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using BLUP values. Four different models were used, 
which included three single trait models (CMLM, 
FarmCPU, SUPER) and one multi-trait model 
(mvLMM). Hundreds of MTAs were obtained using 
each model, but after Bonferroni correction, only 6 
MTAs for 3 traits were available using CMLM, and 
21 MTAs for 4 traits were available using FarmCPU; 
none of the 525 MTAs obtained using SUPER could 
qualify after Bonferroni correction. Using BLUP, 
20 MTAs were available, five of which also figured 
among MTAs identified for individual environments. 
Using mvLMM model, after Bonferroni correction, 
38 multi-trait MTAs, for 15 different trait combina-
tions were available. Epistatic interactions involving 
28 pairs of MTAs were also available for seven of 
the 10 traits; no epistatic interactions were available 
for GNPS, PH, and BYPP. As many as 164 putative 
candidate genes (CGs) were identified using all the 50 
MTAs (CMLM, 3; FarmCPU, 9; mvLMM, 6, epista-
sis, 21 and BLUP, 11 MTAs), which ranged from 20 
(CMLM) to 66 (epistasis) CGs. In-silico expression 
analysis of CGs was also conducted in different tis-
sues at different developmental stages. The infor-
mation generated through the present study proved 
useful for developing a better understanding of the 
genetics of each of the 10 traits; the study also pro-
vided novel markers for marker-assisted selection 
(MAS) to be utilized for the development of wheat 
cultivars with improved agronomic traits.

Abstract  A genome-wide association study 
(GWAS) for 10 yield and yield component traits 
was conducted using an association panel compris-
ing 225 diverse spring wheat  genotypes. The panel 
was genotyped using 10,904 SNPs and evaluated for 
three years (2016–2019), which constituted three 
environments (E1, E2 and E3). Heritability for differ-
ent traits ranged from 29.21 to 97.69%. Marker-trait 
associations (MTAs) were identified for each trait 
using data from each environment separately and also 
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Introduction

Wheat is the second most important staple food after 
maize (https://​www.​stati​sta.​com/​stati​stics/​263977/​
world-​grain-​produ​ction-​by-​type/), with a global pro-
duction of ~ 764.39 Mt during 2019/2020 (http://​
www.​world​agric​ultur​alpro​ducti​on.​com/​crops/​wheat.​
aspx). In terms of food security also, wheat is the 
second most important food crop after rice. Also, 
more than 80% of the farmers world-wide depend on 
this crop for their livelihood (http://​www.​fao.​org/3/​
y4011e/​y4011​e04.​htm). Wheat is consumed by ~ 2.5 
billion people across 89 countries providing ~ 20% 
of the total calories (https://​wheat.​org/​wheat-​in-​the-​
world/) and ~ 20.4% of protein requirements of the 
growing human population across the world (https://​
www.​wheat​initi​ative.​org/). A part of the wheat grain 
is also utilized for industrial products like adhesives, 
paper additives, alcohol and several other products 
(Curtis BC; http://​www.​fao.​org/3/​y4011​e04.​htm).

According to some estimates, ~ 840 Mt of wheat 
will be required in 2050 to feed the ever-growing 
world population, suggesting that an additional ~ 80 
Mt of wheat grain will be needed in 2050 over the 
present production of 759 Mt (https://​www.​stati​sta.​
com/​stati​stics/​263977/​world-​grain-​produ​ction-​by-​
type/). At the national level, India achieved a record 
wheat production of 106.21 Mt in 2020 https://​www.​
finan​ciale​xpress.​com/​opini​on/​probl​em-​of-​plenty-​
wheat-​rice-​output-​hits-a-​record-​high-​conce​rns-​over). 
This has placed India in a comfortable position to 
meet its current demand and also allowed some 
export of wheat grain. However, at the global level, 
the rate of annual growth of wheat grain yield has 
slowed down in recent years, resulting in the current 
annual growth of only 0.9%, relative to 3% annual 
growth recorded in earlier decades during and after 
two Green Revolutions (Ray et al. 2013; Yadav et al. 
2019). There is also a realization that the cultivable 
land area is shrinking due to growing urbanization 
and industrialization. Therefore, increasing wheat 
productivity (yield) is necessary to meet the future 
demand for wheat grain and to ensure food security. 
The poor annual growth rate in wheat yield may be 

attributed to both a decline in the improvement in 
genetic yield potential and to increased sensitivity of 
current wheat cultivars to abiotic and biotic stresses 
that will occur more frequently in future due to cli-
mate change (Henry et al. 2016). Therefore, continu-
ous improvement in the yield potential of wheat is 
needed to meet the future challenges of food security.

The grain yield and its contributing traits in wheat 
are complex and quantitative in nature and are each 
controlled by polygenes, each gene with small effect 
involving a significant component of epistasis. Most 
of these traits have low heritability and are also influ-
enced by genotype x environment interaction (Kaya 
and Akcura 2014; Nehe et  al. 2019). The QTLs for 
yield and related traits are known to be distributed on 
all the 21 chromosomes (see Gupta et al. 2020), mak-
ing the study of the genetic architecture of these traits 
challenging. However, the availability of molecular 
markers (SSRs, AFLPs, DArT markers) and novel 
statistical tools over the past more than three dec-
ades has facilitated the detailed genetic dissection of 
grain yield and its component traits in wheat. This 
has also been facilitated by the recent availability of 
high throughput (HT) single nucleotide polymor-
phism (SNP) markers, which allow high-resolution 
genetic analysis and marker-assisted selection (MAS) 
in all crops including wheat (see Sun et  al. 2020; 
Chu et  al. 2020). Utilizing these molecular mark-
ers, several QTL interval mapping and genome-wide 
association mapping studies (GWAS) have been 
conducted to resolve the genetic control of yield 
and yield contributing traits in wheat (for a review 
see Gupta et  al. 2020). During the past > 30  years, 
750 QTLs from ~ 26 studies involving interval map-
ping and ~ 2000 MTAs from ~ 12 GWAS have been 
reported in wheat (for review see Gupta et al. 2020), 
and more QTLs/MTAs are being regularly added. 
However, most of these known QTLs are minor 
QTLs, each with small effect; many of these QTLs 
are also involved in epistasis and QTL x environ-
ment interactions. Therefore, there is a need to use 
novel genetic material and improved statistical tools 
to identify stable and large effect QTLs/MTAs with 
information about main effects and epistatic interac-
tions. The availability of this information will help 
in designing suitable MAS strategies supplementing 
the classical approaches of wheat breeding for genetic 
improvement of grain yield and component traits.
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We realize that the current available repertoire 
of QTLs/MTAs is not saturated and that there is 
still scope of finding out novel MTAs using addi-
tional germplasm. Keeping this in view, a GWAS 
was planned and executed using a novel association 
panel. Based on this study, in the present communica-
tion, we report the results of GWAS for 10 yield and 
yield component traits. The study involved the use of 
a panel of 225 diverse spring wheat genotypes that 
were genotyped using 10,904 SNPs and evaluated 
over three years (treated as three environments). Both 
main effect and epistatic QTLs/MTAs along with the 
underlying candidate genes for different traits were 
identified, and strategies are suggested for their use in 
future wheat breeding programmes.

Material and methods

Association panel and experimental data

The association panel used in the present study con-
sisted of 225 diverse wheat genotypes, which is a sub-
set of the original spring wheat reference set (SWRS) 
of 330 diverse wheat genotypes procured from CIM-
MYT; this panel was also used in our earlier studies 
(Kumar et al. 2018; Gahlaut et al. 2019). The original 
panel was SNP genotyped using DArT-seq; this gen-
otyping work was outsourced by CIMMYT (under 
their “Seed for Discovery” project) to Diversity Array 
Technology Pvt Ltd, Australia. The subset used in the 
present study involved 10,904 SNPs out of 17,937 
SNP markers that were made available for the origi-
nal set of 330 genotypes; data for 3653 markers was 
missing (< 30%). Another set of 3380 markers had 
rare alleles (MAF < 0.05); these markers with rare 
alleles had to be excluded from the analysis for statis-
tical reasons (Kumar et al. 2018; Table S1).

The above association panel of 225 genotypes 
was raised in a simple lattice design with two repli-
cations for three years at the same location (Agricul-
ture Research Farm, Ch. Charan Singh University, 
Meerut, UP, India; 28.984644°N and 77.705956°E), 
thus providing for the following three environments: 
(i) 2016–2017 (E1), (ii) 2017–2018 (E2) and (iii) 
2018–2019 (E3). Normal field management prac-
tices were followed for raising the crop (i.e., 200 kg/
ha fertilizer; N:P:K = 8:8:8). Each genotype was 

represented by a plot of 3 rows of 1.5 m each, with 
a row-to-row distance of 0.25  m. Phenotypic data 
were recorded on the following 10 different agro-
nomic traits: (i) days to heading (DTH; in days), (ii) 
days to anthesis (DTA; in days), (iii) days to maturity 
(DTM; in days), (iv) grain filling duration (GFD; in 
days), (v) plant height (PH; in cm), (vi) tiller number 
per plant (TNPP; in numbers), (vii) biological yield 
per plot (BYPP; in kg), (viii) grain number per spike 
(GNPS; in numbers), (ix) grain yield per plot (GYPP; 
in gram) and (x) 1000 grain weight (TGW; in gram).

Statistical analysis: frequency distribution, 
descriptive statistics, ANOVA and heritability

For each of the ten traits, violin plots were prepared 
to depict the distribution of phenotypic data for each 
of the three individual environments (E1, E2, and 
E3) and also using BLUP values (B). The BLUP 
values were generated using the ‘lme4’ package of 
the R programe (Bates et  al. 2015). Descriptive sta-
tistics including mean, range, standard error, were 
estimated using SPSS v. 17.0 (SPSS Inc 2008). Agri-
colae package of R program was used for ANOVA 
using additive main effects and multiplicative inter-
actions  (AMMI) model. Broad sense heritability 
(H2) was calculated according to Allard (1999) from 
phenotypic variance (σ2p) and the genotypic variance 
(σ2

g) using MS Excel 2010.

Principal components, kinship matrix and MTAs

Principal component analysis (PCA) was conducted 
to address the problem of population structure. The 
principal components (PCs) (Q matrix) and kinship 
matrix (K matrix) were developed using tools availa-
ble in Genomic Association and Prediction Integrated 
Tool (GAPIT) package (Lipka et al. 2012). The Q and 
K matrices were automatically generated (VanRaden 
2008; Lipka et  al. 2012) using genotypic data with 
the help of a default set of parameters. The first three 
PCs were used to produce a 3D scatter plot showing 
distribution of genotypes into sub-groups.

Four different models were used for identification 
of MTAs for each individual environment. BLUP 
values were also used separately for identification of 
MTAs. The four models used for GWAS included 
the following: (i) compressed mixed linear model 
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(CMLM; Zhang et  al. 2010); (ii) Fixed and random 
model Circulating Probability Unification (Farm-
CPU; Liu et  al. 2016); (iii) Settlement of MLM 
Under Progressively Exclusive Relationship (SUPER; 
Wang et  al. 2014); (iv) Matrix variate linear mixed 
model (mvLMM; Furlotte and Eskin 2015). The 
first three methods retain the computational advan-
tage, increases statistical power and are freely avail-
able in Genomic Association and Prediction Inte-
grated Tool (GAPIT) package (Lipka et  al. 2012). 
The fourth model mvLMM was meant for multi-trait 
analysis leading to identification of MTAs associated 
each with two or more than two traits; this model is 
believed to be superior over other available models 
for multi-trait analysis (Furlotte and Eskin 2015). The 
epistatic interactions were identified using the func-
tion ‘interactionPval’ available in ‘SNPassoc’ pack-
age (González et  al. 2007). MTAs obtained were 
subjected to Bonferroni correction to eliminate spu-
rious associations that are common in GWAS due to 
occurrence of LD without linkage. P-value threshold 
involving Bonferroni correction was set up at − log 
p value = 6.0. Manhattan plots and quantile–quantile 
(Q-Q) plots were also generated using statistical tools 
available in GAPIT (Astle and Balding 2009).

Comparison of MTAs with known QTLs

The MTAs identified in the present study were also 
compared with known QTLs/MTAs. The physi-
cal positions for chromosome mapping of all MTAs 
detected in the present study were obtained using the 
data available in Ensembl Plants [version 50; https://​
plants.​ensem​bl.​org/​Triti​cum_​aesti​vum/​Info/​Index].

Identification of candidate genes

The MTAs detected after Bonferroni corrections were 
also used for identification of candidate genes (CGs) 
through alignment of DArT-seq to wheat IWGSC 
RefSeq v1.0 and v2.1 (IWGSC 2018; Zhu et  al. 
2021) available in the Ensembl Plants (http://​www.​
ensem​bl.​org/​info/​docs/​tools/​vep/​index.​html). Highly 
significant annotated genes were retrieved from a 
200  kb window for each identified MTA. IWGSC 
website (http://​www.​wheat​genome.​org/) was used for 
gene ontology (GO) annotation information of these 
CGs. In-silico gene expression analysis was also per-
formed for CGs using RNA-Seq expression data from 

Wheat Expression Browser (http://​www.​wheat-​expre​
ssion.​com/). Heatmaps for expression of CGs at dif-
ferent developmental stages in a variety of tissues 
were also generated.

Identification of important rare variants

During GWAS, markers each with rare allele (fre-
quency < 0.5) are excluded from analysis due to sta-
tistical reasons. Each of these SNPs with rare allele 
was tested for its association with individual traits 
using “t-test” for their further use in future studies.

Results

Frequency distributions and descriptive statistics

The frequency distributions of phenotypic data based 
on BLUP values (Fig.  1) and for each of the three 
environments for all the 10 traits are presented in 
the form of violin plots (Fig.  S1). The distributions 
indicated a high level of variability and the quantita-
tive nature of each trait. Several traits lacked normal 
distribution and apparently exhibited either skewness 
(e.g., DTH, DTA, DTM and GFD) or/and kurtosis 
(e.g. GYPP; Fig. 1, Fig. S1 and Table S2).

The results of Analysis of Variance (ANOVA) for 
all the 10 traits are presented in Table 1. It is apparent 
that variations due to genotypes, environments and G 
x E interaction were highly significant for seven of 
the 10 traits (except DTH, GYPP and GNPS for envi-
ronmental effects, and except DTH, GYPP and TGW 
for g x e interactions). Broad sense heritability was 
generally high ranging from 55.65 (for PH) to 97.69% 
(for DTA) except for DTH (29.21%).

Linkage disequilibrium (LD) and principal 
component analysis (PCA)

The LD-decay of the same association panel was 
reported in our earlier study (Kumar et al. 2018). Dur-
ing the present study, the results of PCA involving 
first three PCs (PC12, PC2 and PC3) are presented in 
Fig. 2, suggesting the presence of three sub-groups in 
the association panel. However, PC1, PC2 and PC3 
accounted for only 6.0%, 4.55% and 3.44% of the var-
iation respectively, suggesting low level of population 
structure in the association panel (Fig. 2 and Fig. S2).
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MTAs from data for each of three individual 
environments and based on BLUP values

As many as 33 MTAs were available for three envi-
ronments; an additional 20 MTAs using CMLM 
and  FarmCPU  were available from BLUP values 
(Figs.  3 and 4); these MTAs are listed in Table  2 
and included the following: (i) Using CMLM, 
six MTAs for three traits (DTA, DTH and TNPP) 
were available, which included one common 
MTA (M1955-5A) for two traits, namely DTA (in 
E1-2017–18) and DTH (in E2-2017–18), the for-
mer in two different environments for DTA (in 
E2-2017–18 and E3-2018–19; Table 2 and Fig. S3). 
(ii) Using FarmCPU, 21 MTAs for four traits (DTH, 
DTA, DTM and TGW) were available; five MTAs 
were each available in more than one environment 

for the same trait; these MTAs included the fol-
lowing: (M12140-6B, and M11387-6B for TGW,; 
M5818-4D for DTH (E1), DTA (E2), DTH (E3); 
M11963-3B for DTH (E2) and DTA (E2) and 
M3072-3A for DTA (E1), DTM (E2) and DTM (E3; 
Table  2 and Fig.  S4). (iii) Using mvLMM, a total 
of 38 multi-trait MTAs, involving 15 trait combina-
tions, were identified, which included the following 
for each of the three environments: (i) 15 MTAs for 
6 trait combinations in E1 (15 MTAs), (ii) 10 MTAs 
for 3 trait combinations in E2 and (iii) 13 MTAs 
for 6 trait combinations in E3; two of these multi-
trait MTAs, both on chromosome 1A (M2375-1A 
and M3080-1A) were also available in more than 
one of the 15 trait combinations (involving DTM, 
GFD, PH and TNPP) in all the three environments 
(Table 2 and Fig. S5).

Fig. 1   Violin plots showing the frequency distribution of 10 
yield-related traits using BLUP values of each trait. Shaded 
regions of the violin plots represent the frequency distribu-

tion of data. In each case, the vertical solid bar indicates the 
range of average values, and median is shown as a white circle, 
depicting the lower, medium and upper quartile
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MTAs identified by more than one models

Among MTAs available from three GWAS mod-
els after Bonferroni correction, no common MTA 
from more than one model were available. however, 
because Bonferroni often leads to false negatives, 
MTAs based on BLUP values, identified prior to 
Bonferroni correction were examined for common 
MTAs; 34 common MTAs were identified using 
CMLM, FarmCPU and SUPER for nine of the ten 
traits (except DTM). The maximum numbers of 
common MTAs (8MTAs) were found for GYPP and 
minimum number of MTAs was found for DTH and 
DTA (one for each). The details of all these common 
MTAs are presented in the Table S3.

MTAs involved in epistasis

A total of 28 first-order epistatic interactions 
(QTL × QTL interactions) were available, which 
involved seven of the 10 traits (except GNPS, PH 
and BYPP); these interactions included the following 
(i) 7 interactions in E1, with a range of 1–2 interac-
tions for each of the following 5 traits: DTH, DTA, 
DTM, TNPP, and TGW; (ii) 10 interactions in E2, 
with a range of 1–3 interactions for each the follow-
ing 5 traits: DTH, DTA, DTM, GFD, and TNPP; (iii) Ta
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11 interactions in E3 with a range of 1–3 interactions 
for each of the following 7 traits: DTH, DTA, DTM, 
GFD, TNPP, GYPP and TGW (Table S4).

MTAs overlapping or occurring in the vicinity of 
known QTLs

When compared with known QTLs reported in ear-
lier studies, MTAs were placed in the following 
three categories. (i) MTAs lying within QTL inter-
val: nine MTAs for the following three different 
traits: GFD, GNPS & TGW: these MTAs included 

one MTA identified through FarmCPU, five MTAs 
identified through mvLMM, two MTAs exhibiting 
epistatic interactions and one identified through 
BLUP (Table  3). (ii) MTAs outside the interval, 
but close to flanking marker within a physical dis-
tance of 60  Mb: 12 MTAs (11 SNPs) for the fol-
lowing traits were available: DTA, DTH, DTM, 
PH, TNPP, GFD, GYPP & TGW. Out of these 12 
MTAs, three MTAs were identified through Farm-
CPU, four through mvLMM and four showing epi-
static interactions (Table  3). (iii) Novel MTAs: 
24 novel MTAs included three MTAs each using 

Fig. 3   Manhattan plots (on the left) and Q-Q plots (on the 
right) for GWAS conducted using CMLM (based on BLUP 
values only) for only four traits, for which MTAs were availa-
ble afer Bonferroni corrections (for the remaining six traits, no 
MTAs were available after Bonferroni corrections): significant 
MTAs on 21 chromosomes can be visualized in Manhattan 

plots on or above the blue line in each case; MTAs qualifying 
Bonferroni correction are shown on or above the red line; devi-
ation of observed p values from expected p values (based on 
null hypothesis) can be visualized on Q-Q plots. ump; indi-
cated unmapped SNP
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Fig. 4   Manhattan plots (on the left) and Q-Q plots (on the 
right) for GWAS conducted using FarmCPU (based on BLUP 
values only) for only six traits, for which MTAs were available 
after Bonferroni correction (for the remaining four traits, no 
MTAs were available after Bonferroni correction). Significant 
MTAs on 21 chromosomes can be visualized in Manhattan 

plots on or above the blue line in each case; MTAs qualifying 
Bonferroni correction are shown on or above the red line; devi-
ation of observed p values from expected p values (based on 
null hypothesis) can be visualized on Q-Q plots. ump; indi-
cated unmapped SNP
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Table 2   MTAs for different traits detected in three environ-
ments and BLUP using CMLM, FarmCPU and mvLMM 
approaches*

SNP Allele Chromosome Position

CMLM
  DTH, (E2, B); DTA (E1, E3)
    M1955 A/G NA NA
  TNPP (E3)
    M11981 C/T 1B 1.79
    M11668 T/C 3A 0.61
    M7483 T/C 3B 1.8
  TNPP (B)
    M14817 C/T NA NA
    M11668 T/C 3A 0.61
  GNPS (B)
    M4839 C/G 2B 1.51
  GYPP (B)
    M13299 A/G 1A 2.29
    M10606 G/A 2A 1.26

FarmCPU
  DTH (E1)
    M14066 T/C NA NA
    M13005 G/T 4A 1.78
    M1727 T/G 5B 0.9
  DTH (E2)
    M5818 A/G 4D 0.84
    M11963 C/T 3B 1.33
  DTH (B)
    M5921 G/C 2D 2.17
    M4079 C/G NA NA
    M14066 T/C NA NA
  DTA (E1)
    M3072 T/G 3A 0.14
    M5818 A/G 4D 0.84
    M1920 T/G 4A 1.12
  DTA (E2)
    M11963 C/T 3B 1.33
  DTA (B)
    M4079 C/G NA NA
    M1026 G/A NA NA
    M5818 A/G 4D 0.84
  DTM (E1)
    M4098 A/G 5A 2.29
    M12308 A/G NA NA
  DTM (E2)
    M3072 T/G 3A 0.14
    M1156 A/G 2B 1.48

Table 2   (continued)

SNP Allele Chromosome Position

  DTM (E3)
    M3072 T/G 3A 0.14
    M12889 T/C NA NA
    M5818 A/G 4D 0.84
  DTM (B)
    M3072 T/G 3A 0.14
    M8641 A/G NA NA
    M1026 G/A NA NA
    M5818 G/A 4D 0.84
  TNPP (B)
    M14817 T/C NA NA
  GYPP (B)
    M10606 A/G 2A 1.26
  TGW (E1)
    M12140 G/T 6B 1.59
    M11387 T/’C 6B 0.66
  TGW (E2)
    M12140 G/T 6B 1.59
    M11387 T/C 6B 0.66
    M4710 T/A 3A 2.62
  TGW (B)
    M1935 T/G NA NA
    M11387 T/’C 6B 0.66

mvLMM
  DTM, GFD, PH (E1)
    M2375 C/T 1A 1.55
    M3080 C/T 1A 4.3
    M9267 T/C 3B 1.58
    M274 C/T 1A 1.75
  DTM, GFD, PH (E2)
    M3080 T/C 1A 4.3
    M2375 C/T 1A 1.55
    M373 T/G 1A 4.28
  DTM, GFD, PH (E3)
    M3080 C/T 1A 4.3
    M2375 C/T 1A 1.55
    M1879 C/G 6B 0.64
    M3482 C/G 6B 0.84
  DTM, GFD, PH, TNPP (E1)
    M3080 C/T 1A 4.3
    M2375 T/C 1A 1.55
    M9267 T/C 3B 1.58
  DTM, GFD, PH, TNPP (E2)
    M2375 T/C 1A 1.55
    M3080 T/C 1A 4.3
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CMLM and mvLMM, five MTAs using FarmCPU, 
10 MTAs exhibiting epistatic interactions and three 
using BLUP (Table 4).

MTAs for possible use in MAS

The MTAs identified using each of the three meth-
ods of GWAS and also those found to be involved in 
epistasis were subjected to further scrutiny in order 
to identify the most important MTAs, which could be 

recommended for MAS. There were 11 such MTAs, 
which were selected using one or more of the follow-
ing criteria: (i) highest R2, (ii) lowest P value, (iii) 
common for two or more traits, (iv) stable (identi-
fied in all the three environments), (v) detected in 
earlier studies (interval mapping and/or GWAS). The 
selected MTAs are listed in Table 5.

Identification of putative candidate genes

As many as 164 CGs involving 50 MTAs (CMLM, 3; 
FarmCPU, 9; mvLMM, 6 and epistasis, 21 and BLUP, 
11) were identified, each within a window of 200 Kb. 
For 29 MTAs, no CG was available (Table  S5, S6, 
S7, S8 and S9). Of the 164 CGs, 20 CGs were avail-
able for MTAs obtained using CMLM, 27 CGs were 
available from MTAs obtained using FarmCPU, 21 
CGs belonged to MTAs obtained using mvLMM, 66 
CGs were available from MTAs involved in epista-
sis and 30 CGs were  identified using BLUP MTAs. 
Results of in-silico gene expression analysis for all 
164 CGs are presented in Figs.  5, 6, 7, 8. Of 164 
CGs, 15 important CGs were selected based on their 
involvement in different biological processes relevant 
to traits under study (Table 6).

Identification of important rare variants

As many as nine SNPs with rare alleles were found to 
be associated with only three of the 10 traits (GNPS, 
TGW and GYPP). For the remaining seven traits, no 
significant association of markers with rare alleles 
was observed (Table S10).

Discussion

During the last three decades, a variety of molecu-
lar markers and statistical tools have been developed 
and utilized for thousands of studies involving inter-
val mapping and association mapping (GWAS) in 
all major crops. In wheat alone, thousands of QTLs/
MTAs have been identified. A recent survey con-
ducted by us for developing a wheat QTL database 
revealed that > 30,000 QTLs for different traits are 
already available in wheat and more are being regu-
larly added to this list, suggesting that we did not 
reach a saturation point (Singh et  al. 2021 and our 
unpublished results). Thus, additional genetic studies 

Table 2   (continued)

SNP Allele Chromosome Position

  DTM, GFD, PH, TNPP (E3)
    M2375 T/C 1A 1.55
    M3080 C/T 1A 4.3
    M1879 C/G 6B 0.64
    M3482 C/G 6B 0.84
    M1396 C/T 1A 1.57
  DTM, GFD, PH, TNPP, BYPP (E2)
    M2711 G/C NA NA
    M2375 C/T 1A 1.55
    M3080 C/T 1A 4.3
    M13982 T/C 6A 0.52
    M4870 A/C 7B 0.89
  TNPP, BYPP, GNPS (E1)
    M13982 T/C 6A 0.52
  TNPP, BYPP, GNPS (E3)
    M8971 C/T NA NA
  TNPP, BYPP, GNPS, GYPP (E1)
    M8971 T/C NA NA
    M13982 C/T 6A 0.52
    M12201 C/T 7D 1.2
  TNPP, BYPP, GNPS, GYPP (E3)
    M8971 T/C NA NA
  BYPP, GNPS, GYPP (E1)
    M8971 T/C NA NA
    M12201 T/C 7D 1.2
  BYPP, GNPS, GYPP (E3)
    M8971 C/T NA NA
  BYPP, GNPS, GYPP, TGW (E1)
    M8971 T/C NA NA
    M12201 T/C 7D 1.2
  BYPP, GNPS, GYPP, TGW (E3)
    M8971 T/C NA NA

* E1, environment1; E2, environment2; E3, environment3; B, 
BLUP
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are warranted using different materials. The present 
study is one such study, which added several novel 
MTAs to the ever-increasing list of markers associ-
ated with yield and related traits, although some of 
the MTAs detected during the present study may cor-
respond to the MTAs/QTLs reported in earlier stud-
ies including the latest comprehensive GWAS from 

CIMMYT, which reported > 800 MTAs for grain 
yield alone (Juliana et al. 2021).

During the present study, a diverse panel of geno-
types, exhibiting significant variation in phenotypes 
involving 10 different traits, was used for GWAS. 
This is apparent from the representative violin plots 
(based on BLUP values) presented in Fig.  1. These 
results exhibit significant variation for each of the 

Table 3   MTAs with corresponding QTLs (either overlapping known QTLs or located in the vicinity of known QTLs)

@ ; MTAs identified using FarmCPU, #; MTAs identified using mvLMM, *; MTAs involved in epistatic interaction and B; MTAs 
identified using BLUP

MTA (Chromosome, Position) Corresponding QTL (Chromosome, associated marker) Reference

MTAs overlapping known QTLs
  GFD
    M2375# (1A, 341,154,353–341,154,421) QGfd.nfcri-1A (1A, Xgwm357-Xbarc350) Wang et al. 2009
    M3080# (1A, 574,215,287–574,215,355
    M274# (1A, 338,834,928–338,834,974)
    M373# (1A, 573,920,780–573,920,835)
    M1396# (1A, 320,519,538–320,519,606)
  GNPS
    M4839B (2B, 550,990,403–550,990,471) QGns.saas-2B (Xbarc1027-Xwmc441) Tang et al. 2011
  TGW​
    M6513* (2B, 539,373,679–539,373,747) QTkw.ncl-2B.1 (2B, Xbarc55-Xbarc37) Ramya et al. 2010
    M12140@ (6B, 650,012,151–650,012,168) QKwps|Tkw-WY-6B.1 (6B, Xbarc178-Xwmc473) Cui et al. 2013
    M2913* (7B, 630,554,745–630,554,813) QTkw.dms-7B (7B, wPt1826-wPt8233) Chen et al. 2015

MTAs in the vicinity of known QTLs
  DTH
    M13005@ (4A, 646,730,830–646,730,898) QHed.dms-4A (4A, wPt-9183-wPt-1161) Chen et al. 2015
  DTA
    M1920@ (4A, 616,986,080–616,986,148) QFld.dms-4A (4A, wPt-9183-wPt-1161) Chen et al. 2015
  DTM
    M274# (1A, 338,834,928–338,834,974) QMat.dms-1A (1A, wPt-4897-wPt-8016) Chen et al. 2015
    M373# (1A, 573,920,780–573,920,835) QMat.dms-1A (1A, wPt-8016-wPt-7339) Chen et al. 2015
    M9267# (3B, 683,764,839–683,764,907) QMat.crc-3B (3B, wmc827-N/A) Cuthbert et al. 2008
    M3393# (5A, 536,221,003–536,221,071) QMat.crc-5A (5A, barc151-N/A) Cuthbert et al. 2008
    M10129# (7A, 38,327,805–38,327,873) QMat.crc-7A (7A, gwm276-N/A) Cuthbert et al. 2008
  GFD
    M4870# (7B, 426,881,350–426,881,418) QGft.crc-7B (7B, wmc723-N/A) Cuthbert et al. 2008
  PH
    M9267# (3B, 683,764,839–683,764,907) QPht.nwu-3B (3B, Xbarc102-Xgwm533) Daoura et al. 2014
  TNPP
    M3080* (1A, 574,215,287–574,215,355) QTp.ccsu-1A.1 (1A, Xmwg632-N/A) Kumar et al. 2007
  GYPP
    M15191* (1A, 514,115,832–514,115,900) QYld.crc-1A (1A, wmc716-N/A) Cuthbert et al. 2008
  TGW​
    M4710@ (3A, 745,517,190–745,517,258) QTgw-3A1 (3A, Xgwm480-Xcfd2183) Liu et al. 2014
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10 traits suggesting their suitability for conducting 
GWAS. However, the pattern of variation differs for 
the different traits although, for an individual trait, 
the patterns in the three environments are largely 

similar (Fig.  S1). A similar pattern of variation was 
also observed in two of our earlier studies conducted 
using association panels comprising 246 genotypes in 
one study (Kumar et al. 2018), and 320 genotypes in 

Table 4   Novel MTAs 
identified during the present 
study (never reported earlier 
either as QTL using interval 
mapping or MTA using 
GWAS)

$ : MTAs identified using CMLM, @; MTAs identified using FarmCPU, #; MTAs identified using 
mvLMM, *; MTAs involved in epistatic interaction and B; MTAs identified using BLUP

MTA Chromosome Location

DTH
  M5921B 2D 572,257,407–572,257,475
  M4210* 3A 724,572,071–724,572,139
  M1727@ 5B 486,280,118–486,280,161

DTH, DTA
  M11963@ 3B 605,293,347–605,293,415

DTH, DTA, DTM
  M8127* 2A 751,840,515–751,840,583
  M5818@ 4D 336,833,286–336,833,354
  M13836* 7B 125,884,474–125,884,538

DTA
  M5818B 4D 336,833,286–336,833,354

DTM
  M9877* 1A 22,664,662–22,664,730
  M1156@ 2B 657,300,532–657,300,587
  M8239* 3B 707,906,591–707,906,651
  M13682* 6B 151,887,057–151,887,125

DTM, GFD, PH, TNPP
  M1879# 6B 613,595,484–613,595,523

DTM, GFD, PH, GYPP
  M3482* 6B 658,954,327–658,954,395

DTM, GFD, PH, TNPP, BY, GNPS, GYPP
  M13982# 6A 19,155,299–19,155,367

GFD
  M13252* 2B 669,232,955–669,233,023

TNPP
  M11981$ 1B 431,456,198–431,456,266
  M10707* 1B 418,056,499–418,056,567
  M11668$B 3A 42,066,916–42,066,962
  M7483$ 3B 745,290,131–745,290,199

TNPP, BYPP, GNPS, GYPP, TGW​
  M12201# 7D 78,865,376–78,865,439

BYPP
  M420* 5B 448,467,016–448,467,084

GYPP
  M10606B 2A 94,163,381–94,163,449

TGW​
  M11387@B 6B 559,513,056–559,513,124
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Table 5   A summary of most important MTAs recommended for MAS on the basis of present study

Chr, chromosome; Pos, position (cM) and *: desirable allele

MTA Chr Pos Allele* Description

M1955 NA NA G/A* Detected using CMLM: Associated with DTH and DTA with highest R2 (20%)

M5818 4D 0.84 A/G Detected using FarmCPU: Associated with DTH, DTA and DTM
M3072 3A 0.14 T/G Detected using FarmCPU: Associated with DTA and DTM (lowest p value after Bonferroni)

M12140 6B 1.59 G/T Detected using FarmCPU: Associated with TGW and reported in previous study for TGW (Cui et al. 
2013)

M2375 1A 1.55 C/T Detected using mvLMM: Associated with DTM, GFD, PH and TNPP (stable across the 3 environ-
ments), and reported in previous study for GFD and TNPP (Wang et al. 2009)M3080 1A 4.3 C/T

M1396 1A 1.57 C/T Detected using mvLMM: Associated with DTM, GFD, PH and TNPP, and reported in previous study 
for GFD (Wang et al. 2009)

M274 1A 1.75 C/T Detected using mvLMM: Associated with DTM, GFD and PH, and reported in previous study for 
GFD (Wang et al. 2009)M373 1A 4.28 T/G

M6513 2B 1.48 A/G Detected using epistasis: Associated with TGW and reported for TGW in previous study (Ramya 
et al. 2010; Chen et al. 2015)M2913 7B 1.40 G/A

Fig. 5   Results of in-silico expression analysis of different can-
didate genes (CGs) for MTAs identified using GWAS based on 
CMLM for only three traits (no CGs were available for other 
traits); against each CG, the trait, the identity of MTA to which 

CG belongs and the environment (in parentheses), in which 
MTA was detected are indicated; the expression of only rel-
evant CGs (selected using corresponding protein domains) was 
examined in different tissues (shown on the X-axis)
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another study, both drawn from the same original set 
of 330 diverse genotypes procured from CIMMYT 
(Gahlaut et al. 2019). For six of the 10 traits (includ-
ing DTH, DTA, DTM, TNPP, GYPP and GFD), the 
variation for different traits exhibited skewness and/
or kurtosis, particularly for traits like DTH, DTA 
and DTM (Figs. 1, S1). The violin plots suggest that 
majority of genotypes are early maturing associated 
with long duration for grain filling, which is a desir-
able trait. However, a small fraction of genotypes 
exhibited undesirable traits including long duration 
of maturity and short grain-filling period. It will be 
interesting to find the association of desirable fea-
tures of days to maturity and grain filling duration 
with desirable patterns of the remaining agronomic 
traits. The four-grain yield-related traits showed a 
wide range of variability showing almost normal dis-
tribution. However, the pattern of variation for GNSP 
and TGW differed from the variation for BYPP and 
GYPP, although MAS would be useful in the segre-
gating populations derived from crosses involving 

parents with higher values for these traits. Further, the 
results of ANOVA showed no significant variation 
due to environment for three traits including DTH, 
GYPP and GNPS; no significant genotype × environ-
ment interaction for three other traits, namely DTH, 
GYPP and TGW. These observations may have impli-
cations on the results of GWAS that are discussed.

In two earlier studies involving GWAS using 
related association panels, MTAs were identified in 
two locations including a drought-prone area (Pow-
erkeda) and an irrigated site (Meerut);  a subset of 
these association panels  was used in the present 
study for three years. The results of our  two ear-
lier studies have been compared with the results of 
the present study (Kumar et al. 2018; Gahlaut et al. 
2019).

Despite two earlier studies involving relatively 
larger panels, each panel including the present sub-
set, a number of novel MTAs were identified, sug-
gesting that new MTAs can be identified by repeat-
ing the study using the same association mapping 

Fig. 6   Results of in-silico expression analysis of different 
candidate genes (CGs) for MTAs identified using FarmCPU 
for only five traits (no CGs were available for other traits); 
against each CG, the trait, the identity of MTA to which CG 

belongs and the environment (in parentheses), in which MTA 
was detected are indicated; the expression of only relevant CGs 
(selected using corresponding protein domains) was examined 
in different tissues (shown on the X-axis)
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panel at different time points. The association panel 
used during the present study and also those used 
in two earlier studies exhibited a low level of popu-
lation structure comprising only three sub-popula-
tions. However, in a number of earlier GWAS, the 
number of subpopulations ranged from 3 (Wang 
et al. 2017; Rahimi et al. 2019) to 5 (Qaseem et al. 
2018; Jamil et al. 2019). The absence of population 
structure or low level of population structure, as 
observed in three GWAS (including present study) 
is a desirable feature for conducting GWAS.

As indicated earlier in this paper, in the present 
GWA study, we used four different methods which 
included CMLM, FarmCPU, SUPER and mvLMM. 
The number of MTAs obtained without applying 
Bonferroni correction when compared with those 
available after applying Bonferroni corrections indi-
cated drastic reduction in MTAs. In particular, all the 

525 MTAs identified using SUPER disappeared after 
application of Bonferroni correction. Also, MTAs for 
only three traits were available using CMLM and for 
only four of 10 traits were available following Farm-
CPU suggesting that no MTAs were available for 
seven traits in CMLM and six traits following Farm-
CPU (Table 2 and S11). This reduction/disappearance 
of MTAs due to Bonferroni correction calls for cau-
tion because it is widely known that the Bonferroni 
correction while reducing the number of false posi-
tives (a desirable feature) also gives a large number 
of false negatives (undesirable feature). Therefore, it 
has been emphasized in several studies that Bonfer-
roni correction is a trade-off (Chen et  al. 2017; 
Wilson 2019). It has also been emphasized, therefore, 
that the MTAs, which disappear after the applica-
tion of Bonferroni correction should not be entirely 
ignored. Therefore, we examined MTAs obtained 

Fig. 7   Results of in-silico  expression analysis of different 
candidate genes (CGs) for multi-trait MTAs identified using 
GWAS based on mvLMM for only five combinations of multi-
traits (no CGs were available for MTAs identified for 10 other 
multi-trait combinations); against each CG, the trait, the iden-

tity of MTA to which CG belongs and the environment (in 
parentheses), in which MTA was detected are indicated; the 
expression of only relevant CGs (selected using corresponding 
protein domains) was examined in different tissues (shown on 
the X-axis)
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prior to Bonferroni correction for the identification of 
MTAs that were obtained by more than one method 
(Table  S11). The problem of false-negative MTAs 
due to Bonferroni correction has been widely dis-
cussed in published literature. Among these earlier 
studies, the problem was discussed initially by Narum 
(2006) and more recently by White et al. (2019) and 
Cortés et al. (2020).

Among the four methods used in the present 
study, FarmCPU (involving multi-locus analysis) 
gave a maximum of 21 MTAs. When, these results 
are compared with those obtained due to CMLM, it 
is apparent that the number of MTAs increased in 
FarmCPU, presumably due to inherent multilocus 
analysis in FarmCPU. Another important observa-
tion is that MTAs for only three (DTA, DTH, GNPP) 
of 10 traits were available using CMLM; no MTAs 
were available for the remaining seven traits. From 

this, it is also apparent that CMLM is relatively not as 
efficient as FarmCPU. The superiority of FarmCPU 
has also been demonstrated in some earlier studies in 
wheat (Kaur et  al. 2017; Ward et  al. 2019; Gahlaut 
et al. 2019; Muhammad et al. 2020) and other crops 
like maize (Zhang et al. 2019) and rice (Gyawali et al. 
2019). Another important feature of the present study 
was equal number of MTAs detected in all the three 
environments. However, the number of MTAs in indi-
vidual environments differed, when examined for dif-
ferent methods; MTAs for E1 using FarmCPU and in 
E3 using CMLM exceeded those detected in E2 using 
the same methods. This suggested different levels 
of efficiency of GWAS methods in detecting QTLs 
exhibiting QTL x environment interaction.

An important result of the present study is the 
detection of 38 multi-trait MTAs (using mvLMM) for 
15 different combinations of traits, each combination 

Fig. 8   Results of in-silico  expression analysis of different 
candidate genes (CGs) for MTAs involved in epistatic interac-
tions, identified using GWAS; against each CG, the identity of 
traits (some CGs, each affected more than one trait) and MTA 
to which CG belongs and the environment (in parentheses), in 

which MTA was detected are indicated; the expression of only 
relevant CGs (selected using corresponding protein domains) 
was examined in different tissues (shown on the X-axis); some 
of the CGs affected more than one traits
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involving 3–5 traits. This is in sharp contrast to the 
use of MTMM (Korte et  al. 2012), which allows 
detection of MTAs for only two traits at a time 
(Jaiswal et al. 2016; Kumar et al. 2018). These results 
suggest pleiotropy or close linkage. Two of the 38 
MTAs, located on chromosome 1A, (M2375-1A and 
M3080-1A) were, however, associated with more 
than one of the 15 trait combinations in all the three 
environments. Therefore, these two MTAs should 
prove useful for simultaneous improvement of more 
than one trait using MAS. Several earlier studies also 

used multi-trait analysis, however, mvLMM involv-
ing more than two traits has been used only sparingly 
(Furlotte and Eskin 2015; Kumar et  al. 2018; Deng 
et al. 2018; Gao et al. 2021; Chen et al. 2021).

The availability of 28 first order epistatic interac-
tions suggests that epistatic interactions were not 
uncommon. Two of these interactions, one each 
for GYPP and TGW were available in all the three 
environments and should be suitable candidates for 
MAS. Therefore, based on the present study, it is con-
cluded that MTAs involved in epistatic interactions, 

Table 6   A summary of of selected candidate genes (CGs) and their functions

Trait; MTA Candidate gene (CG) Protein domain Description

DTA and DTH; M1955 TraesCS5A02G417200 F-box domain F-box protein plays an important role in 
growth and development. For example 
TaFBA1 gene in wheat encodes F-box 
protein that regulates abscisic acid 
(ABA) involved in a variety of pro-
cesses during growth and development 
(Verslues and Zhu 2005; Finkelstein 
2006; Fujii et al. 2007; An et al. 2019)

TNPP; M7483 TraesCS3B02G500900
TGW; M11387 TraesCS6B02G312400
DTA; M1920 TraesCS4A02G333000
DTM, GFD, PH and TNPP; M9267 TraesCS3B02G443100
TNPP, BYPP, GNPS, GYPP, TGW; 

M12201
TraesCS7D02G126300
TraesCS7D02G126400

TGW; M4710 TraesCS3A02G532500
TraesCS3A02G532600 CytP450 Cytochrome P450 proteins are involved 

in several developmental processes 
through the biosynthesis and/or 
catabolism of phytohormones and sec-
ondary compounds (Li and Wei 2020)

DTH; M13005 TraesCS4A02G372100 ABC transporter The ABC transporter (e.g. TaABC3) 
plays an important role in grain 
formation, ripening and in mycotoxin 
tolerance in wheat (Lemmens et al. 
2005; Walter et al. 2015)

DTA; M1920 TraesCS4A02G333700 AP2/ERF domain APETALA2/Ethylene-responsive factor 
(AP2/ERF) is involved in regulation 
of tolerance to several abiotic stresses 
(Gahlaut et al. 2019) and regulates 
growth and development (Zhang et al. 
2020)

TGW; M14981 TraesCS2B02G054100

DTM; M3393 TraesCS5A02G325800 GRAS GRAS proteins are involved in regula-
tion of processes like photosynthesis, 
growth, senescence and tolerance 
to photooxidative stress (Chen et al. 
2015; Niu et al. 2019)

GFD (E2); M13252 (1,123,031): 2B TraesCS2B02G472600 Heat shock protein DnaJ Heat shock protein DnaJ is involved in 
regulation of a variety of processes 
like response to heat stress, during 
grain filling (Kumar et al. 2020)

DTH and DTA; M5047 TraesCS6B02G159400 MADS-box MADS box proteins regulate processes 
like inflorescence development, 
flowering time, floral organ identity, 
and also seed development (Richards 
2000; Schilling et al. 2018)
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contribute significantly to trait variation  and should 
be utilized for MAS. Epistatic interactions in wheat 
using GWAS have also been reported in previous 
studies for flowering time (Reif et  al. 2011; Langer 
et al. 2014), stem rust resistance (Yu et al. 2011), and 
agronomic traits (Sehgal et  al. 2017). In two  recent 
studies from our laboratory, 63 epistatic interactions 
involving 13 different traits and 73 epistatic interac-
tions for six micronutrient and yield traits in wheat 
were reported using GWAS (Jaiswal et  al. 2016; 
Kumar et al. 2018). However, MTAs involved in epi-
static interactions have been sparingly used in MAS 
for crop improvement (Reif et  al. 2011; Kao et  al. 
1999; Langer et al. 2014; Jaiswal et al. 2016; Sehgal 
et al. 2017; Kumar et al. 2018). Hence results of epi-
static interactions from the previous and present study 
may also be useful to understand the genetic architec-
ture of traits that are relevant for wheat improvement.

Another important aspect is the observation that as 
many as 9 MTAs overlapped the previously reported 
MTAs/QTLs and another 12 MTAs occurred in the 
vicinity of known MTAs/QTLs (Cui et  al. 2013; 
Wang et  al. 2009; Kumar et  al. 2007; Ramya et  al. 
2010; Chen et al. 2015; Cuthbert et al. 2008; Liu et al. 
2014; Daoura et  al. 2014; Wang et  al. 2009; Kumar 
et  al. 2007; Table  3). In addition, 24 novel MTAs 
identified in the present study add to the knowledge 
about the genetic architecture of the traits examined 
in the present study (Table  4). Overall, 11 MTAs 
were found to be relatively more important, using 
several criteria listed in the results (Table  5). These 
MTAs may be used in MAS.

It may also be recalled that as many as 15 of the 
164 candidate genes identified during the present 
study, were selected based on their involvement in 
relevant biological processes for traits of interest 
(Verslues and Zhu 2005; Finkelstein 2006; Fujii et al. 
2007; An et al. 2019; Table 6). These candidate genes 
provide a resource for future studies.

Availability of variants associated with rare alleles 
is not an exception, but a rule, in all GWAS studies. 
Markers with rare alleles were also identified in pre-
vious studies in wheat (Jaiswal et al. 2016) and rice 
(Hu et al. 2015). These rare variants have been con-
sidered to be important because of their associations 
with rare desirable phenotypes because common vari-
ants have already been the focus of selection in plant 
breeding. In the present study, only nine of the 3380 
SNPs with rare alleles were found to be associated 

with three of the 10 traits including GNPS, TGW and 
GYPP. Since all these three traits are important com-
ponents of GY, these SNPs with rare alleles should 
be subjected to validation using suitable methods like 
the following: (i) use of biparental mapping popula-
tion (derived from genotypes with rare alleles); (ii) 
joint linkage-association mapping (JLAM); (iii) use 
of large population; (iv) separate analysis for com-
mon variants (CWAS) and rare variants (RVAS; Zuka 
et al. 2014), (v) advanced statistical tests like burden 
test, variance component test, combined omnibus 
test (Lee et al. 2014; Gupta et al. 2014; Jaiswal et al. 
2016). Thus, we feel that rare variants should not be 
ignored during GWAS, since some of the rare alleles 
may be responsible for important traits.

Conclusions

The important MTAs involving main effect and epi-
static QTLs identified during the present study may 
be further validated using post-GWAS or joint linkage 
and association mapping (JLAM; Gupta et  al. 2019; 
Gahlaut et al. 2019) and used for MAS in wheat breed-
ing programmes targeted towards yield improvement. 
The information of the CGs may also be useful for the 
development of CG-based functional markers and for 
further basic research including CG-based association 
mapping and functional genomics approaches.
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