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ABSTRACT
◥

Although CD19-directed chimeric antigen receptor T-cell ther-
apy (CD19.CAR-T) has proven clinical efficacy for multiple refrac-
tory B-cell malignancies, over 50% of patients ultimately relapse.
Recent evidence has underlined the critical role of the host in
determining treatment responses. In this retrospective observation-
al study of 106 patients with relapsed/refractory large B-cell lym-
phoma receiving standard-of-care CD19.CAR-T, we analyzed
the impact of immunometabolic host features and detailed body
composition measurements on post–CAR T clinical outcomes. We
extracted muscle and adipose tissue distributions from prelympho-
depletion CT images and assessed laboratory-based immuno-
nutritional scores. Early responders displayed increased total
abdominal adipose tissue deposits (TAT: 336 mm3 vs. 266 mm3,
P ¼ 0.008) and favorable immuno-nutritional scores compared to
nonresponding patients. On univariate Cox regression analysis,
visceral fat distribution, sarcopenia, and nutritional indices signif-
icantly impacted both progression-free (PFS) and overall survival

(OS). Patients with a low skeletal muscle index (SMI; e.g.<34.5), a
sarcopenia indicator, exhibited poor clinical outcomes (mOS
3.0 months vs. 17.6 months, log-rank P ¼ 0.0026). Prognostically
adverse immuno-nutritional scores were linked to inferior survival
[low PNI: HROS, 6.31; 95% confidence interval (CI), 3.35–11.90; P <
0.001]. In a multivariable analysis adjusting for baseline Eastern
Cooperative Oncology Group performance status, C-reactive pro-
tein, and lactate dehydrogenase, increased TAT was independently
associated with improved clinical outcomes (adjusted HROS, 0.27;
95% CI, 0.08–0.90; P ¼ 0.03). We noted particularly favorable
treatment outcomes in patients with both increased abdominal fat
and muscle mass (TAThigh/SMIhigh: 1-year PFS 50%, 1-year OS
83%). These real-world data provide evidence for a role of body
composition and immuno-nutritional status in the context of CD19.
CAR-T and suggest that the obesity paradox may extend to modern
T cell–based immunotherapies.

See related Spotlight by Nawas and Scordo, p. 704

Introduction
CD19 CAR T-cell therapy (CD19.CAR-T) has emerged as a prac-

tice-changing immunotherapy for a range of refractory B-cell

malignancies (1–5). Still, a significant proportion of CAR T–treated
patients ultimately relapse (6, 7), and identifying novel determinants of
treatment response would help to refine response prediction tools and
optimize patient selection. Risk factors for treatment outcomes of
CD19.CAR-T can broadly be divided into disease-specific and host-
intrinsic factors. Established disease-specific and local risk factors
include TP53mutational status, low target antigen expression levels,
and an immuno-hostile tumor microenvironment that negatively
influences CAR T-cell expansion and persistence (8–10). On the
other hand, recent evidence has highlighted the critical role of
systemic host factors in driving responses to CD19.CAR-T. For
example, healthy hematopoiesis and gut microbiome composition
have been linked to improved treatment responses (11–13).
Although other host-intrinsic features, such as nutritional status,
body weight, and muscle mass, have been extensively studied across
different cancer treatment modalities, their prognostic influence in
cell therapy patients is less clear.

Being overweight and/or obese has repeatedly been proven to be an
adverse risk factor in the context of chemotherapy and classic
oncologic procedures like radiotherapy and surgical resection (14, 15).
However, the last decades of immunotherapy has interestingly
shown an unexpected relationship between excess adipose tissue and
immunotherapy efficacy, a phenomenon aptly coined the “obesity
paradox” (16). This clinical observation is well-described for immune
checkpoint blockade both in preclinical models and in patients
with cancer (17, 18). The therapeutic benefit in the excess weight
population was especially pronounced in patients who developed
immune-related adverse events (19). The impact of being overweight
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and/or obese on survival in patients with B-NHL treated in the pre–
CAR T era has been mixed, with heterogenous study results (20–22).
A potential explanation for the superior survival of overweight patients
undergoing immunotherapy is the immunogenic function of adipose
tissue. An excess of adipose tissue is associatedwith systemic low-grade
inflammation in a process termed “metaflammation,” wherein
adipose tissue is transformed into an inflammatory endocrine organ
with the ability to secrete pro-inflammatory cytokines (e.g., IL6,
TNFa, and IL1b) due to the infiltration of M1-polarized macro-
phages, T cells, and other immune cells (23). Importantly, body
mass index (BMI) represents only a vague measure of obesity and
does not reflect effects of specific adipose tissue sites (e.g., VAT,
visceral; EAT, epicardial; SAT, subcutaneous), which can exert
distinct effects on the degree of metaflammation and differentially
influence obesity-associated diseases (24). In patients receiving
CD19.CAR-T, we recently demonstrated that visceral adipose tis-
sue, in particular, is asociated with the onset and severity of cytokine
release syndrome (CRS) via IL6 (25).

Next to adipose tissue distribution, the amount and functionality of
muscle mass is critical in patients with cancer who are at high risk for
muscle loss, termed sarcopenia, due to a combination of malnutrition,
inflammation, and cachexia (26). Sarcopenia is accompanied with
poorer quality of life, more severe chemotherapeutic toxicity, and
adverse clinical outcomes (27). Moreover, the immunomodulatory
role of skeletal muscle as a potential integrator between sarcopenia and
immune senescence has been recognized more recently (27, 28).
Pathomechanistically, skeletal muscle cells can signal through cell
surface molecules, cell-to-cell interactions, and muscle cell–derived
cytokines, termedmyokines, which can broadlymodulate the immune
system (29, 30). To understand the intersection of diet and host
systemic inflammatory responses, immuno-nutritional scores have
been developed that often incorporate serum albumin levels and
inflammatory markers such as C-reactive protein (CRP) or leucocyte
subsets (31–37). Scores that have been validated in patients undergoing
classical cancer treatments include theGlasgowprognostic score (GPS;
refs. 31, 32), CRP-to-albumin ratio (33), prognostic nutritional index
(PNI; ref. 34), and neutrophil-to-lymphocyte ratio (NLR; ref. 35).
Nutritional status has also been actively discussed as a potential
influencing factor of CAR T-cell expansion and function (38).

Overall, a growing body of evidence points towards the multifunc-
tional role of adipose and muscle tissue in shaping the response to
modern immunotherapies. However, the specific impact of body
composition on clinical outcomes after CD19.CAR-T remains poorly
understood and insufficiently addressed. Here, we comprehensively
report the prognostic role of adipose tissue distribution, sarcopenia,
and nutritional status on early response and survival outcomes after
CD19.CAR-T in patients with relapsed/refractory large B-cell lym-
phoma (R/R LBCL).

Materials and Methods
Patient cohort

We included all patients with available anthropometric measure-
ments and CT-based segmentation analyses receiving CD19.CAR-T
for R/R LBCL at the Ludwig-Maximilians-University (LMU) Hospital
and Moffitt Cancer Center between December 2017 and March 2022
(data cutoff; Fig. 1A). Patients were treated with axicabtagene
ciloleucel (Axi-cel) or tisagenlecleucel (Tisa-cel) in a standard-of-
care setting. Clinical trial participation (n ¼ 7) and CAR-T treatment
for a disease entity other than R/R LBCL (n¼ 18) represented the key
exclusion criteria, resulting in a final study population of 106 patients,

including 100 patients with available baseline imaging. Lympho-
depleting chemotherapy with fludarabine (Axi-cel: 30 mg/m2 i.v.,
Tisa-cel: 25 mg/m2 i.v.) and cyclophosphamide (Axi-cel: 500 mg/m2 i.
v., Tisa-cel: 250 mg/m2 i.v.) was administered prior to CAR-T trans-
fusion according to the manufacturers’ instructions (1, 2). CRS and
ICANSwere graded according toAmerican Society forTransplantation
and Cellular Therapy (ASTCT) consensus criteria (39). High-grade
CRS and ICANS were defined as ASTCT grade ≥3 toxicity. Toxicity
management followed institutional guidelines, as described previ-
ously (25). Clinical metadata were obtained with institutional review
board approval (LMU Ethics Committee, Project No. 19–817). The
study was conducted in accordance with the Declaration of Helsinki,
and informed written consent was provided.

Data collection and body composition measurements
Baseline serum laboratory markers were determined prior to lym-

phodepletion (e.g., day �5) with a leniency period of up to 3 days.
Measurements were performed according to clinical standard proce-
dures in the Department of Laboratory Medicine of the involved
hospitals. Results were extracted from the patient’s medical records.

Body composition measurements were extracted from clinical
records (weight, height) or prelymphodepletion CT scans (waist,
adipose/muscle tissue distribution). The following anthropometric
measures were considered: BMI, waist circumference (waist), and
waist-to-height ratio (WtHR; Fig. 1A, middle). Single chest CT slices
were utilized to derive waistmeasurements using ImageJ (v2.0; ref. 40).
To quantify adipose (e.g., SAT, VAT) and muscle tissue distribution
(psoas and skeletal muscle), we performed segmentation analyses of
single CT slices at lumbar spine 3 using the Slice-O-Matic software
package (v5.0, Tomovision). Cross-sectional areas of respective tissues
were computed for each image. Total abdominal adipose tissue (TAT)
was determined as the sum of VAT and SAT. To calculate muscle
indices [psoas muscle index (PMI); skeletal muscle index (SMI)], the
mean muscle area was divided by height. EAT content was quantified
by calculating the mean EAT amount at the bottom, middle (4-
chamber view), and top (left main coronary artery view) of the heart,
as described previously (25). Adipose andmuscle tissue discrimination
was based on predefined Hounsfield units (HU) ranges [�190 to�30
HU for SAT, �150 to �50 HU for VAT, �190 to �30 HU for EAT,
�29 to þ150 HU for PM/SM (40–42)].

Immuno-nutritional scores were calculated on the basis of the
extracted laboratory markers (Supplementary Table S1). The GPS was
based on a combination of CRP and albumin levels: CRP ≤10 mg/L
was scored as 0, CRP > 10mg/L and albumin > 3.5 g/dL were scored as
1, andCRP > 10mg/L and albumin < 3.5 g/dLwere scored as 2 (31, 32).
The CRP-to-albumin ratio was calculated by dividing CRP (mg/L) by
albumin (g/dL ref. 33). The PNI was calculated using the following
formula: albumin (g/dL)þ 0.005� total lymphocyte count (per mm3;
ref. 34). The neutrophil-to-lymphocyte ratiowas calculated by dividing
the absolute neutrophil count (permm3) by the total lymphocyte count
(per mm3; ref. 35).

Clinical outcomes
Efficacy outcomes were assessed according to Lugano criteria (43).

Best response at day 90 was defined as reaching at least a partial
remission (PR) or better, whereas nonresponders exhibited stable
disease (SD) or progressive disease (PD), or deceased due to treat-
ment-related causes (44). Nonrelapse mortality was defined as death
after cellular therapy without prior relapse or progression. Kaplan–
Meier estimates for progression-free (PFS) and overall survival (OS)
were assessed from time of CAR-T transfusion, and groups were
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compared using the log-rank test. Follow-up was calculated from
CAR-T transfusion until death from any cause or last time of contact.

Statistical considerations
Mann–Whitney test or Student t test were used to explore contin-

uous variables, whereas Fisher exact test and c2 test were used to study
categorical variables. The d’Agostino Pearson test was used to deter-
mine normal distribution. If not stated otherwise, continuous variables
were reported as median and interquartile range (IQR). Associations
between continuous variables were analyzed using the Spearman
correlation coefficient (r). Bonferroni correction was performed to
account for multiple comparisons. Cutoffs were derived using a
survival-based software package fitting a Cox proportional hazard
model (45). To study the prognostic impact of the different body
composition parameters, we performed univariate and multivariable

Cox Regression for survival outcomes (PFS/OS). A log transfor-
mation using base 2 (log2) or 10 (log10) was applied to covariates to
reduce skewness. The multivariable analysis was adjusted for estab-
lished adverse risk factors of CD19.CAR-T (6, 10), which exhibited
a P-value <0.1 on univariate analysis [e.g., log10 lactate dehydro-
genase (LDH), log10 CRP, Eastern Cooperative Oncology Group
(ECOG) performance status ≥2]. TAT and SMI were introduced
into the multivariable models as log-transformed continuous vari-
ables. Statistical analysis and data visualization were performed
using GraphPad Prism (v9.0), SPSS (IBM, v26.0), and R Statistical
Software (v4.1.0).

Data availability
For all original data and material, please contact the corresponding

authors.

Figure 1.

The study cohort exhibits representative real-world clinical outcomes. A, Schema outlining from 1 to 3 (left to right): The study cohort with key exclusion criteria,
methods of body compositionmeasurements and assessment of the patient-individual immunometabolic state, and the study endpoints. B, Kaplan-Meier estimates
of PFS (dark gray) andOS (light gray) for the entire study cohort (n¼ 106). Median survival inmonths and 1-year survival are depicted.C,Best objective response rate
(ORR) at day 90 as determined according to Lugano criteria. Abbreviations: CR, complete remission; PR, partial remission; SD, stable disease; PD, progressive
disease; NRM, nonrelapse mortality.
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Results
Patient characteristics

Clinical outcomes were assessed in 106 patients with R/R LBCL
treated with CD19.CAR-T in a standard-of-care setting (Table 1;
Fig. 1A). The applied CAR product was axicabtagene ciloleucel
in 68 patients (64%) and tisagenlecleucel in 38 patients (36%).
The most common disease subtype was LBCL, NOS (64%), fol-
lowed by lymphoma transformed from indolent B-NHL (33%)
and primary mediastinal large B-cell lymphoma (PMBCL; 3%).
Patients received a median of three prior treatment lines (exclud-
ing bridging), which included autologous or allogeneic stem cell
transplantation in 31 (29%) and 4 (4%) patients, respectively. In
terms of immunotoxicity, we observed 20 patients (19%) with
high-grade ICANS and 10 patients (9.4%) with high-grade CRS
(Supplementary Table S1). Glucocorticoids were applied in 48
patients (45%). After a median follow-up time of 22.7 months,
median PFS and OS were 3.3 and 16.1 months, respectively
(Fig. 1B). With a 1-year PFS and OS of 29% and 55%, survival
was comparable with previous real-world reports (6). Of note,
survival outcomes did not significantly differ by participating
center (Supplementary Fig. S1). The best 90-day overall response
rate was 66%, with a complete remission rate of 44% (Fig. 1C). The
cumulative 1-year nonrelapse mortality was 3.9% (two infections,
one ICANS, one CRS; Supplementary Fig. S2). When comparing
responders versus nonresponders at day 90 after CD19.CAR-T, we
observed increased ECOG performance status in the nonrespond-
ing patients (P ¼ 0.013, Table 1). They also displayed significantly
higher levels of systemic inflammation, as reflected by higher
baseline CRP (1.9 mg/dL vs. 0.6 mg/dL, P ¼ 0.004). Furthermore,
serum LDH was elevated in nonresponding patients (359 U/L vs.
259 U/L, P ¼ 0.006), as was the radiographic tumor load (median
STL 172 mL vs. 72 mL, P¼ 0.03). Of note, high-dose glucocorticoid

administration was equally distributed between CAR-T responders
versus nonresponders.

Poor CD19.CAR-T responders at day90display reduced visceral
adipose tissue and altered immuno-nutritional scores

On the basis of prelymphodepletion imaging studies, we next com-
pared body composition features according to best response at day 90.
No significant difference in BMI was observed by response (P ¼ 0.19,
Supplementary Table S2), consistent with prior reports (22). Other
anthropometricmeasures, such aswaist circumference andWtHR, also
did not significantly differ between responding and nonresponding
patients (SupplementaryFig. S3A).However, comprehensive analysis of
adipose tissue distribution revealed significantly increased visceral
(VAT) and total abdominal (TAT) fat deposits in responding patients,
with a trend towards increasedepicardial (EAT) fatdeposits in evaluable
patients (Supplementary Table S2). For example, the measured volu-
metries for VAT and TAT were 134.4 cm2 versus 105.5 cm2 (P¼ 0.03)
and 335.7 cm2 versus 266.3 cm2 (P ¼ 0.008) in responding versus
nonresponding patients, respectively (Supplementary Fig. S3B). Fur-
thermore, we noted a trend towards higher subcutaneous fat deposits in
day 90 responders (191.1 cm2 vs. 157.0 cm2, P ¼ 0.06). None of
the sarcopenia indices (PMI, SMI) differed by the early 3-month
response assessment (Supplementary Fig. S3C). Next, we studied
previously established immuno-nutritional scores (e.g., GPS, CRP-
to-albumin ratio, PNI, NLR), which are summarized in Supple-
mentary Table S3. We found that CAR nonresponders displayed
higher GPS scores (≥1 vs. 0: 38% vs. 10%, P ¼ 0.002), higher CRP-
to-albumin ratio (0.48 vs. 0.17, P ¼ 0.006) and lower PNI (39.5 vs.
42.6, P < 0.001), whereas no significant difference in NLR was
observed (Supplementary Fig. S3D). Together these findings indi-
cate that visceral adipose tissue, nutritional status, and inflamma-
tion may be of prognostic value for early response to CD19.CAR-T.

Table 1. Baseline patient characteristics.

Characteristic
All patients
(N ¼ 106)

Responders
(N ¼ 53)

Nonrespondersa

(N ¼ 53) P value

Basic data
Age in years [median (range)] 64 (19–83) 64 (36–83) 63 (19–80) 0.14
ECOG performance status (median, IQR) 1 (1–2) 1 (0–1) 1 (1–2) 0.013
Sex (female), n (%) 40 (38) 22 (42) 18 (34) 0.55
Lines of prior therapy excl. bridging (median, IQR) 3 (2–4) 2 (2–4) 3 (2–4) 0.14
Prior SCT

Autologous SCT, n (%) 31 (209) 11 (21) 20 (38) 0.12
Allogeneic SCT, n (%) 4 (4) 3 (6) 1 (2)

CAR product 38 (36) 20 (38%) 18 (34) 0.84
Disease subtype
LBCL 68 (64) 29 (55) 39 (73) 0.07
Transformed lymphoma 35 (33) 23 (43) 12 (23)
PMBCL 3 (3) 1 (2) 2 (4)
Costimulatory domain
4–1BB, n (%) 38 (36) 20 (38) 18 (34) 0.84
CD28z, n (%) 68 (64) 33 (62) 35 (66)
Baseline laboratory values and radiographic tumor load
CRP (mg/dL) (median, IQR) 1.23 (0.29–4.3) 0.6 (0.19–3.10) 1.9 (0.69–5.68) 0.004
LDH (U/L) (median, IQR) 296 (209–4) 259 (194–347) 359 (232–607) 0.006
STL (mL) (median, IQR) 131 (26–330) 72 (12–276) 172 (48–399) 0.03

Abbreviations: SCT, stem cell transplantation; STL, sum of target lesions.
aPatientswith non-relapsemortality (NRM) events prior to the day 90 response assessmentwere allocated to the nonresponding group (n¼ 4). Values are shown as
number (percent) if not stated otherwise. P values <0.1 are highlighted in bold.
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Increased adipose tissue deposits are associatedwith favorable
survival outcomes after CD19.CAR-T

Upon cutoff analysis, we identified three distinct risk groups
(e.g., low, intermediate, high) for the adipose tissue markers TAT,
VAT, and SAT, whereas two risk groups (high vs. low) were defined
for PMI and SMI (high vs. low; Supplementary Fig. S4). On
univariate Cox regression, we did not observe an association
between increased BMI (defined as BMI ≥25 kg/m2 according to
WHO criteria) and survival outcomes (Table 2). However,
increased TAT >464 cm2 was associated with a significantly lower
risk of poor PFS [HR, 0.43; 95% confidence interval (CI), 0.22–0.84;
P¼ 0.01] and OS (HR, 0.29; 95% CI, 0.11–0.69; P¼ 0.005; Table 2).
On Kaplan–Meier analysis, we noted superior survival outcomes in
the patients with high levels of abdominal fat (>464 cm2), whereas

the patients with the lowest levels of abdominal fat (<293 cm2)
exhibited poor survival following CD19.CAR-T (Fig. 2A). When
comparing TAT risk groups (high vs. intermediate vs. low), median
PFS was 11.8 months versus 3.7 months versus 3.0 months (log-
rank P ¼ 0.015), whereas median OS was not-reached versus
28.9 months versus 10.6 months (log-rank P ¼ 0.0036), respec-
tively. These survival advantages extended to the patients with
excess subcutaneous (Fig. 2B) and visceral adipose tissue (Fig. 2C).
Concomitantly, increased subcutanous fat deposits were associ-
ated with a decreased risk for poor survival outcomes (HRPFS, 0.68;
95% CI, 0.51–0.92; HROS, 0.59; 95% CI, 0.41–0.85). Similarly, we
noted significantly improved OS in the patients with increased
VAT (HROS, 0.60; 95% CI, 0.40–0.89), with a trend towards
improved PFS (HRPFS, 0.75; 95% CI, 0.53–1.05). Of interest, the

Table 2. Univariate Cox regression for PFS and OS.

PFS OS
N HR (95% CI) P value HR (95% CI) P value

Demographic and laboratory features
ECOG performance status 2.24 0.001 2.28 0.003

≥2 28/106 (1.38–3.66) (1.32–3.94)
0–1 (Ref.) 78/106

Log10 LDH (U/L) 106 3.84 (1.73–8.49) <0.001 4.86 (1.89–12.52) 0.001
Log10 CRP (mg/dL) 106 1.48 (1.08–2.04) 0.015 1.26 (0.86–1.84) 0.23
Log10 STL (mL) 98 1.48 (1.06–2.07) 0.02 1.35 (0.92–1.99) 0.13
Anthropometric measures
BMI 0.85 (0.54–1.32) 0.46 0.79 (0.47–1.33) 0.37

≥25 (kg/m2) 48/106
<25 (kg/m2) (Ref.) 58/106

Adipose tissue distribution
TAT 0.043 0.01

<293 (cm2) (Ref.) 52/100 — —

293–464 (cm2) 30/100 0.72 (0.44–1.20) 0.21 0.62 (0.35–1.12) 0.11
>464 (cm2) 18/100 0.43 (0.22–0.84) 0.014 0.29 (0.11–0.69) 0.005

SAT 0.037 0.016
<166.6 (cm2) (Ref.) 49/100 — —

166.6–252 (cm2) 31/100 0.85 (0.51–1.41) 0.53 0.52 (0.28–0.97) 0.04
>252 (cm2) 20/100 0.43 (0.22–0.82) 0.01 0.37 (0.17–0.81) 0.01

VAT 0.25 0.048
<61.8 (cm2) (Ref.) 21/100 — —

61.8–190.4 (cm2) 56/100 0.82 (0.46–1.46) 0.50 0.64 (0.34–1.21) 0.16
>190.4 (cm2) 23/100 0.56 (0.28–1.13) 0.10 0.36 (0.16–0.81) 0.01

Sarcopenia indices
PMI 1.38 (0.77–2.47) 0.24 1.94 (1.02–3.69) 0.044

≥4.7 (cm2/m2) (Ref.) 82/100
<4.7 (cm2/m2) 18/100

SMI 1.88 (0.89–3.91) 0.09 3.29 (1.45–7.49) 0.004
≥34.5 (cm2/m2) (Ref.) 90/100
<34.5 (cm2/m2) 10/100

Immuno-nutritional scores
GPS 3.00 (1.81–5.00) <0.001 5.85 (3.26–10.52) <0.001

0 (Ref.) 77/102
1–2 25/102

CRP-to-albumin ratio 2.66 (1.58–4.46) <0.001 3.59 (2.00–6.43) <0.001
≥1.44 20/102
<1.44 (Ref.) 82/102

PNI 3.95 (2.18–7.18) <0.001 6.31 (3.35–11.90) <0.001
<33.5 16/103
≥33.5 (Ref.) 87/103

Note: Cutoff values for waist were 88 cm for female and 102 cm formale patients. The respective reference group of the Cox regression is depicted. The T/S/VAT risk
groups were treated as categorical variables, and the respective hazard ratio in relation to the reference is provided. P values <0.1 are highlighted in bold.
Abbreviations: E/S/V/TAT, epicardial/subcutaneous/visceral/total abdominal adipose tissue; P/SMI, psoas/skeletal muscle index; WtHR, waist-to-height ratio.
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Figure 2.

Increased visceral and subcutaenous adipose tissue deposits are associated with superior PFS and OS. Kaplan–Meier estimates of median PFS (left) and OS (right)
stratified by total (TAT; A), subcutaneous (SAT; B), and visceral (VAT; C) tissue deposits. The respective cutoff for each parameter and median survival in months is
depicted above the graph. The P value of the Mantel–Cox log-rank test is denoted on the graph inset. NR, not reached.
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patients treated in the USA exhibited increased abdominal tissue
deposits (Supplementary Table S6).

Sarcopenia negatively influences post CD19.CAR-T survival
outcomes

Even though the sarcopenia indices (SMI/PMI) were not asso-
ciated with day 90 response, sarcopenia-induced effects can be
more long-lasting in nature (46). Indeed, we could establish a
threshold for both lower SMI (<34.5 cm2/m2) and lower PMI
(<4.7 cm2/m2), suggesting that sarcopenia may exert enduring
negative effects (Supplementary Fig. S4). Although the observed
differences in PFS by PMI/SMI risk group did not reach statistical
significance, the deleterious impact of sarcopenia was particularly
evident for OS (Fig. 3, right). For example, median OS was only
5.6 months in PMIlow patients compared with 17.6 months in
PMIhigh patients (log-rank P ¼ 0.04, Fig. 3A). Overall survival was
especially poor in the SMIlow risk group (mOS 3.0 months vs.
17.6 months, log-rank P ¼ 0.0026, Fig. 3B), with a HR of 3.29 (95%
CI, 1.45–7.49) for OS on univariate analysis (Table 2). In addition,
we noted a significantly increased risk of poor OS for the PMIlow

risk group (HROS, 1.94; 95% CI, 1.02–3.68; Table 2). Of interest,

only a small number of patients reached the adverse risk threshold
for PMI (18 patients) and SMI (10 patients).

Adverse immuno-nutritional scores represent a negative
prognostic marker of post CD19.CAR-T survival outcomes

Next, we studied the prognostic influence of immuno-nutritional
scores (e.g., GPS, CRP-to-albumin-ratio, PNI) on survival outcomes.
The thresholds for CRP-to-albumin-ratio and PNI were identified as
1.44 and 33.5, respectively (Supplementary Fig. S4). All immuno-
nutritional scores demonstrated a significant prognostic effect on uni-
variate Cox regression (Table 2). CAR-T patients with a baseline GPS
score ≥ 1 had markedly worse clinical outcomes compared with their
GPS 0 counterparts (mPFS ¼ 1.4 months vs. 5.0 months, log-rank
P < 0.0001; mOS ¼ 3.2 months vs. 28.9 months, log-rank P < 0.0001,
Fig. 4A). A GPS score of 1 or greater markedly increased the risk of
inferior survival (HRPFS, 3.00; 95% CI, 1.81–5.00; HROS, 5.85; 95% CI,
3.26–10.52). In the case of PNI and CRP-to-albumin ratio, lower ratios
also associated with poor PFS and OS (Table 2), and we noted a
significant separation of survival curves (Fig. 4B and C). Patients with
a PNI <33.5 exhibited especially adverse treatment outcomes with a
mPFS and mOS of only 1.2 and 2.1 months, respectively (Fig. 4C).

Figure 3.

Sarcopenia negatively influences post CD19.CAR-T survival outcomes. Kaplan–Meier estimates of median PFS (left) and OS (right) stratified by PMI (A) and SMI (B).
The respective cutoff for each parameter and median survival in months is depicted above the graph. The P value of the Mantel–Cox log-rank test is denoted on the
graph inset.
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The combination of increased muscle mass and adipose tissue is
associated with excellent treatment outcomes after CD19.CAR-T

To identify the association between the different body composition
features, as well as established pre–CAR T risk factors, we performed

correlations between variables (Fig. 5A; Supplementary Fig. S5). We
observed a negative correlation between PNI and serum LDH (r ¼
�0.328; P ¼ 0.0007) and CRP (r ¼ �0.432; P < 0.0001) at lympho-
depletion. We also observed a positive correlation between

Figure 4.

Altered immuno-nutritional scores represent a negative prognostic marker of post CD19.CAR-T survival outcomes. Kaplan–Meier estimates of median PFS (left) and
OS (right) stratified by GPS (A), CRP-to-Albumin ratio (CAR; B), and PNI (C). The respective cutoff for each parameter and median survival in months is depicted
above the graph. The P value of the Mantel–Cox log-rank test is denoted on the graph inset.
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Figure 5.

The combination of increased abdominal adipose and muscle tissue is associated with excellent survival outcomes after CD19.CAR-T. A, A heat map displaying
the correlation between body composition parameters, immuno-nutritional scores, and CAR-T risk factors. The Spearman correlation coefficient r is
represented within the respective squares. B, Correlation between TAT and VAT with the amount of skeletal muscle measured by SMI. C, Kaplan–Meier
estimates of median PFS (left) and OS (right) stratified by the combination of TAT and SMI. TAT low-intermediate (l/i) was defined as <464 cm2 and SMI low
was defined as <34.5 cm2. The respective median survival in months is depicted above the graph. The P value of the Mantel–Cox log-rank test is denoted on the
graph inset. D, Forest plots depicting multivariable Cox regression for PFS (left) and OS (right). Adjusted P values accounting for the respective covariates are
displayed on the graph inset. Variables reaching statistical significant (P < 0.05) are highlighted in red (increased HR for poor survival) or green (decreased HR
for poor survival). WBC, white blood cell count; ANC, absolute neutrophil count; ALC, absolute lymphocyte count.
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hematopoietic function (as indicated by WBC and ANC) and
increased levels of muscle mass and adipose tissue. Furthermore, we
found that muscle mass and adipose tissue deposits were positively
correlated (SMI vs. VAT: r ¼ 0.41; P <0.0001, Fig. 5B). To further
delineate the relationship between these body composition parameters
and survival outcomes, we performed a subgroup analysis for PFS and
OS stratified by TAT low-to-intermediate (TATl/i) versus high
(TAThigh) status and SMI risk group (SMIlow vs. SMIhigh; Fig. 5C).
Both PFS and OS were excellent in the TAThigh/SMIhigh patients
(1-year PFS 50%, mPFS 11.8 months; 1-year OS 83%, mOS not-
reached), whereas TATl/i/SMIhigh patients exhibited intermediate
treatment outcomes (1-year PFS 22%, mPFS 3.2 months; 1-year OS
51%, mOS 12.8 months). On the other hand, the combination of low
muscle mass and low abdominal body fat deposits (TATl/i/SMIlow)
represented a particularly adverse risk combination with a 1-year PFS
andOS rate of only 20%and30%, respectively (mPFS 1.9months,mOS
3.0months). Similar effects were noted upon combination of VAT and
SMI (Supplementary Fig. S6). Taken together, these data underline that
the combination of high abdominal fat and muscle mass represents an
auspicious combination for patients undergoingCD19.CAR-T,where-
as low muscle and adipose tissue reserves portend poor treatment
outcomes.

Multivariable analysis
To understand if the body composition features TAT and SMI were

impacted by other established prognostic risk factors, we performed
multivariable Cox proportional hazards modeling for both PFS and
OS. The model was adjusted for the covariates LDH, CRP, and ECOG
performance status, which were associated with poor survival out-
comes in our patient cohort (Table 2), and are of high clinical relevance
in the context of CD19.CAR-T as surrogate markers of inflammation
and tumor burden (6, 7, 9, 10). The sum of target lesions (STL) was
excluded because measurements were not available in ≥100 patients
and a high degree of collinearity was observed with serum LDH (r ¼
0.57;P< 0.001). Notably, TATwas retained as an independent positive
prognosticmarker risk for both PFS andOS in themultivariablemodel
(Fig. 5D; Supplementary Table S4). For example, higher TAT levels
reduced the risk of inferior PFS (adjusted HR, 0.35; 95%CI, 0.13–0.94)
and OS (aHR, 0.27; 95% CI, 0.08–0.90). Conversely, sarcopenia, as
indicated by a low SMI, was not retained as an independent adverse
prognostic marker in the multivariable models (Fig. 5D). When PNI,
comprised of albumin and total lymphocyte count, was introduced
into the multivariable model (Supplementary Table S5), we noted that
higher PNI scores were independently associated with favorable
treatment outcomes (aHRPFS, 0.07; 95% CI, 0.02–0.26; aHROS, 0.05;
95% CI, 0.01–0.20).

Discussion
In this single-center observational study of 106 patients receiving

CD19.CAR-T for R/R B-cell malignancies in a real-world setting, we
report a first-of-its-kind analysis of the prognostic influence of CT-
based body composition in the context of CAR T-cell therapy. We
demonstrate that increased abdominal fat, sarcopenia, and poor
nutritional status impact survival outcomes.

The fact that increased abdominal fat deposits were independently
associatedwith superior PFS/OS suggests that the obesity paradoxmay
extend to patients receiving modern T cell–based immunotherapies.
Our CT-based body composition analyses enable the precise charac-
terization of the prognostic influence of the different adipose tissue

deposits, with our analysis demonstrating a particularly dominant
effect of (visceral) abdominal fat. Importantly, the consideration of
anthropometric features alone likely only paints a partial picture of the
role that adipose tissue plays as a host-dependent factor. Both BMI and
waist circumference were not significantly correlated with clinical
outcomes in our analysis, which is consistent with a previous study
that did not observe a significant prognostic impact of BMI in patients
receiving axicabtagene ciloleucel (22). On the one hand, thismay argue
against the hypothesis that body composition-driven effects on sur-
vival are primarily mediated by pharmacokinetic interactions between
adipose tissue and the dosing of Flu/Cy lymphodepletion or the CAR
T-cells themselves. On the other hand, multiple studies modeling the
pharmacokinetics/-dynamics of fludarabine demonstrated that weight
and renal function (rather than BMI or BSA) represent the best
predictors of fludarabine exposure (47–49). Adipose tissue may also
exert pro-immunogenic anti-lymphoma effects via metaflamma-
tion (50). We have previously demonstrated that VAThigh patients
exhibit both earlier and more severe CRS (25). These clinical observa-
tions were accompanied by markedly increased peak IL6 levels and a
shorter time to peak IL6, findings that are consistent with previous
reports delineating a mechanism of IL6 secretion by adipocytes and
adipose-tissue macrophages (51–53). These findings may also explain
the high sensitivity of (visceral) abdominal fat, which is particularly
relevant for metaflammation processes (54). Future translational
studies will have to elucidate if these effects are driven by systemic
inflammation alone, or if VAThigh patients may also observe more
pronounced CAR T-cell expansion.

Sarcopenia has long been considered to have a deleterious effect on
the antitumor responses of cancer therapies in general (55) and
immunotherapy in particular (56). Interestingly, we observed a dif-
ferential influence of sarcopenia in regards to 90-day response versus
long-term survival outcomes. This may indicate that adipose tissue is
more immunogenic than muscle tissue in the short-term, whereas
sarcopenia rather exerts long-lasting adverse effects. Lowmuscle mass
is associated with poor tolerance of anticancer therapy, increased
treatment-related complications, and prolonged hospitaliza-
tion (57, 58). Furthermore, low muscle mass generally represents a
read-out of inadequate functional reserve (56). Lower overall survival
in SMIlow patients may therefore reflect an inability to receive effica-
cious post-relapse therapy and/or enter clinical trials. Still, a recent
publication demonstrated a negative impact of poor functional status
in the context of CD19.CAR-T as early as day 90, although this study
incorporated weight- and serum-based markers of cachexia as
opposed to CT-based quantification of muscle tissue distribution and
did not perform multivariable analyses (59). In any case, sarcopenia
likely represents a useful marker of general fitness in patients pre-
senting to CAR T-cell therapy.

We further demonstrated that immuno-nutritional scores were
associated with adverse survival outcomes (e.g., GPS, CRP-to-
albumin ratio, PNI). The poor survival outcomes in PNIlow patients
highlight the relevance of both hypoalbuminemia and lymphopenia as
potential risk factors for long-term survival after CD19.CAR-T, which
is also in line with a recently published report by Roy and collea-
gues (59). The PNI represents one of the most broadly studied
parameters for nutritional status in patients with lymphoma and was
shown to have a prognostic role for survival outcomes in a variety of
NHL entities in both the pre- and postrituximab era (60–62). More-
over, prior reports have also outlined roles for the absolute lymphocyte
count (including the unique kinetics after CAR-T transfusion;
refs. 63, 64) and hypoalbuminemia in the context of CD19.CAR-T
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specifically (65), further highlighting the utility of the PNI in
the CAR-T era. Because the PNI incorporates readily available
laboratory parameters and is easy-to-assess, future prognostic
models may integrate the score as a component of multimodal
risk assessment. Of interest, we noted significantly increased muscle
(e.g., PMI, SMI) and adipose tissue deposits (e.g., BMI, TAT, SAT,
VAT) as well as higher PNI values in the patients from the US
cohort (Supplementary Table S6), all of which represented positive
prognostic markers in our analysis. This not only provides context
for the slightly more favorable treatment outcomes in our US
cohort, but also underlines the variety of host factors that may
contribute to survival differences by geographic region (66). Still,
this observation may have been influenced by other baseline factors,
such as prior treatment lines and use of CAR product (Supple-
mentary Table S7).

This study has several relevant limitations. It was retrospective
and limited to a moderate number of patients receiving CD19.CAR-
T for R/R LBCL, raising concerns for potential overfitting. Metabolic
tumor volume (MTV), waist circumference, and epicardial adipose
tissue (EAT) measurements were not available for all the patients in
the cohort. Although the main study results were affirmed across
two separate health care systems with distinct patient populations
(USA and Germany), the results of the present study need to be
prospectively validated in larger patient cohorts across multiple
health care systems and institutions. A prerequisite will be stan-
dardization and harmonization of the assessment of adipose and
muscle tissue distributions across different centers considering the
specialized software that was employed in this study. Still, these
proof-of-concept findings are hypothesis-generating and warrant
further systematic analysis. If confirmed prospectively, we see
several useful clinical applications. First, our results highlight the
importance of measures to prevent sarcopenia and malnutrition,
which can include physical therapy and dietary consultation while
patients are admitted to the hospital, as well as specialized reha-
bilitation measures after discharge. This may also represent an
added benefit of outpatient CAR T-cell therapy, which could
prevent long phases of immobilization while in the hospital (67).
At the same time, the short time intervals between T-cell apheresis
and CAR-T treatment, which often incorporate phases of intensive
bridging therapy due to the nature of aggressive lymphoma, may
impede the ability of “prehab” (i.e., pretreatment rehab) to facil-
itate large improvements in functional capacity. Concomitantly,
such interventions need to be considered as early as possible
during the natural course of disease, ideally at time of initial
diagnosis. Second, future interventional studies may compare the
impact of physical exercise and diet on patient-reported outcomes.
The role of diet in particular remains poorly understood and may
impact the composition of the gut microbiome, with recent
evidence pointing towards the multifunctional and immunomod-
ulatory role of the microbiome in the context of CAR-T (12).
Finally, future radiology reports of patients presenting to CD19.
CAR-T may not only read out measures of the underlying lym-
phoma (e.g., MTV, SUVmax), but also host-dependent factors as
outlined in this study.

In conclusion, these data provide evidence for an adverse prognostic
role of sarcopenia and malnutrition in the context of CD19.CAR-T,
while increased visceral fat deposits were associated with superior
survival outcomes. Our findings highlight the critical role of the host in
determining treatment response, and invite future translational
research studying the underlying mechanisms of the immunometa-
bolic impact of body composition.
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