNAs, and the
immune response of organisms [185].

Aberrant FBL expression can significantly affect rRNA
methylation, thus ribosome biogenesis and function, pro-
tein synthesis, and cell proliferation that can subsequently
result in cancer development [186]. Marcel V et al. [189,
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190] have shown that FBL expression is under the direct
control of p53, which acts as a repressor of FBL and
therefore prevent the enhancement of the translation of
various oncogenes. Moreover, alterations in box C/D
snoRNA expression levels can also affect the process of
carcinogenesis, for example, by promoting the stemness
phenotype and proliferation of cancer cells or by their
utilization for the prediction of cancer patient survival
[191-205].

The relationship between genome-wide
methylation profiling and IncRNAs
expression—the results from the most
current BC studies

BC is a highly biologically and clinically heterogeneous dis-
ease characterized by histological and molecular diversity,
distinct treatment responses, and prognostic patterns. There-
fore, identifying reliable and highly informative diagnostic
and prognostic BC biomarkers and therapeutic targets is
highly required. DNA methylation biomarkers with diagnos-
tic, prognostic, and predictive power significantly linked to
BC or epigenetic therapies of BC focusing on the therapeutic
effects of DNA methyltransferase (DNMT) inhibitors are in
ongoing clinical trials [73, 83, 206-214]. Currently, as we
mentioned above, several epigenetic studies are available
regarding the relationship between the methylation status of
DNA, RNA, or histones and the expression of various RNAs
as biomarkers in the diagnosis and prognosis of several types
of cancer, including BC as well as targets in personalized
anticancer therapy [85, 104, 169, 215-222]. However, none
of the studied RNA methylation biomarkers or epigenetic
BC therapies that target DNA, RNA, or histone methylation
in the context of various RNAs’ expression and function has
not been approved for clinical use. Therefore, to deepen the
current knowledge, we decided to summarize and discuss
the results from the most recent BC studies (from 2017 to
2023) dealing with the relationship between genome-wide
methylation profiling and IncRNAs. Several modes of inter-
action between IncRNAs and methylation modifications in
BC have been described: (1) IncRNAs can be regulated by
DNA methylation, DNA methylation negatively correlates
with IncRNA expression; (2) DNA methylation can be reg-
ulated by IncRNAs that either recruit DNMTs or regulate
the binding status of DNMTs; (3) IncRNAs can either regu-
late histone methylation or histone methylation can affect
IncRNAs; and (4) IncRNAs can either regulate various type
of RNA methylation or IncRNAs may themselves undergo
specific methylation modifications [223]. Here, we focus on
all the aspects mentioned above of the relationship between
IncRNAs and methylation modifications in BC. Since many
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authors within more complex studies supplemented the
analysis of BC tissue high-throughput sequencing data with
results from in vitro or in vivo experiments, we decided to
divide corresponding BC studies into the following subsec-
tions based on the type of studied interaction.

DNA methylation and IncRNAs

Several BC studies have shown that the decrease of DNA
methylation levels upregulated the expression of oncogenic
IncRNAs. On the contrary, increased DNA methylation
levels downregulated the expression of antitumor IncR-
NAs. Wang Z et al. [224] observed upregulated IncRNA
EPIC1, due to a promoter CpG island hypomethylation. At
the same time, this overexpression was associated with BC
cell cycle progression in in vitro and in vivo conditions. The
authors further confirmed that EPIC1 overexpression was
associated with significantly poor survival in luminal B BC
patients. Another study showed that IncRNA HUMT could
be upregulated by promoter hypomethylation that promotes
lymphangiogenesis and metastasis by activating FOXK1 and
increasing VEGF-C expression in TNBC.

Moreover, the higher level of HUMT was associated
with poorer clinical prognosis in patients with TNBC [225].
Pangeni RP et al. [226] analyzed two (among others) epi-
genetically dysregulated genes coding two long intergenic
non-coding RNAs (RP11-713P17.4 and CTD-2023M8.1)
in breast-to-brain metastases (BBM). Compared to normal
breast tissues and primary breast tumors, RP11-713P17.4
was hypermethylated, whereas CTD-2023M8.1 was hypo-
methylated in BBM. Moreover, some aberrant methylation
patterns were found in tumor-free circulating DNA in the
patient’s serum; however, a sample of serum should be taken
during BBM biopsy. According to the authors’ conclusions,
epigenetic dysregulation of RP11-713P17.4 could be consid-
ered an early event in the process of BBM and could be used
as BC prognostic marker. Another study showed that expres-
sion levels of GASS5 are commonly downregulated in cells
and tissues of TNBC. However, targeted hypomethylation of
GASS promoter increased the expression level of GASS in
TNBC cells. Reducing TNBC cell proliferation and promot-
ing TNBC cell apoptosis and chemosensitivity accompanied
the increased expression of GASS5. These results indicate
the role of GASS as a potential future candidate for TNBC
treatment [227].

Similarly, the expression level of MEG3 in BC cells and
tissues was poor, while the methylation rate of MEG3 was
significantly increased. Targeted hypomethylation of MEG3
promoted the chemosensitivity of BC cells [228]. In addi-
tion, DNMT1 induced hyper-methylation of MEG3 promoter
and facilitated the growth of BC via miR-494-3p/OTUD4
axis. On the contrary, the knockdown of DNMT1 enhanced
MEG3 expression, upregulation of MEG3 downregulated
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miR-494-3p expression that also affected the expression of
a miR-494-3p target OTUD4. Eventually, the authors con-
cluded the inhibition of BC progression in vitro and in vivo
[229]. Furthermore, tumor suppressor IncRNA HOTAIRM1
is downregulated and hypermethylated in BC tissues by
DNMTI1 and DNMT3A, promoting BC cell proliferation,
migration, and metastasis.

Moreover, the authors confirmed that the downregula-
tion of HOTAIRMI1 could be a potential therapeutic tar-
get in BC due to its significant prognostic value [230].
LncRNA BLATI is significantly upregulated in basal-like
breast cancer (BLBC). BLATI promoter hypermethylation
or hypomethylation may have an essential role in affecting
the aggressive phenotype of BLBC cells. BLAT1 hypometh-
ylation correlated with decreased overall survival in BLBC
patients. Contrary, a depletion of BLAT1 significantly
increased the apoptosis of BC cells [231]. Related findings
from this subsection are summarized in Table 1.

Research further confirms that methylation can affect
IncRNAs, and various IncRNAs can regulate the process
of DNA methylation during BC progression in several spe-
cific ways. Xu X et al. [201] recently analyzed the Cancer
Genome Atlas BC high-throughput sequencing data and BC
study in vitro. The authors revealed that overexpression of
IncRNA MAGI2-AS3, which acts as a cis-regulatory ele-
ment to downregulate DNA methylation in the promoter
region of MAGI2, inhibits proliferation and migration of BC
cells and may be associated with a better prognosis of BC
patient survival. Moreover, Wang HB et al. [232] described
that LINC00518, which expression was significantly higher
in BC tissues and cells, promotes the methylation of CDX2
by recruiting DNA methyltransferases and activating Wnt
signaling pathway. This is ultimately promoting BC epithe-
lial cell growth, proliferation, invasion, and epithelial-to-
mesenchymal transition (EMT), and also the development

of lymph node metastasis and suppression of apoptosis. In
another study, authors showed that IncRNA H19 promotes
tamoxifen resistance in estrogen receptor-positive (ER™)
BC cells and autophagy in vitro and in vivo. The mecha-
nism beyond H19 action affects the binding of DNMT3B
and the Beclinl promoter region by altering the SAH accu-
mulation. The subsequent downregulation of the Beclinl
promoter methylation and promotion of tamoxifen resist-
ance and autophagy of BC cells is modulated via the H19/
SAHH/DNMT3B axis [233]. In addition, H19 regulated the
expression of NAT1 in tamoxifen-resistant BC cells via the
regulation of NAT! promoter methylation [234].
Furthermore, Li C et al. [235] uncovered that IncRNA
MAYA and NSUNG6 form an RNA-protein complex that
methylates Hippo/MST1 resulting in MST1 kinase inacti-
vation and YAP target gene activation, which consequently
triggers BC osteoclast differentiation and bone metastasis
development. Moreover, IncRNA 91H demonstrated onco-
genic activity in vitro and in vivo; specifically, 91H pro-
moted the aggressive phenotype of BC cells via regulating
the expression of H19/IGF2 imprinting locus by masking
the methylation site on the imprinting control center and the
H19 promoter [236]. In 2019, Miao H et al. [237] informed
that IncRNA PYCARD-ASI acts as a negative regulator of
the pro-apoptotic gene PYCARD at both the epigenetic and
translational levels in BC. PYCARD-ASI facilitates DNA
methylation of PYCARD promotor and H3K9me2 modifica-
tion by recruiting DNMT1 and G9a, resulting in the silenc-
ing of PYCARD and disruption of the apoptotic process in
BC cells in vitro. Moreover, the study showed that reactiva-
tion of PYCARD induced by the PYCARD-AS1-knockdown
increased the susceptibility of BC cells to the cytotoxic agent
paclitaxel. The analysis of BC samples, accompanied by
experimental analysis in vitro and in vivo, described a novel
HER?2 subtype-specific lincRNA BCLIN25 that promotes

Table 1 Methylation modification and its interaction with various type of IncRNAs in BC studies: DNA methylation — IncRNA

Long ncRNA  Expression in BC Signaling pathway involved Mechanism of action References
EPIC1 i EPIC1/MYC Promotion of BC cell cycle progression [224]
HUMT i HUMT/YBX1/FOXK1 Promotion of lymph-angiogenesis and metastasis in [225]
TNBC
RP11-713P17.4 not studied Not studied Hypermethylation of RP11-713P17.4 gene in BBM [226]
GASS | Not studied Suppression of TNBC progression, reduction of TNBC [227]
cell proliferation, promotion of TNBC cell apoptosis
and chemosensitivity
MEG3 ! Not studied Promotion of chemosensitivity of BC cells [228]
MEG3 l DNMT1/MEG3/miR-494-3p/OTUD4 Supporting of the growth of BC cells [229]
HOTAIRM1 ! DNMT1 and DNMT3A/HOTAIRM1 Promotion of BC cells proliferation, clone formation,  [230]
and invasion
BLATI1 T BLATI promoter/BLAT1 Influencing the aggressive phenotype of BLBC cells [231]

Abbreviations: 1, increased, upregulated; |, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells; BLBC,

basal-like breast cancer
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mammary carcinogenesis by upregulation of ERBB2 expres-
sion via enhancing promoter CpG methylation of miR-
125b. Downregulation of miR-125b led to the abrogation
of ERBB2 mRNA degradation. The authors also provided a
comprehensive landscape of molecular subtype-specific long
intergenic noncoding RNAs, which could complement BC’s
current molecular classification system [238].

Besides, IncRNA MIAT can bind to DNMT1, DNMT3A,
and DNMT3B, promoting the methylation of CpG islands
in DLG3 promoter and suppressing its expression. Moreo-
ver, DLG3 can bind to MST2, regulate LAST1, and prevent
the nuclear translocation of YAP. Li D et al. [239] dem-
onstrated that MIAT silencing inhibited the progression of
BC by upregulation of DLG3 and consequently led to the
activation of mentioned Hippo signaling pathway. Moreover,
the overexpression of IncRNA LINC00472 demonstrated
the ability to suppress TNBC progression and inhibit pro-
liferation, invasion, and migration of TNBC cells via regu-
lation of DNA methylation. LINC00472 can significantly
induce the methylation of MCM6 promoter via recruiting
DNMTI1, DNMT3a, and DNMT3b, and thus reduce its
expression. Subsequently, the inhibition MCM6 expression
led to the inactivation of the MEK/ERK signaling path-
way and suppression of mammary cell cycle progression.
Therefore, LINC00472-mediated epigenetic silencing of
MCMG6 appears as a suitable therapeutic target for TNBC
[240]. Another IncRNA TINCR, which was overexpressed
in human BC and correlated with poor prognosis of BC
patients, demonstrated in experimental conditions the abil-
ity to recruit DNMT]1 to the miR-503-5p locus promoter,
increasing methylation and suppressing the transcriptional
expression of DNMT1.

Furthermore, TINCR acts as a ceRNA upregulated
EGFR expression by sponging miR-503-5p. The study
also revealed that TINCR could stimulate JAK2-STAT3
signaling downstream from EGFR and vice versa STAT3
enhances the transcriptional expression of TINCR [241].
Furthermore, TINCR reduced the effectiveness of immu-
notherapy against BC. Mechanistically, TINCR regulated
the expression of USP20 and PD-L1 via ceRNA interaction
and inhibition of miR-199a-5p transcription by promoting
its methylation [242]. In the study of Wang Y et al. [243],
IncRNA LINC00922 supported the progression of BC via
NKD? silencing, activating Wnt signaling pathway, and pro-
moting EMT, proliferative, invasive, and migratory capaci-
ties of BC cells. LINC00922 decreased the expression of
NKD?2 by supporting the methylation of its promoter. Fur-
thermore, Aini S et al. [244] showed that IncRNA SNHG10
could negatively regulate miR-302b methylation and that
overexpression of IncRNA SNHG10 increased chemo-
sensitivity of TNBC cells to doxorubicin via upregulation
of miR-302b. In addition, the downregulation of IncRNA
HOTAIR promoted the sensitivity of HER2"-resistant BC
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cells to trastuzumab when compared with sensitive cells,
mechanistically via the upregulation of PTEN methylation
levels, demethylation of TGF-f, and subsequent reduction
of PI3K/AKT signaling pathway activity. Besides, increased
PI3K/AKT activity is considered one of the leading factors
responsible for the emergence of trastuzumab resistance in
BC [245]. Moreover, Long Q et al. [246] showed that over-
expression of IncRNA TATDNI1 negatively regulated the
expression of tumors suppressive miR-26b in TNBC cells,
however positively affected methylation of miR-26b gene,
thereby promoting the TNBC cell proliferation. Table 2 pro-
vides a detailed overview of the above-discussed findings.

Histone methylation and IncRNAs

As mentioned above, IncRNAs can either regulate histone
methylation or histone methylation can affect IncRNAs,
which several BC studies have also confirmed. Firstly, IncR-
NAs can recruit polycomb proteins or methyltransferases
associated with histone methylation of specific targets. For
example, LINC00511 showed oncogenic function in ER-
negative BC via interaction with EZH?2 and recruiting PRC2
to mediate H3K27me3 modification in the promoter region
of CDKNI1B, which led to the suppression of CDKNI1B
expression. ER deficiency directly affected the expression of
LINCO00511, and high expression of LINC00511 indicated
a markedly poorer prognosis in BC patients [247]. Another
study demonstrated that IncRNA ROR supported BC pro-
gression by promoting H3K4 trimethylation of TIMP3 (via
MLLI1 recruitment) and enhanced its transcription levels.
The expression levels of IncRNA ROR and TIMP3 were
higher in BC tissues than in adjacent tissues. The results of
this study provide evidence that IncRNA ROR can serve as
a promising marker for BC prognosis and can be an impor-
tant therapeutic target in BC therapy [248]. In addition,
IncRNA UCAL1 can support tamoxifen resistance of BC
cells via regulation of the EZH2/p21 axis. UCAI is associ-
ated with EZH?2 suppressing the expression of p2] through
H3K27me3 on the p21 promoter [249]. Also, the overex-
pression of IncRNA PHACTR2-AS1 promoted H3K9 meth-
ylation of rDNA by recruiting SUV39H1, thereby suppress-
ing BC cell growth and metastasis. However, EZH2-induced
silencing of PHACTR2-AS1 promoted ribosome synthesis
and ribosomal DNA (rDNA) instability that, in turn, sup-
ported cancer cell proliferation and metastasis [250].
Furthermore, IncRNA HOTAIRM1 promoted the resist-
ance of ER* BC cells in vitro to tamoxifen via regulating
HOXAT1 expression through direct interaction with EZH2 and
hindered deposition of H3K27me3 marks at HOXAI promoter
[251]. LncRNA LINCO02273 showed oncogenic potential and
promoted BC invasion and metastasis in vitro and in vivo.
Mechanistically, the hnRNPL-LINC02273 complex activated
AGR? transcription and promoted BC metastasis by increasing
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Table 2 Methylation modification and its interaction with various type of IncRNAs in BC studies: LncRNA — DNA methylation
Long ncRNA  Expression in BC Signaling pathway involved Mechanism of action References
MAGI2-AS3 | MAGI2-AS3/MAGI2/Wnt/beta-catenin Inhibition of BC cell proliferation and migration [201]
LINC00518 i LINCO00518/CDX2/Wnt Promotion of BC epithelial cell growth, prolif-  [232]
eration, invasion, EMT, lymph node metastasis
and suppression of apoptosis
H19 1 H19/SAHH/DNMT3B Promotion of tamoxifen resistance in ER* BC [233]
cells trigger BC osteoclast differentiation and
bone metastasis development
H19 1 H19/NATI Promotion of tamoxifen resistance in BC cells [234]
MAYA 1 ROR1/HER3/MAYA Stimulation of BC osteoclast differentiation and  [235]
bone metastasis development
91H 1 91H /H19/IGF2 Promotion of aggressive phenotype of BC cells  [236]
PYCARD-AS1 Not studied PYCARD-AS1/PYCARD Disruption of apoptosis of BC cells [237]
BCLIN25 T BCLIN25/miR-125b/ERBB2 Promotion of HER2 BC [238]
MIAT i MIAT/DLG3/Hippo Promotion of BC progression [239]
LINC00472 | LINC00472/MCM6/MEK/ERK Inhibition of progression and metastasis in [240]
TNBC
TINCR 1 STAT3/TINCR/EGFR-feedback loop Promotion of BC progression [241]
TINCR ) STAT1/TINCR/miR-199a-5p/USP20/PD-L1 Reducing the effectiveness of immunotherapy [242]
against BC
LINC00922 i LINC00922/NKD2/Wnt Progression of BC by promoting EMT, prolifera- [243]
tive, invasive and migratory capacities of BC
cells
SNHG10 | SNHG10/miR-302b Suppression of chemoresistance of TNBC cells ~ [244]
HOTAIR 1 HOTAIR/PTEN/TGF-B/PI3K/AKT Promotion of trastuzumab resistance in HER2"  [245]
BC cells, reduction of their apoptosis, and
promotion of their proliferative and invasion
ability
TATDNI1 1 TATDN1/miR-26b Promotion of TNBC cells proliferation [246]

Abbreviations: 1, increased, upregulated; |, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells

H3K4me3 and H3K27ac levels around its promoter region by promoting the binding of EZH2 to the SOCS3 promoter,
[252]. Finally, IncRNA DANCR showed the ability to support  thereby inhibiting its expression [253]. Related findings from

EMT, cancer stemness, and inflammation in BC cells in vitro this subsection are summarized in Table 3.

Table 3 Methylation modification and its interaction with various type of IncRNAs in BC studies: LncRNA — histone methylation and Histone

methylation — IncRNA

Long ncRNA Expres-  Signaling pathway involved Mechanism of action References
sion in
BC
LINCO00511 i LINCO00511/EZH2/PRC2/CDKNI1B Suppression of CDKN1B expression in ER™ BC [247]
ROR 1 ROR/MLL1/TIMP3 Support of BC progression [248]
UCAL1 1 UCAL1/EZH2/p21 Supporting of tamoxifen resistance of BC cells [249]
PHACTR2-AS1 | EZH2/PHACTR2-AS1/Ribosome DNA Suppression of the BC cell growth and metastasis [250]
HOTAIRM1 1 HOTAIRM1/EZH2/PRC2/HOXA1 Promotion of tamoxifen resistance in ER* BC cells [251]
LINC02273 1 LINC02273/AGR2 Promotion of BC metastasis [252]
DANCR 1 DANCR/EZH2/SOCS3 Promotion of EMT, cancer stemness, and inflammation in [253]
BC
EPB41L4A-AS2 | ZNF217/EZH2/EPB4114A-AS2 Promotion of BC progression [254]
DLEUI 1 DLEU1/SRP4 Promotion of BC progression [255]

Abbreviations: 1, increased, upregulated; |, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells
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Secondly, histone methylation marks on IncRNA can be
associated with its activation or repression. Pang B et al.
[254] first identified and validated the comprehensive land-
scape of tumor suppressor IncRNAs in BC tissues and
subsequently selected IncRNA EPB41L4A-AS2 for fur-
ther mechanistic investigation. Specifically, EPB41L4A-
AS2 suppressed BC progression in vitro by upregulating
the expression of RARRES1. Moreover, a high expression
level of EPB41L4A-AS2 was associated with a favorable
prognosis in BC patients. And finally, the authors showed
that the progression of BC can be promoted by ZNF217
recruiting EZH2 to EPB411.4A-AS2 locus and suppressing
EPB41L4A-AS2 expression by increasing H3K27me3 modi-
fication. Moreover, a decreased DNA methylation led to the
upregulation of oncogenic IncRNA DLEU1 through increas-
ing H3K4me3 and H3K27ac modifications in BC (in vitro
and in vivo study supplemented by the TCGA and cohort
data analysis). High DLEU1 expression correlates with a
worse prognosis in BC patients. These findings indicate that
epigenetic therapy targeting histone methylation modifica-
tion in combination with DLEUI1 target therapy may have
the potential of an effective anti-BC strategy [255]. Related
conclusions of this subsection are summarized in Table 3.

m6A and IncRNAs

Although described as mRNA’s most frequent methylation
modification, m6A is also commonly found in ncRNAs,
including IncRNAs [256]. Several experimental studies
demonstrated IncRNAs as less methylated than mRNAs,
therefore assuming IncRNA methylation landscape dif-
fers from mRNA [62]. Indeed, IncRNAs can undergo m6A
methylation modification, and some IncRNAs can partici-
pate in the modulation of m6A modification of the specific
downstream target genes associated with BC. Specifically,
METTL3 affected the LINC00675 sponge’s competitive
endogenous RNA (ceRNA) network activity for miR-
513b-5p through increasing m6A methylation modification.
Besides, m6A methylation modification of LINC00675 did
not affect IncRNA expression but enhanced the interaction
between LINC00675 and miR-513b-5p and promoted BC
repression [257]. The results of another study described
eight m6A sites on HOTAIR. Among them, A783 was
defined as consistently methylated. Besides, A783 interacts
with m6A “reader” YTHDC1 enabling chromatin associa-
tion and promoting high levels of HOTAIR expression and
gene repression upstream of PRC2 complex, thereby pro-
moting HOTAIR-mediated proliferation and invasion of
TNBC cells [258]. Furthermore, Rong D et al. [259] showed
that METTL3-induced LINC00958 upregulation promoted
BC tumorigenesis via miR-378a-3p/YY1 axis necessary
to regulate cell proliferation and apoptosis. In the study
of Zhao C et al. [260], METTL3-induced upregulation of
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IncRNA MALAT1 regulated the progression of BC through
the METTL3/MALAT1/miR-26b/HMGA?2 pathway. Moreo-
ver, m6A modified IncRNA DLGAPI1-AS1 and promoted
adriamycin resistance in BC cells via WTAP/DLGAP1-AS1/
miR-299-3p pathway [261]. Also, Sun T et al. [262] uncov-
ered the oncogenic potential of LINC00942 (LNC942) and
METTLI14, which upregulated the expression and stability
of two downstream target genes CXCR4 and CYP1B1 by pro-
moting METTL14-mediated m6A methylation that subse-
quently led to accelerating BC cell proliferation, colony for-
mation, and reduced BC cell apoptosis in vitro and in vivo.
In addition, UCA1 regulated m6A modification of miR-375
by mediating METTL14 downregulation via DNA methyla-
tion. These results highlight miR-375 as poorly expressed in
BC, and its expression positively correlated with METTL14
expression. Moreover, METTL14 mediated high SOX12
expression by m6A modification of miR-375 in BC in vitro
and in vivo [263]. Furthermore, Zhu P et al. [264] demon-
strated a significant role in the interaction between m6A and
IncRNA in BC stem cells. Hypoxic IncRNA KB-1980E6.3
is upregulated in BC tissues and correlates with poor prog-
nosis in BC patients. Specifically, KB-1980E6.3 recruited
IGF2BP1 and maintained BC stemness and tumorigenesis
by retaining c-Myc mRNA stability in vitro and in vivo.
Table 4 summarizes related findings from this subsection.

Other IncRNA methylation modifications in BC

Due to the lack of BC studies focusing on the interactions
between IncRNAs and other types of methylation modifi-
cations such as m1A, m5C, m7G, or Nm, the association
between these modifications and their effects on IncRNAs
in human BC remains unclear and requires further research.
Available research evidence provides no study on m1A- and/
or Nm-related IncRNAs in BC. Some relevant studies deal
with the relationship between m1A and various mRNAs
in BC or m1A-related IncRNAs in other cancer diseases.
Firstly, the earlier BC study by Singh B et al. [265] demon-
strated the vital role of RNA demethylase FTO in the cell-
based model of pan resistance in TNBC. The inhibition of
FTO significantly suppressed the survival and/or colony for-
mation of SUM149-MA TNBC cells compared to the con-
trol. At the same time, these effects were demonstrated via
decreased demethylation of IRX3 mRNA and IRX3 protein
synthesis. In another study, ALKBH3-induced m1A dem-
ethylation increased the CSF-1 mRNA stability in BT20
BC cells. The overexpression of ALKBH3 increased CSF-1
expression and invasiveness of BC cells without a significant
effect on proliferation and migration [133].

On the other hand, Shi L et al. [131] realized m1A pro-
filing of IncRNAs in human colorectal cancer (CRC). The
authors revealed a significant difference in m1A distribu-
tion between CRC and adjacent non-tumorous tissues. They
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Table 4 Methylation modification and its interaction with various type of IncRNAs in BC studies: m6A — IncRNA and IncRNA — m6A
Long ncRNA  Expres- Signaling pathway involved Mechanism of action References

sion in
BC

LINCO00675 l METTL3/LINC00675/miR-513b-5p

HOTAIR i YTHDC1/HOTAIR/PRC2

LINC00958 i METTL3/LINC00958/miR-378a-3p/YY1
MALATI1 i METTL3/MALAT1/miR-26b/HMGA2
DLGAP1-AS1 1 WTAP/DLGAP1-AS1/miR-299-3p
LINC00942 i LINC00942/METTL14/CXCR4 and CYP1B1
UCAl T UCA1/METTL14/miR-375/SO0X12

KB-1980E6.3 1 KB-1980E6.3/IGF2BP1/c-Myc

Suppression of BC cell proliferation, migration, and [257]
invasion

Promotion of proliferation and invasion of TNBC cells [258]

Promotion of BC tumorigenesis [259]

Promotion of EMT, migration and invasion in BC [260]

Promotion of adriamycin resistance in BC [261]

Acceleration of BC cell proliferation, colony formation, [262]
and reduction of BC cell apoptosis

Progression of BC [263]

Maintenance of BCSC stemness under hypoxic condi- [264]

tions

Abbreviations: 1, increased, upregulated; |, reduced, downregulated; BBM, breast to brain metastases; BCSCs, breast cancer stem cells

further determined downregulated IncRNAs along with m1A
modification in CRC. And finally, they demonstrated the
significant correlation between the unique distribution of
mlA sites in IncRNAs with CRC signaling pathways. Simi-
larly, in the case of m5C modification, the importance of the
m5C-related IncRNAs was already studied in hepatocellular
(HCC) and esophageal squamous cell carcinoma (ESCC).
Still, we are not aware of a similar study in BC. In men-
tioned HCC study, m5C modification increased the stability
of oncogenic IncRNA H19. Moreover, m5C-modified H19
demonstrated the ability to bond by G3BP1, which further
led to MYC accumulation [266]. In the ESCC study, a novel
NSUN?2 methylated IncRNA NMR regulated tumor metasta-
sis and drug resistance via NSUN2 and BPTF [144].
Within current BC research, scientists mainly focus on
constructing BC prognostic signatures based on various
IncRNAs associated with a particular type of methylation
modification. Huang Z et al. [267] selected three BC-spe-
cific m5C-related IncRNAs (AP005131.2, ALL121832.2, and
LINCO01152) that could have prognostic and predictive value
in BC patients. Other authors recently analyzed the prog-
nostic value of eleven m5C-related IncRNAs (AC002398.1,
AL096701.3, AC073655.2, AL645608.7, AC244517.1,
NDUFA6-DT, WEE2-AS1, AC090912.3, AL606834.2,
AL136368.1, AC103858.2) and described an association
between m5C-related IncRNAs and immune cell infiltra-
tion as well as chemotherapy drug sensitivity in BC patients
[268]. Moreover, a comprehensive analysis provided poten-
tial m5C regulators in BC by a combination of expression,
diagnosis, and survival analyses. Furthermore, the authors
established the ncRNA-mRNA network accounting for the
role of m5C regulators in BC in which several upstream
potential IncRNAs of the five upstream potential binding
miRNAs of m5C regulators (let-7b-5p, miR-195-5p, miR-
29a-3p, miR-26a-5p, and miR-26b-5p) were predicted and

analyzed. Among the examined m5C regulators, DNMT3B
and ALYREF were significantly upregulated in BC samples.
At the same time, their high expression indicated an unfa-
vorable prognosis in BC patients and possessed the statistical
abilities to distinguish BC tissues from normal breast tissues.
Pathway analysis revealed that VEGFA and EZH?2 represent
the most potential target genes in BC’s m5C regulators-
related ncRNA-mRNA network. The upstream potential
IncRNAs of studied miRNAs are listed in the supplementary
material of the study [269]. Moreover, another BC prognos-
tic signature was based on m7G-related IncRNAs. Huang Z
et al. [270] identified eight m7G-related IncRNAs (BAIAP2-
DT, COL4A2-AS1, FARP1-AS1, RERE-AS1, NDUFAG6-
DT, TFAP2A-AS1, LINC00115, and MIR302CHG) and
Cao J et al. [271] nine m7G-related IncRNAs (LINC01871,
AP003469.4, Z68871.1, AC245297.3, EGOT, TFAP2A-
AS1, AL136531.1, SEMA3B-AS1, AL606834.2), which
could serve as potential biomarkers and therapeutic targets
of BC.

Reciprocity of genome-wide methylation
status and IncRNA patterns in BC:
concluding remarks on potential benefits
to the 3 PM approach

The application of genome-wide methylation analyses
strongly contributes to understanding IncRNAs-associated
pathomechanisms in BC development and progression. It
presents a powerful diagnostic, prognostic, and therapeu-
tic tool in the context of 3P medicine [272]. Stage-specific
IncRNA expression patterns are instrumental for the dif-
ferential diagnostics, targeted prevention, and treatment
tailored to the individualized patient profiles. On the other
hand, genome-wide epigenetic shifts individually analyzed
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for BC patients are an essential indicator for an accurate
prognosis and targeted preventive strategies [273]. Genome-
wide methylation analyses and stage-specific IncRNA pat-
terns synergistically increase the predictive power of BC
diagnostics and the efficacy of the targeted anti-cancer
therapy [274]. To this end, the role of the advanced 3 PM
approach is to distinguish the “driver” genomic methylation
events from their “passenger” functions, which is considered
crucial for personalized treatment algorithms in BC manage-
ment [275-277].

Mitochondrial health as the prominent
example of comprehensive epigenetic
regulations involving methylation

and IncRNA-specific patterns highly
relevant for primary and secondary BC care:
a proposal for future PPPM approach

Predictive diagnostics

Mitochondrial health quality controls and regulates cellu-
lar, organ, and organismal metabolism [278]. Mitochondrial
plasticity (fission, fusion, mitophagy) is crucial to integrate
environmental and internal signals and govern an adequate
reaction in physiological bioenergetics and multi-functional
response to diverse stress stimuli. In contrast, mitochondrial
dysfunction and burnout under severe medical conditions
create extensive oxidative stress causing epigenetic dysreg-
ulation reflected in shifted DNA methylation and histone
modification. To this end, oxidative and nitrosative stress
provoked by injured mitochondria is a powerful systemic
predictor of the health-to-disease transition reflected in cor-
responding health condition-specific multi-omic patterns
well detectable in body fluids such as blood and tears [279,
280]. Corresponding systemic molecular signature is asso-
ciated with an impaired immune function and cross-talking
miRNAs and IncRNAs, exosomal ncRNA communication to
cells and tissues [281], and increased extracellular presents
of mtDNA fragments that are instrumental for predictive
diagnostics with a great potential to reverse a disease devel-
opment at the stage of health-to-disease transition [280].

Mitochondria health control is pivotal
for the targeted primary and secondary BC care

Under the influence of endogenous and environmental
agents such as xenobiotics (environmental pollutants and
heavy metals) and therapeutic drugs, the methylation status
of mtDNA is changing, which may result in altered bioener-
getics and decreased ATP production, metabolic disorders,
accelerated aging, and related pathologies such as chronic
degenerative processes and cancers including metastatic
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breast cancer malignancies. It is abundantly described that
epigenetic regulation of mtDNA and mitochondrial proteins
allows for cross-talking between the nucleus and mitochon-
dria, orchestrating and maintaining cellular health and physi-
ologic mitochondrial homeostasis [282]. To this end, meth-
ylation occurs in mitochondria via DNA methyl-transferases
identified in the organelle and regulated via long- and short-
noncoding RNAs [282].

Extensive evidence is provided for regular body exercise
as an effective risk mitigation measure applied to primary
(disease predisposition and development) and secondary
(improved individual outcomes in treated breast malignan-
cies) BC care [7]. Accumulated knowledge demonstrates
that all three components are involved in protective mecha-
nisms: increasing the population of healthy mitochondria
and epigenetics and IncRNA regulation that functions
reciprocally. To this end, the role of long non-coding RNA
taurine-upregulated gene 1 (TUGI1) was recently investi-
gated, which interacts with PGC-1alpha in regulating a tran-
scriptional response to exercise in skeletal muscle. TUG1
expression was upregulated and positively correlated with
an increased PGC-1alpha expression in human skeletal mus-
cles associated with mitochondrial calcium handling and
improved myogenesis after a single exercise session. In con-
trast, Tugl knockdown in mouse myotubes led to impaired
mitochondrial respiration and morphology [283].

Furthermore, mitochondrial oxidative phosphorylation
(OXPHOS) regulates metastatic disease. Arginine and lysin
methylation of MRPS23 promote breast cancer metastasis by
regulating OXPHOS, which opens the door for new thera-
peutic options based on mitochondrial epigenetic regulation
[284].

Finally, metformin treatment, considered anti-diabetic
and anti-cancer protection, employs epigenetic regulation.
Metformin and a mitochondria/complex I (mCI)-targeted
analog of metformin promote DNA methylation in non-
cancerous, cancer-prone, and metastatic cancer cells by
decreasing S-adenosylhomocysteine (SAH) being capable
of reprogramming the DNA methylation machinery [285].

Phenotyping as the screening tool
for a cost-effective 3 PM approach

To increase the overall efficacy of applying PPPM to BC
management, phenotyping has been proposed as a screen-
ing tool of great clinical utility [286, 287]. To this end, the
below listed phenotypes are recommended candidates for
innovative screening programs and predictive approaches
in the population. Their relevance for epigenetic dysregula-
tion and BC predisposition is justified in recent publications.

Compromised mitochondrial health is strongly associ-
ated with BC development and progression into metastatic



EPMA Journal (2023) 14:249-273

263

disease. As stated above, oxidative and nitrosative stress
provoked by injured mitochondria is a powerful systemic
predictor of the health-to-disease transition reflected in cor-
responding health condition-specific multi-omic patterns
well detectable in body fluids such as blood and tears [279,
280]. Corresponding systemic molecular signature is asso-
ciated with an impaired immune function and cross-talking
miRNAs and IncRNAs, exosomal ncRNA communication to
cells and tissues [281], and increased extracellular presents
of mtDNA fragments that are instrumental for predictive
diagnostics with a great potential to reverse a disease devel-
opment at the stage of health-to-disease transition [280].
Population screening for compromised mitochondrial health
is recommended for primary care.

Increased blood plasma homocysteine (Hcy) is associ-
ated with metabolic and DNA methylation shifts. Subtile
changes in Hcy concentration by 13—14 pmol/L (against
11 umol/L breast cancer-free controls) are associated with
an increased risk of BC, T stage of the disease, and lymph
node metastasis in BC patients [288]. H19 IncRNA inhibits
S-adenosyl homocysteine (SAH) hydrolase, the only mam-
malian enzyme capable to hydrolise SAH. In turn, SAH
inhibits S-adenosyl methionine (SAM)-dependent methyl-
transferases methylating key biomolecules such as DNA,
RNA, proteins, lipids, and neurotransmitters. Consequently,
genome-wide methylation status is shifted in individuals
with altered Hcy patterns—a critical sub-population recom-
mended for the screening. Primary BC prevention by dietary
folate supplement effectively normalizes a slight increase in
Hcy concentration [289, 290].

Endothelial dysfunction is linked to the diabetes type
2 phenotype (DMT2) and Flammer syndrome (FS)—both
predisposed to increased risk of breast cancer with poor
outcomes [286, 291-293]. In both phenotypes, endothelin-1
(ET-1) is upregulated, leading to imbalanced vasoconstric-
tion, ischemic-reperfusion events, metabolic impairments
with cascading complications, aging and related pathologies,
cardiovascular diseases, neurodegenerative pathologies,
and aggressive malignancies [294]. Specifically in DMT2,
IncRNAs are involved in the glucose-induced transcriptional
upregulation of ET-1 via hypomethylation in the proximal
promoter and 5 UTR/first exon regions of the EDN1, while
knocking down specific IncRNA panels suppresses epige-
netic upregulation of ET-1 [295]. Furthermore, depending
on the individual phenotype and environmental conditions
and consequently being driven by epigenetic regulation
mechanisms, the ET-1 axis affects the invasiveness of met-
astatic BC [296-299]. Both DMT2 and FS phenotypes are
contextually recommended for population screening related
to ET-1-associated BC risks.

An advanced health policy should essentially consider
the above-provided recommendations in order to improve the
overall BC management.
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