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Abstract Genomic selection (GS) is one of the most
powerful tools available for maize breeding. Its use of
genome-wide marker data to estimate breeding values
translates to increased genetic gains with fewer breeding
cycles. In this review, we cover the history of GS and
highlight particular milestones during its adaptation to
maize breeding. We discuss how GS can be applied to
developing superior maize inbreds and hybrids. Addi-
tionally, we characterize refinements in GS models that
could enable the encapsulation of non-additive genetic
effects, genotype by environment interactions, and mul-
tiple levels of the biological hierarchy, all of which
could ultimately result in more accurate predictions of
breeding values. Finally, we suggest the stages in a
maize breeding program where it would be beneficial
to apply GS. Given the current sophistication of high-
throughput phenotypic, genotypic, and other -omic level
data currently available to the maize community, now is
the time to explore the implications of their incorpora-
tion into GS models and thus ensure that genetic gains
are being achieved as quickly and efficiently as possible.
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Introduction

One of the most beneficial outcomes of plant breeding
and crop management improvements is the continuous
increase of maize (Zea mays L.) yields since the 1930s
(Duvick 2005). Besides being a staple food in multiple
cultures, maize is used as animal feed, food additive,
biofuel, fiber, and raw materials (Ranum et al. 2014).
Continued yield gains in maize are paramount for global
food security and might only be possible with further
advancements in plant breeding. The amelioration of
genomic selection (GS), already a mainstay tool in
modern crop breeding (Heffner et al. 2009), is one arena
that is critical for achieving this goal. Maize is among
the numerous crop species to have benefited from both
GS and high-throughput phenotypic collection tech-
niques (Beyene et al. 2015; Vivek et al. 2017; Zhao
et al. 2012). Since the adoption of GS, techniques for
collecting mass phenotypes and gene regulatory infor-
mation have improved substantially (Mejia-Guerra et al.
2012; Tardieu et al. 2017). Adapting GS approaches to
take advantage of new sources of information may
prove integral for meeting increasing global demand
for maize products.

Both direct and indirect selections are fundamental
concepts of human and plant coevolution and are widely
considered to be the foundation for plant domestication
(Ross-Ibarra et al. 2007). Teosinte (Zea mays subsp.
parviglumis), the hypothesized wild ancestor to maize,
overcame several pre-domestication traits around
10,000 years ago to become maize (Doebley 2004).
For example, ancient humans choosing to save seed late
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in the growing season for replanting rather than con-
sumption is theorized to be responsible for non-
shattering genotypes (Lin et al. 2012). This type of
human selection is further supported by evidence of
reduced allelic variation of several genes and major loci
in maize compared to teosinte (Chen et al. 2020).
Through this coevolution and a high degree of local
adaptation (Buckler et al. 2009), maize has become
one of the most important crop species economically.
Moreover, maize has been a focus of plant breeding
efforts partly due to its separate flowering structures that
facilitate easy control of cross- and self-pollinations
(Brown et al. 2011). Self-pollination produces inbred
lines that can be considered genotypic replicates, con-
venient for collecting replicated data. Simple cross-
pollination techniques allow for the production of hy-
brids, which is the predominant method for growing
maize commercially due to its high degree of heterosis
(Hallauer et al. 1988; Hayes 1912).

The rediscovery of Mendel’s laws in the early 1900s
and the subsequent quantitative genetic ramifications
elucidated by R.A. Fisher, Sewall Wright, and J.B.S.
Haldane have helpedmake quantitative techniques com-
mon practice in modern plant and animal breeding
(Hallauer 2007). For example, Mendel’s laws of inher-
itance can quantify identity by descent between individ-
uals and therefore define relatedness for pedigree selec-
tion (Genetic Alliance 2010). Pedigrees are largely re-
sponsible for the development of heterotic groups in US
germplasm, capturing high levels of heterosis (Gerdes
and Tracy 1993) and the estimation of general and
specific combining ability (Box 1; Henderson 1952).
For a comprehensive overview on the history of selec-
tion methodologies in commercial breeding, see Duvick
et al. (2004).

Maize breeders have relied on the same general
breeding strategies for the past century, crossing lines,
and evaluating offspring for increased yield while inad-
vertently moving a population towards an ideotype
(Donald 1968). However, modern maize breeding now
has the advantage of molecular marker technology
(Bernardo 2008) to predict the outcome of these crosses
and perform marker-assisted selection (MAS) (Xu and
Crouch 2008). Based on the principals of Mendelian
genetics, one can assume that at least some markers
from a high-density genotyping platform are in linkage
disequilibrium (LD) with ungenotyped causal muta-
tion(s) and therefore explain a statistically significant
proportion of trait variation. Through the use of MAS

on such markers, it is possible for breeders to advance
and cross elite germplasm while ensuring additional
favorable characteristics are maintained, such as disease
resistance (Poland and Rutkoski 2016).

The technique of MAS has even been successful at
the introgression of yield-related quantitative trait loci
(QTL; Bouchez et al. 2002), yet this approach has
several noteworthy drawbacks. Breeding over the past
several decades has reduced allelic variation and fixed
large additive effect QTL, making it difficult for
markers tagging the remaining QTLs to pass stringent
statistical thresholds of significance (Reif et al. 2005).
Other issues with MAS include possible weak LD be-
tween markers and causal mutations, resulting in a loss
of predictive ability in later generations (Zhang and
Smith 1992), and the lower relative efficiency of MAS
over phenotypic selection for low heritable traits
(Hospital et al. 1997). Fisher 1958a, 1958b proposed a
theory that quantitative traits are the results of many
small-effect causal mutations distributed across the ge-
nome. Many agronomically important traits appear to
adhere to this complex genetic architecture (Buckler
et al. 2009; Peiffer et al. 2014; Prado et al. 2014). Thus,

Box 1 General and specific combining ability

Arguably, the most common approach for subdividing the genetic
contributions to trait variation is through additive (i.e., the
contribution of an allele at a locus), dominance (interaction
between alleles at the same locus), and epistatic (interaction
between alleles at different loci) effects. An alternate method for
quantifying these subdivisions is through general combining
ability (GCA) and specific combining ability (SCA).

To understand GCA and SCA, consider a quantitative trait
measured in a maize F1 hybrid, where the mother and father are
from separate heterotic pools. The genetic contribution of each
parent of the F1 hybrid is the GCA. Thus, the F1 hybrid will
have two GCAs: one from the mother and one from the father.
One common approach for accounting for GCAs in a GS model
is to include the mother and father as random effects in the
model and then to use an additive genetic relatedness matrix
from the respective heterotic pools to model the
variance-covariance. The SCA is then the remaining genetic
signal of the trait that is not explained by the GCAs of the two
parents and can be accounted for in a GS model by including
another random effect in the model, where a dominance
relationship matrix is used to model the variance-covariance.
Without loss of generality, the GCA can be thought of as
analogous to additive contributions, while the SCA can be
thought of as analogous to dominance contributions. Please see
Kadam et al. (2016), Technow et al. (2014), and Sprague and
Tatum (1942) for examples of the use of GCA and SCA in
maize hybrid breeding.
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GS models (described in, e.g., Meuwissen et al. 2001)
that use dense genome-wide markers to predict genomic
estimated breeding values (GEBVs) of such traits have
been widely explored in maize (Crossa et al. 2013).
Similar in practice to the use of pedigree data, GS can
be used to obtain genomic best linear unbiased predic-
tions (GBLUP) of progeny for either inbred develop-
ment or hybrid production in maize (Bernardo 1994).
The accurate prediction of GEBVs translates to a reduc-
tion in the number of potential crosses and environmen-
tal replicates needed to observe genetic gains (Heffner
et al. 2010). Therefore, GS models will continue to be
invaluable tools in breeding programs to ensure that the
societal demands of maize are met. In this review, we (i)
give an overview on the use GS in maize and how
models utilize non-genetic information sources, (ii) ar-
gue for customizing GS models to reflect a given trait’s
genetic architecture and to include -omic information
sources, and finally (iii) discuss the factors of when and
how GS is applied in maize hybrid breeding.

Overview of genomic selection

The use of a combination of pedigree data and 220
restriction enzyme markers to construct a variance-
covariance relationship matrix was demonstrated in
Bernardo (1994). The implementation of a marker-
based variance-covariance relationship matrix (Habier
et al. 2007) to make predictions was popularized under
the term GBLUP, with the approach from VanRaden
(2008) being the most widely used approach for esti-
mating a genetic relationship matrix. Advances in ge-
nome sequencing and decreasing costs per sample have
resulted in more individuals that can be genotyped with
denser marker sets, including millions of single nucleo-
tide polymorphisms (SNPs) (Bukowski et al. 2018;
Heather and Chain 2016). Using such dense marker
maps, Meuwissen et al. (2001) expanded GS and
showed that selection based on marker haplotype effects
could increase genetic gains in plant and animal breed-
ing. Genotyping-by-sequencing technology and SNP
arrays make it possible to efficiently genotype thou-
sands of lines for several hundred thousand SNPs, ulti-
mately facilitating the implementation of GS in large
breeding populations (Poland and Rife 2012; Rasheed
et al. 2017). In general, the availability of dense marker
data translates to highly accurate GEBVs, which for
some maize traits have been shown to produce annual

gains that are three times greater than MAS (Heffner
et al. 2010).

Basic construction of a GS model

The basic concept behind GS is to use phenotype and
genotype information in a training set to obtain GEBVs
for non-phenotyped individuals in an independent set of
breeding material. For an overview on how GS guides
decisions in breeding programs, please see Jannink
(2010). Here we present a typical configuration of a
GS model that has the trait of interest as the response
variable and all genome-wide markers as the explanato-
ry variables. When the number of markers (p) is greater
than the number of individuals (n), there are not enough
degrees of freedom to obtain unique estimates of all
marker effects (Gianola 2013). To overcome this large
p, small n (i.e., p>>n) issue, several Bayesian and
penalized approaches have been implemented in
practice. De los Campos et al. (2013) provides a com-
prehensive overview of these approaches. An alternate
configuration of a GSmodel is to include the individuals
as random effects, with their variance-covariance being
set as proportional to an additive genetic relationship
matrix calculated from the genome-wide markers
(VanRaden 2008). Commonly referred to as GBLUP,
this model is similar to a pedigree-based best linear
unbiased prediction (BLUP) model (Daetwyler et al.
2010). It is widely established (e.g., in Habier et al.
2007) that the configuration of including p markers in
the GS model as explanatory variables and the GBLUP
configuration are equivalent, but exact equivalence be-
tween these two configurations will respectively depend
on the approaches used to account for the p>>n issue
and to calculate the genetic relatedness matrix.

Since the introduction of GS, several studies have
demonstrated its broad utility inmaize by using different
models to accommodate a wide variety of various breed-
ing aspects (Bandeira e Sousa et al. 2017; J. Crossa et al.
2014; J. Crossa et al. 2013; Pinho Morais et al. 2020).
Nonetheless, GS studies typically fail to obtain high
prediction accuracies whenever training and validation
sets are distantly related (Pinho Morais et al. 2020) and
when non-genetic factors are a large source of trait
variation (Hickey et al. 2017). Examination across sev-
eral biparental maize populations indicated a relation-
ship between genetic variance, i.e., heritability and pre-
diction accuracy (Zhang et al. 2017).
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The selection of an ideal training set for fitting a GS
model is essential for accurate GEBVs in the breeding
material (Olatoye et al. 2020; Schopp et al. 2017;
Windhausen et al. 2012). Best practices on how training
data are developed and used are still being discussed in
the current literature (Dias et al. 2020). There are many
factors to consider in optimizing training sets, such as
population structure between lines (Isidro et al. 2015)
and mating design. Findings from Fristche-Neto et al.
(2018) suggest that optimal prediction accuracies can be
achieved by maximizing the number of crosses per
parent in the training set. They also challenged the use
of a testcross mating design, demonstrating that practi-
cal considerations such as the development of a training
set have strong influence on prediction accuracy.
Expanding on this, it is highly recommended that a set
of standard checks are incorporated into each field and
growing season; these checks are likely to reduce the
influence of the unbalanced nature of breeding programs
on the training set (Gorjanc et al. 2018; Jarquin et al.
2020; Piepho et al. 2006). These situations underscore
that GS and its implementation require continued testing
and modification to continue leading the charge for
increased genetic gain in crop breeding programs.

Expanding upon the basic GS model and factors
influencing prediction accuracy

The need to account for non-genetic sources of trait
variation and non-additive modes of gene action in
complex traits makes the choice of a best-suited GS
model less straightforward. For instance, the task of
incorporating environmental fluctuations has resulted
in the investigation of GS models that directly incorpo-
rate environmental information into the model
(Burgueño et al. 2012; Jarquín et al. 2014; Lopez-Cruz
et al. 2015). The typical form of such GS models is to
include an environmental main effect, as well as a two-
way interaction term between the genetic and environ-
mental (GxE) effects (please see, e.g., Heslot et al. 2014,
for an in-depth description of these models). When
weather and other environmental data are available, it
is common to use this information to model both the
covariance between environments and the GxE effects
(Jarquín et al. 2014). Inclusion of such environmental
information into GS models in this manner has been
shown to accurately predict GEBVs in diverse sets of
environments (Basnet et al. 2019; Jarquín et al. 2014;
Saint Pierre et al. 2016).

One could also expand the basic GS model to include
dominance and epistatic effects, both of which are par-
ticularly important for hybrid breeding (Jiang and Reif
2015; Technow et al. 2012; Vitezica et al. 2013). Pre-
diction using additive variation is essential for obtaining
breeding values (Liu et al. 2018), while predicting dom-
inance and epistatic effects could have potentially im-
portant commercial benefits in the form of heterosis and
hybrid vigor (Chen 2010; McMullen et al. 2009;
Sprague 1983). Moreover, it has been shown that
modeling multiple types of genetic and non-genetic
sources of variation is important because both heritabil-
ity estimates and prediction accuracy could be maxi-
mized (Brachi et al. 2011; Voss-Fels et al. 2019). Please
see Rogers et al. (2021) for a maize GS study that
included GxE effects and non-additive genetic effects
in the GS model.

“Diverse” genomic selection models

Fitting models to match trait genetic architecture

In general, GS has potential to increase genetic gain
under reduced resources, but there is nevertheless no
evidence for a single best GS model for all scenarios. A
factor that influences the prediction accuracy of GS
models to various extents is the choice of penalty, priors,
and/or which markers to include as fixed-effect covari-
ates (Heslot et al. 2012b; Zhang et al. 2019). Depending
on the genetic architecture of the studied trait, some
penalties or priors are theoretically better suited than
others. For example, random regression-BLUP (RR-
BLUP) (Meuwissen et al. 2001; Whittaker et al. 2000)
should be ideal for predicting breeding values of com-
plex traits because each of the marker effects are drawn
from the same normal distribution, and the penalty is
equally applied to their predictions. Alternatively, if the
genetic architecture of the studied trait is oligogenic,
then other penalties such as the LASSO (Tibshirani
1996) that perform model selection or Bayesian ap-
proaches (reviewed inGianola 2013) that assignmixture
prior densities to marker effects should hypothetically
yield the highest prediction accuracies. However, in
general these various types of penalties and priors tend
to yield approximately the same prediction accuracies
(De los Campos et al. 2013; Heslot et al. 2012a).

Several studies have demonstrated the utility of
adjusting penalties and/or kernels (see Box 2; Cuevas
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et al. 2016, 2017) in the GS model so that the impact of
markers in the vicinity of a priori candidate genes differs
from those of the remaining genomic markers (Edwards
et al. 2015; Fang et al. 2017; MacLeod et al. 2016;
Speed and Balding 2014; Turner-Hissong et al. 2020).
For example, Turner-Hissong et al. (2020) used such an
approach to explore the influence of genes from various
free amino acid (FAA) -related pathways on genomic
prediction of FAA-derived traits in Arabidopsis
thaliana seeds. A GS model that created a separate
kernel for markers in the vicinity of these candidate

genes yielded higher prediction accuracies than a stan-
dard GBLUP model. In addition to suggesting that such
a multi-kernel BLUP model is useful for genomic pre-
diction, this study also demonstrated how GS models
that incorporate a priori information into their kernels
could be useful for making inferences on the genetic
architecture of the studied trait.

The last modification to the GS model attempts to
account for traits that are controlled by both large- and
small-effect loci. In this approach, markers tagging
large-effect genes are included as fixed-effect covariates
in a standard GS model. Because the fixed-effect esti-
mates of such markers are not subject to the penalties
applied to the prediction of the remaining randommark-
er effects, a GS model augmented with these fixed-
effect covariates could potentially increase prediction
accuracy whenever large-effect genes account for at
least 10% of the total genetic variability (Bernardo
2014). Nonetheless, studies using GS models that in-
cluded fixed-effect covariates tagging quantitative trait
nucleotides (QTNs) have not consistently reported in-
creased prediction accuracy over the standard GS
models without any covariates (Arruda et al. 2016;
Rice and Lipka 2019; Spindel et al. 2016; Zhang et al.
2014). In particular, the simulation study conducted by
Rice and Lipka (2019) demonstrated that the use of
fixed-effect covariates tagging large-effect genes in a
GS model could potentially be more likely to decrease
instead of increase prediction accuracy and that a pre-
liminary cross-validation study into the usefulness of
such an augmented GS model is warranted prior to its
implementation into a breeding program.

If GS models are to be diversified, genome-wide
association, QTL mapping, and other exploratory geno-
mic studies that elicit the underlying genetic architecture
of traits and identify associated markers and genes
(Gage et al. 2020; Glowinski and Flint-Garcia 2018;
Lipka et al. 2015) will be essential. In theory, if all
marker or haplotype effects were accurate in size and
gene action relative to a given environment, one could
predict a traits’ breeding value with maximum accuracy,
minimum bias, and avoiding any missing heritability
(Box 3).

Expanding -omics-based prediction

Modern breeding programs are now able to take advan-
tage of emerging data from high-throughput phenotyp-
ing technologies. Breeding can now focus on several

Box 2 Kernels

One of the most commonly used but potentially most
misunderstood terms in GS is the kernel. To introduce this term
in context, consider a GBLUP-style model that includes at least
one random effect to account for the individuals. These random
effects are assumed to follow a multivariate normal distribution
with population mean vector 0 and population
variance-covariance matrixΣ. One common practice is to set Σ
to be proportional to an additive genetic relatedness matrix, for
example, the matrix described in VanRaden (2008).
Colloquially, the methodology used to calculate each element of
this relatedness matrix is called the kernel.

Different kernels, or methodologies used to estimate elements of a
relatedness matrix, are used in practice. For instance, suppose
one was interested in accounting for additive, dominance, and
additive × additive epistasis in a GS model (the so-called ADE
model from Covarrubias-Pazaran (2016)). Then one could fit a
GBLUP-style model, where there are three individual random
effects. To account for additive and dominance genetic effects,
relatedness matrices could be calculated respectively using ad-
ditive and dominance kernels (e.g., described in Su et al.
(2012)), and the resulting relatedness matrices could be used to
model the variance-covariance of two of the random effects. To
account for additive × additive epistasis, a similar relatedness
matrix could be created where the kernel used is the Hadamard
product (i.e., element-wise multiplication) between each ele-
ment of two additive relatedness matrices. Other kernels, for
example, the reproducing kernel Hilbert space (described in
Neves et al. (2012) and Pérez, and de los Campos, G. (2014)) or
the support vector machine regression (described in Howard
et al. (2014)), are also commonly used to account for
non-additive genetic effects in GS models.

Approaches for calculating kernels are critical for future GS
research because they can be used to account for additional
sources of trait variability in a model. For example, suppose one
wanted to account for small RNA (sRNA) in a GS model (as
done in Schrag et al. (2018)). In this instance, they could in-
clude an additional random effect for the individuals in the
model and then incorporate sRNA information into kernels that
ultimately create a relatedness matrix. In summary, the in-
creasing amount of available data has a potential to increase the
effectiveness of genomic prediction, and these data can be
easily incorporated into GS models through kernels.
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physiological traits over multiple time points in a given
field season and incorporate them into combined geno-
mic and crop growth models (Araus et al. 2018;
Washburn et al. 2020; Zhao et al. 2019). Multivariate
derivatives of available models (Jia and Jannink 2012;
Velazco et al. 2019) can consider multiple “proxy” traits
and take advantage of these large-scale phenotyping
platforms (Joo et al. 2016). The “diverse” approaches
suggested here are currently available to any breeding
program with phenotyping and genotyping capabilities.
They only require a priori knowledge about the genetic
architecture of the trait(s) and a wilingess to creatively
include this knowledge in prediction.

Information from DNA variants alone cannot de-
scribe the full contribution of the biological hierarchy
(e.g., transcriptomic and proteomic levels) to trait vari-
ability. The advent of high-throughput molecular tech-
nologies (Fernie and Schauer 2009; Wang et al. 2009;
Widłak 2013) for collecting multiple types of genomic
regulatory information, referred to as -omics, facilitate

the quantification of more components of gene regula-
tion and therefore trait variability. For example, gene
expression levels and protein abundance capture herita-
ble variation (Guo et al. 2016; Li et al. 2019) and could
be included in GS models as covariates, substitutes for
genome-wide markers (as shown in Schrag et al.
(2018)), or both. Such -omics data are routinely used
in crop improvement studies to identify markers associ-
ated with metabolomic (Wen et al. 2014) and gene
expression (Kremling et al. 2019; Nica and
Dermitzakis 2013). We argue that now is the time to
build on the findings of these previous studies and start
incorporating -omics information into GS models in a
more widespread manner (see Fig. 1 for a generalized
schematic of how multiple layers of data can be used to
predict a response). We present several reasons for this
argument below.

First, epistatic effect estimates quantified from geno-
mic data are typically negligible in magnitude relative to
additive effects (Hill et al. 2008; Sackton and Hartl
2016). Nevertheless, evidence of physiological epistasis
has appeared in many previous studies (Carlborg et al.
2004; Doebley et al. 1995; Huang et al. 2012). Because
it is argued that -omics data better encapsulates physio-
logical epistasis (Sackton and Hartl 2016), the inclusion
of -omics data in GS models could improve their pre-
dictive abilities whenever physiological epistasis is an
important source of trait variability. The second argu-
ment addresses epigenetics modifications that regulate
transcription levels through altering accessibility to a
given genomic region and explain a large portion of
phenotypic variation in plants (Hu et al. 2015;
Johannes et al. 2009). Although epigenetic states are
reversible (i.e., they can revert states during or
between generations; Becker et al. 2011), it has been
previously argued that the use of epigenomic data for
trait prediction could be useful for human (Vazquez
et al. 2014) and animal (González-Recio 2012) studies.
Finally, DNA variants are constant, but -omic levels are
subject to biotic and abiotic stimuli (Atkinson and
Urwin 2012; Cramer et al. 2011). A recent study ex-
plored the link between local adaption and variation in
gene expression in maize (Blanc et al. 2021). Thus, use
of the plethora of data available from the -omics land-
scape as a prediction tool could help better understand
and compare different genotypes and their environmen-
tal contingent trait expression (Li et al. 2018; Proulx
et al. 2007; Sadras and Lawson 2011; Vu et al. 2015;
Zhou et al. 2012). Certainly, with significant phenotypic

Box 3 Missing heritability

In general, GWAS has not been as successful as originally
anticipated. Issues pertaining to multiple testing corrections on a
genome-wide scale, accounting for spurious associations due to
population structure and familial relatedness, and simplicity of
the statistical model being used have resulted in GWAS being
able to only declare moderate- to large-effect markers to have
statistically significant associations with the tested trait. The
percentage of trait variability explained (PVE) by these
peak-associated markers is typically lower than the estimated
heritability of the trait. This discrepancy in the amount of PVE
of GWASmarkers and the estimated heritability is known as the
missing heritability.

Described and debated over since at least 2009 (e.g., in Myles
et al. (2009)), missing heritability is thought to arise from mul-
tiple factors, including inadequate sample sizes to overcome
conservative multiple testing corrections, inadequate marker
densities, and over-simplistic statistical models. The former two
issues are being addressed by decreasing genotyping and phe-
notyping costs, which makes it possible to obtain denser marker
sets for more individuals. However, the commonplace usage of
statistical models such as the unified mixed linear model
(MLM; Yu et al. 2006) that only test for the additive effect of
one marker at a time translates to an inability to directly quantify
dominance, epistatic, and genotype × environment effects.
Furthermore, the univariate implementation of the unified
MLM to test for one trait at a time makes it impossible to
quantify pleiotropic contributions. Thus, one important ap-
proach for potentially reducing the magnitude of the missing
heritability is to focus on the development and implementation
of statistical models that account for a wider variety of
non-additive contributions to quantitative trait variation.
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variation explained by non-genomic sources and their
interaction with the environment, our arguments and
suggested uses for -omics-based prediction in maize
hybrid breeding are far from exhaustive.

The incorporation of -omics data into GS models has
already been shown to be adequate for predicting
GEBVs in maize. For example, data from 130 metabo-
lites had equivalent accuracy to SNP data for predicting

GCA for seven biomass and bioenergy-related traits
(Riedelsheimer et al. 2012). Guo et al. (2016) used a
diverse population and an extension to the GBLUP
model that incorporated transcriptomic and
metabolomic data. The authors showed that the
incorporation of transcriptomic and metabolomic
effects into the GS models explained more heritable
variation for nine of eleven traits compared to any

Genome

Transcriptome

Proteome

Metabolome

Trait

= + + + + +

∼ ( , ) ∼ ( , )
∼ ( , ) ∼ ( , )

∼ ( , )
Fig. 1 Biological hierarchy in genomic selection. Schematic of
how various levels of the biological hierarchy of traits could be
incorporated into GS models. The availability of the genomic
(red), transcriptomic (orange), proteomic (green), and
metabolomic (blue) data in maize makes it possible to incorporate
multiple levels of the biological hierarchy of an agronomic trait
directly into genomic selection (GS) models. Each of the different

levels of the biological hierarchy can be used to calculate the
correspondingly colored relationship matrices G, T, P, and M.
Model terms and abbreviations: Y, observed vector trait values
for n individuals; μ, grand mean; 1, n-dimensional vector of 1’s; u,
n-dimensional random vector of polygenic effects; Z, incidence
matrix relating u to Y; ε, n-dimensional random vector for error
terms; MVN, multivariate normal
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single predictor. They also observed an increase in
predictive ability over the standard GBLUP model for
several traits when using either transcriptomic data
alone or in conjunction with genomic data. Westhues
et al. (2017) showed that transcriptomic and
metabolomic data could differentiate heterotic groups
and improve GCA and SCA estimates for yield and
grain quality traits, potentially increasing the
likelihood of making optimal hybrid combinations.
Expanding on this result, Schrag et al. (2018) demon-
strated improved prediction for hybrids with non-
phenotyped parents (referred to as T0 hybrids) using
only transcriptomic information. The results from these
three studies suggest that -omics-based prediction is a
viable approach for maize population development and
hybrid prediction.

There are challenges to implementing multi-omics in
genomic prediction as it requires collecting information
on a large number of individuals. Additionally, costs
associated with high-throughput collection, data stor-
age, and training technical ability to process data
(Argueso et al. 2019; Conesa and Beck 2019) are need-
ed to be taken into consideration. Due to such limita-
tions, implementation of multi-omics data directly into
genomic prediction may have more immediate applica-
tion for high-value breeding targets.

When and how genomic selection is applied matters

The specific stage(s) of a breeding pipeline when GS is
applied, as well as the intended outcome of its applica-
tion (i.e., how), are as important as choosing the best
suited model (Hickey et al. 2017). Because of doubled
haploid technology in particular, the generation of high-
ly inbred material is no longer a prominent time
prohibiting factor in breeding (Chaikam et al. 2019).
Instead, the development and evaluation of crosses that
advance genetic gain for a target trait becomes the
formidable bottleneck (Bernardo 2009). Breeders can
overcome this by utilizing GS at multiple points in their
program. For example, in the absence of disease pres-
sure, it would be impossible to select for disease resis-
tance based on phenotypic values. Instead, selecting
inbred lines during population development based on
GEBVs would ensure favorable disease resistance,
while reducing the labor required to inoculate and phe-
notype over multiple growing seasons. Another exam-
ple of the use of GS early in a breeding pipeline is for the

identification of lines with high GCA and SCA, as
demonstrated by Kadam et al. (2016). Here, the authors
achieved high prediction accuracy for agronomically
important traits such as staygreen, height, and grain
yield of single crosses. Another important use of GS
early in a breeding program would be to predict GEBVs
for combining elite and diverse germplasm when
introgressing exotic haplotype segments (Bernardo
2009, 2016; Gorjanc et al. 2016; Ru and Bernardo
2020). The germplasm enhancement of maize (GEM)
project is an important example of the potential impact
of incorporating diverse germplasm with elite breeding
lines (Pollak 2003), and applying GS could intensify
such a program.

Conclusion: When does genomic selection work?

Criteria for the ideal GS model are far from being
rigorously tested for all environments, breeding
schemes, and traits; thus no “one size fits all” GS model
exists. Instead of focusing on the best penalty or prior to
applying to a GS model that accounts for only the
additive effects of genomic markers, research into mod-
el development should focus on making it more practi-
cal to include additional sources of variation such as
GxE and -omics data (Burgueño et al. 2012; Schrag
et al. 2018). Moreover, additional challenges not
discussed in this review exist for programs applying
GS. For example, as new phenotypic information be-
comes available and allele frequencies shift across gen-
erations, models require updating (Jannink 2010). Even
the choice of molecular markers can have an impact on
accuracy (Chang et al. 2018; Habier et al. 2009;
Kriaridou et al. 2020).

To end this review, we readdress the question from
Lian et al. (2014) that seeks to clarify under which
circumstances GS outperforms conventional phenotypic
selection. In their study, 969 biparental families were
predicted for seven traits, including yield, using the RR-
BLUP model (Meuwissen et al. 2001; Whittaker et al.
2000). When they applied the same model to the same
traits for different families, they obtained vastly different
prediction accuracies. This suggests that further research
is needed on topics such as the influence of training set
composition, as well as other factors, on the perfor-
mance and effectiveness of GS. Although it is a poten-
tially daunting task to systematically study the contribu-
tions of these factors in a series of field trails potentially
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across multiple years, simulation software is making it
possible to initiate such an undertaking (Bernardo 2017;
Faux et al. 2016; Fernandes and Lipka 2020). Therefore,
we argue that the challenge of which model to apply to
which breeding schememay never be fully addressed by
human users. Perhaps with machine learning, where
certain model assumptions are not necessary, we can
explore more fully the space of GS model optimization
(for machine learning reviews, see González-Camacho
et al. (2018), Ogutu et al. (2011), and Washburn et al.
(2020)). In reality, GS as a tool will continue to be
flexibly applied according to the breeder and likely not
replace phenotyping and the breeder’s expertise; instead
GS should work in tandem with these other factors to
accelerate genetic gain.
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