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Abstract

Recent advances in spatial transcriptomics (ST) enable gene expression measurements from 

a tissue sample while retaining its spatial context. This technology enables unprecedented 

in situ resolution of the regulatory pathways that underlie the heterogeneity in the tumor 

and its microenvironment (TME). The direct characterization of cellular co-localization with 

spatial technologies facilities quantification of the molecular changes resulting from direct 

cell-cell interaction, as occurs in tumor-immune interactions. We present SpaceMarkers, a 

bioinformatics algorithm to infer molecular changes from cell-cell interaction from latent space 

analysis of ST data. We apply this approach to infer molecular changes from tumor-immune 

interactions in Visium spatial transcriptomics data of metastasis, invasive and precursor lesions, 

and immunotherapy treatment. Further transfer learning in matched scRNA-seq data enabled 

further quantification of the specific cell types in which SpaceMarkers are enriched. Altogether, 

SpaceMarkers can identify the location and context-specific molecular interactions within the 

TME from ST data.

A record of this paper’s Transparent Peer Review process is included in the Supplemental 

Information.

eTOC blurb

Deshpande and Loth et al. present SpaceMarkers as an algorithm to identify molecular changes 

resulting from cell-cell interactions using latent space analysis of spatial transcriptomics. 

SpaceMarkers uses spatial co-localization of latent features as direct evidence of cellular 

interactions and applies the method to analyze tumor-immune interactions across tumor types.

Graphical Abstract
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1. Introduction

The tumor microenvironment (TME) is the tissue region created and controlled by a tumor 

in its surroundings and plays a key role in tumorigenesis and therapeutic response in 

cancer36,8,21,44. The TME contains tumor cells, stroma, blood vessels, and immune cells 

as well as cells from the resident tissue44. A thorough understanding of the molecular 

profile of individual cells and the impact of inter-cellular interactions in the TME is crucial 

for distinguishing the determinants of tumor progression10,15,43 and precision medicine 

strategies21,6,25,33,39.

Advances in single-cell technologies have led to the development of spatially resolved 

transcriptomics (ST) which captures the transcriptome in situ34 and thus allows us to study 

the spatial relationship between the various cell populations within the TME as well as 

their relationship with the tumor cells. For example, the 10X Visium spatial transcriptomic 

technology allows us to resolve tissue heterogeneity at near single-cell resolution (from one 

to tens of cells per spot). The technique has been applied to characterize the cellular and 

molecular composition of tumors45,20,1. Robust analysis pipelines for cell-based analysis 

and cellular deconvolution have been proposed to model the cellular composition of 
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spatial-transcriptomics data5,29,46,19,13 and cellular phenotypes within each spot28. While 

spot deconvolution methods can infer linear combinations of molecular markers that are 

reflective of cellular co-localization, new computational methods are needed to characterize 

the molecular changes resulting from cell-cell interaction at a genome-wide scale.

Many analysis pipelines for Visium ST rely on latent space methods for cellular 

deconvolution to overcome the mixture of cells at each spot. In this paper, we present 

the SpaceMarkers algorithm which leverages spatially interacting latent features to infer 

molecular changes resulting from interactions between cell types or biological processes 

represented by the features. SpaceMarkers uses a kernel-based smoothing approach to model 

the influence of a highly-expressed feature in a spot extending to its neighboring spots as 

well. Using latent features inferred from CoGAPS14, we demonstrate the broad utility of 

SpaceMarkers to inferring molecular changes resulting from cell-cell interactions in Visium 

samples from invasion to lymph node, pancreatic premalignant lesions, breast primary 

tumor, and immunotherapy treated cancer. We selected CoGAPS, a Bayesian non-negative 

matrix factorization approach, based on its robustness for single-cell RNA-seq data9,41. 

We also show the compatibility of SpaceMarkers with other latent space methods, using 

STdeconvolve29 as an example. Further extension of this approach to integrate Visium data 

with single-cell data through transfer learning also enables identification of the precise 

cell subtypes in which the molecular changes from cell-cell interactions are introduced. 

Altogether, our extension to latent space analysis enables us to simultaneously infer cellular 

architecture and model molecular changes resulting from spatially interacting biological 

processes.

2. Results

2.1. Interactions between overlapping latent features delineate inter-cellular interactions 
in ST data

Here we present SpaceMarkers, a bioinformatics algorithm for identifying genes associated 

with cell-cell interactions in ST data. SpaceMarkers is an extension of latent space analysis 

that leverages spatially overlapping latent features associated with distinct cellular signatures 

to infer the genes associated with their interaction (Figure 1). Fundamentally, this inference 

relies on estimation of spatially resolved latent features representative of cellular signatures 

in the ST data. That is, the latent feature information is characterized by continuous weights 

corresponding to each spatial coordinate in the ST data. We denote these continuous weights 

as the patterns in the ST data. The inputs to the SpaceMarkers algorithm are the ST 

data matrix and spatially resolved patterns learned through latent space analysis, and the 

output is a list of genes associated with the interaction between each pair of spatially 

overlapping patterns. The first stage of the algorithm involves the identification of each 

pattern’s region of influence and subsequently the region of pattern interaction (Figure 1A.; 

see also Methods). If a pattern has a nonzero value at a point, we hypothesize that its 

influence extends to its neighboring region but rapidly decreases with increasing distance. 

We model this by spatially smoothing the patterns using a Gaussian-kernel based approach 

(see Methods). Subsequently, we identify outlier values of smoothed patterns by testing 

it against a null-distribution obtained by identical smoothing of spatially permuted pattern 
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values. We denote the region corresponding to these outlier values as the region of influence 

of the pattern. Furthermore, two patterns are deemed to be interacting in the region with 

overlapping influence from both patterns. We hypothesize that genes associated with the 

spatially overlapping influence from two patterns represent changes in molecular pathways 

due to the interaction between the biological features of the associated cells. Therefore, 

we devise the second stage of the SpaceMarkers algorithm to rank genes exhibiting higher 

activity levels in the interaction region relative to regions with exclusive influence from each 

pattern (Figure 1B.; see also Methods). To this end, we perform a non-parametric statistical 

test followed by posthoc analysis to identify these genes which constitute the SpaceMarkers 

output.

In the examples demonstrated here, the spatial data is obtained using the spot-based 10x 

Visium spatial transcriptomics technology34 with 1–10 cells per spot. SpaceMarkers is 

readily applicable to spot-based ST data with regions of influence and interaction defined 

as sets of spots in which one or two patterns respectively have influence as identified 

by the Gaussian-kernel based approach. We use CoGAPS Bayesian nonnegative matrix 

factorization14,40 for identifying the latent features associated with cellular signatures. When 

two patterns have overlapping influence in the same region of the tissue, we assume an 

interaction between these patterns in this interaction region. We provide a differential 

expression (DE) mode for SpaceMarkers to quantify genes with enhanced expression in 

a region with overlapping influence from two patterns when compared to regions with 

exclusive influence from individual patterns. This DE mode allows for broad applicability 

across latent space methods, which we demonstrate by applications using CoGAPS and 

STDeconvolve29. Further we extend this approach to provide a “residual” mode — which 

identifies genes that have significantly higher residual error between the original ST data 

and its estimated fit from the CoGAPS model in the region with overlapping influence 

from two patterns when compared to the regions with exclusive influence from each 

pattern. We hypothesize that the residual mode detects the nonlinear effects of intercellular 

interaction more precisely by accounting for the underlying linear latent features to mitigate 

confounding effects from variations in the cell population density and cell types with 

common markers. Thus, the SpaceMarkers algorithm infers both simple molecular changes 

in the “DE” mode as well as more precise nonlinear molecular changes in the “residual” 

mode in regions with overlapping influence from patterns associated with different cell 

signatures. We denote such patterns with concurrent influence in a region as “spatially 

interacting” patterns. The reliance on latent space patterns from CoGAPS enables the 

further ability to integrate SpaceMarkers learned from ST data in corresponding single-cell 

data using transfer learning from projectR37,41 to refine the specific cells in which these 

molecular changes occur. While the examples in this paper use latent space patterns in ST 

data from CoGAPS or STdeconvolve to define cellular signatures, it is generally applicable 

to the output of any of a number of latent feature factorization approaches available in the 

literature.
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2.2. SpaceMarkers identifies molecular changes from tumor immune interactions 
associated with metastatic pancreatic cancer cells invading the lymph node

In the first example, we applied SpaceMarkers on Visium ST data from a pancreatic cancer 

metastasis to the lymph node in a patient who received neoadjuvant GVAX vaccination 

(see Figure 2). More specifically, this sample is characterized by the presence of metastatic 

PDAC, immune cell aggregates, and germinal centers of B-cell maturation (Figure 2A.). 

Analysis of the H&E imaging from the lymph node region used to generate the ST data 

identifies a region of the tissue in which the metastatic PDAC intersects the immune cells 

surrounding the germinal center. On factorizing this data using CoGAPS we obtain ten latent 

patterns based only on the expression data (Supplemental Figure S1, Methods). By matching 

pattern activity levels learned from the data with the independent histological annotations, 

we observe that CoGAPS can distinguish metastatic PDAC in Pattern 6 from immune cells 

in the surrounding lymph node tissue in Pattern 9 (Figure 2B.).

We further analyzed the spatial activity of the metastatic PDAC (Pattern 6) and immune 

(Pattern 9) patterns to identify regions of overlapping influence to associate with metastasis-

immune interaction. We represent the spatial variation in the activity levels of Pattern 6 and 

Pattern 9 in relation to all the other patterns in each spot (Figure 2B.). This proportional 

analysis of patterns enables us to observe a spatial overlap between the regions where 

Pattern 6 and Pattern 9 are active. However, we hypothesize that a pattern has influence in a 

spot even with zero pattern activity but high pattern activity levels in the neighboring spots. 

SpaceMarkers first identifies the region with spatially overlapping influence from these two 

patterns as their interaction region. Next, the SpaceMarkers algorithm identifies the gene 

expression changes that occur from metastasis-immune interaction in this interaction region 

(Data S1, Table S2). Due to the limited number of spots where the two patterns have 

overlapping influence, we define SpaceMarkers based upon differential expression. This 

analysis identifies 1442 genes which exhibit higher average expression in the interaction 

region with overlapping influence from the two patterns compared to spots where only 

metastatic PDAC in Pattern 6 or immune cells in Pattern 9 have exclusive influence (see 

Methods for details of the statistical test, Table S2 for complete gene list with the associated 

statistics). The SpaceMarkers optParams values are tabulated in Supplemental Table S1.

Supplemental Figure S1 shows the expression heatmap of the SpaceMarkers genes in 

spots belonging to regions with exclusive influence from the metastatic PDAC Pattern 6, 

exclusive influence from the immune cell Pattern 9, and overlapping influence from both 

patterns in metastasis-immune interaction. In all cases, the interactions are associated with 

changes in extracellular matrix genes, including notably genes associated with cytoskeleton 

regulation (TMSB10, TMSB4X, CFL1, MARCKSL1 ), the myosin pathway (MYL6, 
MYH9, MYL12B), actin regulation (ACTB, ACTN4, CAPG, LCP1, SPTBN1 ), the matrix 

metallopeptidase family (MMP9, MMP12 ), galectin genes (LGALS1, LGALS4, LGALS9, 
LGALS3BP), collagen (COL1A2, COL3A1, COL4A1, COL4A2, COL18A1, COL6A2 ), 

and cell adhesion (MSLN, ITGB4, ITGB6, ADRM1 ). The SpaceMarkers include genes 

reflecting cell death in the increased expression of ribosomal protein genes associated with 

immune response through expression of HLA family genes, immunogoblulins, interleukins, 

cytokines, chemokines, the interferon pathway IFITM2, and immune function. This immune 
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response is counterbalanced by changes to pathways associated with enhanced invasion in 

cancer cells, including JUNB, JUND, VIM.

To further elucidate the molecular pathways associated with the metastasis-immune 

interaction in the lymph node, we performed gene set overrepresentation analysis (Figure 

2D., Table S2) from the Hallmark, KEGG, and Biocarta molecular pathways using 

the Molecular Signatures Database (MSigDB)27,42,26. As seen in Figure 2D., Hallmark 

pathways related to allograft rejection, interferon gamma, and interferon alpha are all 

overrepresented in the pathway analysis for the SpaceMarkers genes, and hence in the region 

of overlap between the immune and metastatic PDAC patterns. This confirms activation 

of the immune response for tumor rejection at the interface between the metastatic PDAC 

and the immune cells in the lymph node observed at the gene level. Likewise, we observe 

overrepresentation in the epithelial to mesenchymal signaling and pathways consistent with 

the invasive process in the metastatic PDAC cells, further supported by the enrichment of 

the apical junction consistent with the changes to the extracellular matrix suggested by the 

gene-level SpaceMarkers analysis.

The DE mode of SpaceMarkers is applicable when the available latent features provide only 

a partial reconstruction of the original ST data matrix. However, the differential expression 

of a marker in the interaction region could occur because of cell-cell interactions or due to 

confounders such as variable cell populations in each spot and different co-localized cell 

types having common markers. In the examples to follow, we mitigate these confounding 

effects by using the residual error between the raw expression and its reconstruction from 

the CoGAPS patterns, which capture the effect of both variations in cell population density 

as well as variations in individual marker expression.

2.3. Confounding factors from unrelated cell populations can be mitigated by using 
SpaceMarkers in residuals mode

Using SpaceMarkers in the DE mode identifies genes that are enriched relative to two 

patterns, but the output is susceptible to confounding factors from cell types independent 

of the two patterns of interest. For example, if the interaction region between two patterns 

contains an independent cell type that is not significantly present in regions of exclusive 

influence of either pattern, we hypothesize that the cell-type-specific genes for the additional 

cell type will appear as space markers. To test this hypothesis, we applied SpaceMarkers to a 

sample of pancreatic intraepithelial neoplasia (PanIN)3, a premalignant lesion associated 

with PDAC (Figure 3). As described in our previous study of this sample, the H&E 

imaging provided with the Visium FFPE technology used to profile this sample enabled 

us to determine cell types within the slide at a single-cell resolution using CODA22, a 

deep learning classifier that annotates tissue regions based on their morphological features 

(Figure 3A.). This ground truth of cellular features also enables us to benchmark the 

latent space estimates of cellular features from CoGAPS. In this sample, we learned 10 

transcriptional patterns from the PanIN using CoGAPS. Pattern 9 captures the PanIN on 

the tissue, and Pattern 6 captures a majority of stromal cells (Figure 3B.). The PanIN is 

surrounded by two large acini, which express high quantities of pancreatic enzymes that are 

not expressed elsewhere on the slide (Figure 3D.). The interaction region between Patterns 
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6 and 9 captures much of these acini. The SpaceMarkers analyses of these patterns in the 

DE mode results in several of the well-characterized pancreatic enzymes (Data S1) produced 

exclusively by acinar cells35. Pathway analysis reveals that pancreatic acinar cell gene set is 

the most over-represented gene set (Figure 3E., Supplementary Table S3).

In the residuals mode, SpaceMarkers accounts for the gene signatures captured by CoGAPS 

patterns. Because Pattern 5 represents the acinar cells in our data set (Supplemental Figure 

S2), we hypothesize that the residuals mode attenuates the confounding factor due to the 

acinar cells (Data S1). Unlike the DE mode, the top pathway for residuals mode is no 

longer a pancreatic acinar cell pathway (Figure 3F., Supplementary Table S3). Residuals 

mode boosts the signal from pathways that are highly over-represented in the differential 

expression mode, while maintaining the significance of the acinar gene sets. Collectively, 

these results show that genes captured by differential expression mode can represent 

additional cell types that are not present in either patterns of interest. Additionally, if 

these cell type signatures are unique and strong enough to be captured as an independent 

transcriptional pattern, residuals mode is capable of attenuating the signal from this 

additional cell type relative to other expression changes present in the interaction region. 

The SpaceMarkers optParams values are tabulated in Supplemental Table S1.

2.4. SpaceMarkers identifies markers of tumor-immune interactions in invasive breast 
ductal carcinoma through residual space analysis

While providing a means to detect molecular changes from cellular interactions in 

limited interaction regions, using differential expression statistics for SpaceMarkers could 

confound nonlinear effects from cell-cell interactions with expression changes resulting 

from increased density of co-localized cell types with shared gene markers. In cases where 

the interaction region extends across a greater number of spots, these confounding effects 

can be mitigated by using the residual error between the raw expression and its estimated 

fit from the CoGAPS model for the SpaceMarkers. This estimated fit will capture the effect 

of both variations in cell population density as well as variations in individual marker 

expression to refine the estimates of the nonlinear effects from cell-cell interactions. We 

apply this approach to identify the molecular pathways associated with tumor cell and 

immune interactions in ST data from a breast cancer sample that contains multiple ductal 

carcinoma in situ (DCIS) lesions, an invasive carcinoma lesion, immune cells, and stroma 

(Figure 4A.).

The visualization in Figure 4B. shows widespread spatial regions of interactions between 

immune and tumor cells at the boundaries of both the invasive carcinoma and the DCIS 

lesions, as well as some isolated spots of immune activity in the interior of the invasive 

tumor. However, the immune activity in these spots is not significantly over the threshold 

to be create substantial immune influence in the neighborhood. Thus, the immune-invasive 

cancer interaction is largely contained near the boundary of the the tumor. Whereas the 

pancreatic cancer sample in Figure 2 covered a smaller area with fewer spots (< 300) 

having tumor and immune influence respectively, we identify much larger regions (> 1000 

spots) of influence from the immune, invasive carcinoma and DCIS cells (Figure 4B.). This 

larger number of spots enables us to estimate SpaceMarkers from CoGAPS residuals to 
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distinguish the molecular changes in the invasive carcinoma from the DCIS lesions. Similar 

to our analysis of the metastatic pancreatic cancer data, we obtain latent features of the 

ST data from this breast sample using CoGAPS factorization. These latent features reveal 

histological annotations of invasive carcinoma, DCIS lesions, immune, and stromal regions 

estimated from the H&E stain (Figure 4A.).

Computing SpaceMarkers based upon the CoGAPS residuals identifies 461 genes associated 

with interaction between the immune and invasive carcinoma patterns and 413 markers of 

immune and DCIS pattern interaction (Data S1), compared to up to 3736 immune-invasive 

carcinoma and 3036 immune-DCIS genes identified from applying a similar analysis based 

upon differential expression for the same FDR value (Data S1). This reduction in the number 

of markers through the analysis of CoGAPS residuals relative to inference of SpaceMarkers 

through differential expression analysis is consistent with the isolation of specific nonlinear 

changes resulting from interactions between the cellular processes measured in the CoGAPS 

patterns using this mode. We note that 85 of the SpaceMarkers were associated with immune 

cell interactions in both the invasive carcinoma and DCIS regions. The SpaceMarkers 

optParams values are tabulated in Supplemental Table S1. To further determine the 

molecular pathways activated through immune and tumor cell interactions in both regions, 

we performed gene set overrepresentation analysis from the Hallmark, Kegg, and Biocarta 

molecular pathways using the Molecular Signatures Database (MSigDB), with a selection of 

the pathways presented in Figure 4C. (see Table S4 for the complete list of pathways). 

We find that while certain pathways were enriched in both interactions (e.g., antigen 

processing and presentation, p53 pathway, Tnf-alpha signaling, mTorc1 signaling, epithelial 

to mesenchymal transition, Interferon Gamma response, hypoxia, and estrogen response 

early/late), others were enriched exclusively in Immune-DCIS (DNA repair) and Immune-

Invasive (WNT signaling, MapK signaling, and TGF beta signaling) respectively. Note that 

a pathway enriched in both Immune-DCIS and Immune-Invasive Carcinoma interactions 

may have distinct gene subsets associated with each interaction. For example, it is readily 

evident that the Hallmark interferon gamma response gene set has a greater overlap with 

the SpaceMarkers of the Immune-DCIS interaction compared to the Immune-Invasive 

interaction.

2.5. Using SpaceMarkers with high-resolution CoGAPS reveals greater heterogeneity in 
intercellular interactions within the TME

In all cases presented, the SpaceMarkers inferred fundamentally depend on the resolution 

of the cellular processes inferred in the CoGAPS latent space analysis. Indeed, nonlinear 

interactions in interacting regions at a low resolution analysis may be further refined 

by increasing the dimensionality of the factorization on the ST data consistent with 

recent advances to multi-resolution matrix factorization30. We further performed a higher 

resolution CoGAPS analysis of the breast cancer data to test if the interaction region 

between two patterns and the associated SpaceMarkers genes are identified by increasing 

the dimensionality of the latent space analysis. In this higher dimensional analysis, CoGAPS 

identifies 16 distinct patterns associated with the diverse biological processes in the TME. 

The activity levels of a selection of the patterns overlaid on an H&E stained slide of the 

sample are shown in Figure 5A. (also see Supplemental Figure S3). Although the higher 
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number of patterns reveal greater heterogeneity of the biological processes in the sample 

by further resolving patterns identified in the low resolution analysis, it does not identify 

patterns specific to the interactions identified between the lower dimension patterns.

Although we do not associate each Visium spot with solely one pattern, studying the most 

dominant pattern in spots informs us of the dominant biological process at that location in 

the tissue as inferred by CoGAPS. Consequently, the same spots are associated with broader 

biological processes at the lower resolution and with more specific processes at a higher 

resolution. The alluvial plot in Figure 5B. shows the relationship between the most dominant 

low resolution and high resolution patterns at each spot.

For example, the single DCIS-related pattern in Figure 4A. resolves into multiple DCIS 

patterns, some of which are associated with individual DCIS lesions. Even within the single 

invasive carcinoma lesion, the low resolution invasive carcinoma pattern resolves into two 

distinct patterns, one of which is isolated to the interior of the invasive carcinoma and one 

which spans to the tumor-immune boundary. While the DCIS lesions and invasive carcinoma 

have universally high ERBB2 and ESR1 expression, evaluating the genes associated with the 

distinct patterns identifies heterogeneity in growth factor signaling pathways with enhanced 

IGFBP3 expression in the DCIS.5 pattern, FGFR4 expression in the DCIS.6 pattern, and 

FGFR1 expression in the Invasive.2 carcinoma pattern (Supplemental Figure S3, Table 

S5) We also see spots previously associated with the immune pattern or with dispersed 

patterns at the low resolution now being associated with a dominant pattern which can be 

associated with the stromal region. To further compare the enhanced resolution intra-tumor 

heterogeneity to tumor-immune interactions in the high resolution factorization, Figure 

5C. shows relative pattern weights and overlap between the immune pattern and the two 

invasive patterns. It is clear that only one of the invasive patterns overlaps with the immune 

pattern, thus contributing to the tumor-immune interaction. Still, both of these interacting 

patterns contain a substantial numbers of spots that are isolated to the immune and invasive 

carcinoma region, respectively, suggesting that increasing the resolution of the factorization 

does not compensate for the estimation of nonlinear effects through the interaction statistic. 

Similarly, Figure 5D. shows relative pattern weights and overlap between the immune 

pattern and the three DCIS patterns. It logically follows that the overlapping regions of 

the distinct DCIS patterns are also distinct, and hence correspond to different molecular 

alterations from DCIS-immune interactions that will impact subsequent outgrowth of these 

distinct lesions.

For these interactions involving the immune pattern, we identify SpaceMarkers genes 

associated with the inter-pattern interactions as the genes having higher CoGAPS residuals 

in the interaction region compared to regions with exclusive influence from the individual 

patterns (Data S1). The SpaceMarkers optParams values are tabulated in Supplemental Table 

S1. Upon identification of statistically significant (FDR < 0.05) signaling pathways (see 

Supplementary Table S4) pertaining to interaction of the immune pattern with invasive 

carcinoma and DCIS patterns in the high-dimensional CoGAPS results and comparing 

them to those found in 5 dimensions, we find pathways common to all interactions and 

unique to specific pattern interactions. For example, we find 59 signaling pathways enriched 

due to immune-invasive carcinoma interaction in 5 dimensions as well as 16 dimensions. 
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These include but are not limited to pathways related to epithelial-mesenchymal transition, 

apoptosis, antigen processing and presentation, hypoxia, p53 signaling, interferon alpha and 

gamma responses, and lastly targets of the oncogene MYC. However, the higher resolution 

analysis also reveals unique pathways relevant to specific immune-invasive carcinoma 

pattern interactions. We found pathways related to the cancer-immune interactions including 

those related to IL-5 and IL6 signaling, KRAS signaling, Toll-like receptor signaling and 

the CDC25 pathway exclusively when the dominant invasive carcinoma pattern (Invasive.3) 

interacts with the immune cells. Similarly, the distinct Immune-DCIS interactions reveal 

a heterogeneity in the enriched pathways which were not evident with a single DCIS 

pattern using low-resolution CoGAPS. Among the immune interactions with different DCIS 

lesions, the MapK signaling, Tnf alpha signaling, and hypoxia pathways, known to be 

mechanisms of resistance to endocrine and immunotherapies, are enriched exclusively in 

the Immune-DCIS.4 interaction, antigen processing, allograft rejection and autoimmunity 

related pathways are enriched exclusively in Immune-DCIS.5, and EMT pathway, and 

estrogen response early/late are exclusively enriched in the Immune DCIS.6 interaction. 

These pathways are consistent with the heterogeneity of subsequent outgrowth of these 

DCIS lesions, with successful activation of pathways associated with immune attack in 

DCIS.5 relative to the invasive processes observed in both DCIS.4 and DCIS.6.

Finally, in addition to the SpaceMarkers analysis of interacting CoGAPS patterns, we also 

performed cell deconvolution using STdeconvolve29 to identify cell populations abundant 

in the invasive carcinoma and DCIS lesions respectively as well as the immune cells 

(Supplemental Figure S4). We used SpaceMarkers to identify the markers of interaction 

between immune cells and the cell populations found to be spatially interacting with them 

(Data S1). The SpaceMarkers optParams values are tabulated in Supplemental Table S1.

2.6. Integrated ST and single-cell RNA-seq analysis identifies cell type specific molecular 
changes from immunotherapy treatment in hepatocellular carcinoma

In the examples so far, the SpaceMarkers statistic revealed molecular changes associated 

with intercellular interactions. Since SpaceMarkers relies on spot-based colocalization, 

it limits the ability to identify the cell subtypes in which these molecular changes 

were induced. Transfer learning allows us project new data into learned latent spaces, 

subsequently associating samples from the new data with known biology. We first factorize 

the ST data collected from a resected hepatocellular carcinoma (HCC) tumor after 

administration of a neoadjuvant cabozantinib and nivolumab therapy to obtain 9 CoGAPS 

patterns. Figure 6A. shows the individual tumor and immune associated patterns overlaid 

on an H&E stained image of the HCC tumor sample. As in the other examples, these 

tumor and immune patterns are spatially overlapping (Figure 6B.), and are deemed to be 

interacting in regions where they have overlapping influence. This analysis identifies two 

distinct tumor cell patterns, one of which spans all malignant regions in the sample (Pattern 

2) and the other isolated to a specific region (Pattern 1) that has less co-localization of 

the immune cells (Pattern 8). The interaction between the immune cells and each of the 

tumor patterns learned through SpaceMarkers identifies enhanced expression of hepatocyte 

markers (KRT18, SERPIN family genes, APOC2, CD24), immune markers (CD63, HLA 
genes), and cell death markers (TNF pathway associated genes, ribosomal genes, ANXA2) 
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consistent with killing of tumor cells through immune cells in the interaction between 

Patterns 2 and 8 (Data S1). In contrast, SpaceMarkers genes of the interaction between 

Patterns 1 and 8 identify fibroblast markers (Collagen coding genes, MYL9, TAGLN) 

consistent with a lack of successful immune attack and infiltration in this portion of the 

tumor. The SpaceMarkers optParams values are tabulated in Supplemental Table S1.

While the SpaceMarkers analysis of ST data suggests molecular changes associated with 

cell-cell interactions, this analysis alone does not pinpoint the precise cells in which 

these molecular changes occur. By transfer learning37,41 of these latent features into 

matched single-cell RNA-seq data from the same tumor, we can associate individual cells 

with specific patterns corresponding to tumor and immune signatures (Figure 6C.). This 

association can both identify whether a SpaceMarkers gene’s expression changes in tumor or 

immune cells, and also whether we can also predict the precise subpopulations of tumor and 

immune cells involved in intercellular interactions by observing the gene expression changes 

of the relevant SpaceMarkers in individual cells. From Figure 6D., we observe that changes 

in the expression of genes SERPINC1, APOC2 and ADH1B, are induced in a subset of the 

cancer cells attributed to Pattern 2, whereas expression changes in gene PFN1 and CD14 
are induced in a subset of the immune cells. A further subset of both Pattern 2 tumor 

cells and immune cells co-express HSP90AA1 and ribosomal genes. Based on these gene 

expression patterns of the respective SpaceMarkers, we hypothesize that these individual 

cells are sourced from the tumor-immune boundary. Note that although the analysis in this 

section demonstrated the interaction between the dominant patterns (1,2,8), some of the less 

dominant patterns could represent rare cell types or minor biological processes which are 

essential to the tumor progression and immune response. Accordingly, users should include 

such patterns for SpaceMarkers analysis in their workflow if needed.

3. Discussion

We demonstrate how co-localization of multiple cellular processes in spatial transcriptomics 

data can be leveraged as an asset to infer molecular changes resulting from cell-cell 

interactions. Specifically, this inference is enabled through SpaceMarkers, an algorithm 

for identifying genes associated with pairs of spatially interacting latent features which 

represent distinct cellular processes. We accomplish this by first identifying a region of 

influence for each latent feature in the vicinity of spots with high feature activity. Two 

features are deemed to be interacting in spots where they have concurrent influence. 

The SpaceMarkers algorithm can estimate molecular changes from spatially interacting 

cellular processes in two ways — a default residual mode and a differential expression 

(DE) mode. We demonstrate that the DE mode is able to identify genes with significantly 

higher expression in the region where two latent features overlap. However, the DE mode 

is subject to confounding factors such as variable cell populations and marker association 

with multiple cell types. We mitigate these confounding effects in the residual mode, where 

we identify genes with significantly higher residual error between the original data and its 

reconstruction in the region of overlap between two latent features. However, this statistic 

requires a greater number of spots for robust analysis than the DE method. While we found 

that this requirement limited the application of the residual model in the case with the 

smaller lymph node sample with PDAC metastasis, it was generally applicable to the other 
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tumor-immune interactions in our sample cohort. While the examples used in this paper 

use spot-based technologies, we note that SpaceMarkers is readily applicable to alternative 

imaging-based ST technologies that achieve single-cell resolutions. Consequently, increased 

spatial resolution of the ST characterization or multi-omics methods for inferring cellular 

boundaries4,32 will enable broader application of SpaceMarkers for cell-cell interactions.

We validated the SpaceMarkers output against independent tissue classification 

algorithm22,3 and note that if a cell type is entirely occurring within the interaction region, 

its marker genes will be inferred as a marker of spatial interaction through SpaceMarkers 

(Figure 3). While not a direct molecular change in the input cell states, this co-localization 

of the cell type exclusively in the interaction region may be a biological effect induced 

through the TME state induced by the inter-cellular interactions. We also note that this 

effect is mitigated to an extent, but not completely removed in the residual mode if some 

of the learned patterns are associated with that cell type. Ultimately, we leave it to the user 

to determine which inferences from SpaceMarkers merit further investigation. Future work 

can also include follow-up experimental studies using in-vitro 2D/3D cocultures or in-vivo 
depletion studies of cell types found in the interaction region to validate the SpaceMarkers 

output.

Although SpaceMarkers is not optimized for specific cancer types, we notice that the 

analysis pipeline performs better when inferring cell-cell interactions for the larger volume 

of cancer cells in breast and liver tumors (Figures 4, 5, and 6) as compared to smaller 

density of tumor cells surrounding the duct in the pancreatic samples (Figure 2 and Figure 

3). We hypothesize that this difference in performance could be due to a combination of 

factors including the fact that spot-based Visium technology does not capture the minute 

details of diffuse tumors and their microenvironment, smaller samples resulting in fewer 

spots for SpaceMarkers analysis. Future work will focus on the application and optimization 

of SpaceMarkers to spatial data with single-cell or subcellular-level resolution and to extend 

its performance for cancers with different types of tumor structures.

Due to our focus on tumor-immune cell interactions in our biological analyses, the current 

version of the SpaceMarkers algorithm admits only two overlapping latent features as input. 

However, this approach is generally applicable to cell-cell inference from ST data across 

biological contexts and to features associated with any cell subtype or cellular feature 

defined through the latent space analysis. For example, this approach also enables analysis 

of the molecular changes from cell-cell interactions between immune and stromal cells in 

the breast cancer tissue (Supplemental Figure S3, Data S1) and between additional cell types 

in the PanIN sample (Figure 3). In many cases, multiple latent features are co-localized 

at the same spot. This could result in the same genes being associated with multiple 

interaction types, although we did not observe such effects in our case studies. Furthermore, 

many critical intercellular interactions such as cancer-associated fibroblast (CAF)-driven 

immunosuppression31 result from possible colocalization of multiple cell phenotypes. To 

address this, future work should extend the application of SpaceMarkers to identify genes 

associated with multiple overlapping latent features.
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We note that our inference of interactions between cellular processes is performed directly 

from latent space analyses of the ST data, without the need for additional reference 

datasets for single-cell resolution5 or direct estimates of cellular deconvolution46. While our 

approach is generally applicable to linear latent space estimation methods, the results of our 

algorithm fundamentally depend on the latent space method selected for analysis of the ST 

data. We demonstrate the application of SpaceMarkers to 10x Visium ST data from different 

cancers and we identify markers associated with the interaction between latent features 

associated with different biological processes. In all cases, we observe that the Bayesian 

matrix factorization method CoGAPS41,14,38 can learn latent features that distinguish 

regions with tumor and immune cells directly from the ST data without reliance on prior 

knowledge of marker genes, histology annotations, or spatial coordinates. Because CoGAPS 

uses high-dimensional features to define cellular phenotypes, it can go beyond the discrete 

cell types learned from H&E through pathology, and enables deconvolution of spots into 

a more nuanced mix of biological patterns (Figure 4B.). Moreover, pathology annotations 

from H&E imaging can be limited on flash-frozen OCT samples (Figure 4), as they do 

not preserve cellular morphology7. In the case of formalin-fixed paraffin-embedded (FFPE) 

samples, automated machine-learning based pathology annotations can be used for cell-type 

identification3. Creating higher resolution CoGAPS analysis by increasing the number of 

latent features inferred from the ST data is able to further resolve the biological signatures, 

revealing the tissue heterogeneity. These higher dimensional patterns are independent of 

the interaction regions between the latent features inferred with SpaceMarkers at a lower 

dimension. This observation suggests that our approach indeed isolates effects due to inter-

cellular interactions rather than unresolved latent features associated with specific cellular 

processes.

To demonstrate the compatibility of SpaceMarkers with other latent space methods, we 

have provided an example of its application in DE mode to the output of STdeconvolve 

(Supplemental Figure S4). Future work could extend the SpaceMarkers algorithm to 

additional latent space methods emerging for ST data and include nonlinear regression 

with terms involving combinations of patterns to supplement the available SpaceMarkers 

modes. Still, we note that the current modes for SpaceMarkers can readily be applied to 

nonlinear latent space methods, provided that the low-dimensional features they infer can be 

associated with a set of weights for each cell as through linearization.

The use of SpaceMarkers on the spot-based 10x Visium technology limits direct inference of 

the specific cell subtypes in which interactions induce molecular alterations. We demonstrate 

that transfer learning37,41 of the latent features inferred from CoGAPS analysis of the 

ST data into matched single-cell RNA-seq data enables us to define the precise cellular 

subpopulations with gene expression changes in each SpaceMarkers gene. Other approaches 

mitigate the need for paired data by coordinated expression changes between annotated 

pairs of ligands and receptors in both spatial and non-spatial single-cell data. While these 

approaches directly model the signaling process, they rely on the correspondence between 

gene expression and protein function and databases of ligand-receptor pairs12. Coupling 

spatial data with newer single-cell technologies that isolate interacting cells16 can further 

enhance this inference.
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Ultimately, the results of SpaceMarkers depends on the patterns inferred from the latent 

space method. Biological robustness of the SpaceMarkers statistic relies on the use of 

patterns associated with significant activity levels as well as a spatial overlap with other 

patterns of interest. For example, we analyzed the interaction of immune cells with one 

invasive carcinoma pattern out of the three invasive carcinoma patterns learned using high 

resolution CoGAPS analysis. We did not analyze the other two patterns because one was 

isolated away from the immune pattern and hence had no interactions, and although the 

other pattern had a spatial overlap with the immune pattern, it had much lower activity 

levels. For the residual mode to be effectively used, it is important not just to resolve 

the ST data into biologically meaningful latent features, but also to provide a good fit 

between the original ST data and its reconstruction from the latent features. In the absence 

of a good fit, the residual errors contain not just the effects attributable to inter-feature 

interaction and the measurement error, but also the estimation errors resulting from an overly 

constrained factorization. In such cases, we recommend using the SpaceMarkers in the DE 

mode. Similarly, the utility of SpaceMarkers is diminished if the learned latent features do 

not correspond to individual cell phenotypes, or if markers of essential cell types are not 

represented by any of the learned latent features. Future work can overcome this limitation 

through semi-supervised learning methods that use cell-type marker expression as a proxy 

for the latent feature input in the DE mode for SpaceMarkers.

When genes associated with cell-surface interactions and cytokine secretions are grouped 

together in a latent feature, the assignment of a single kernel-width parameter to the latent 

feature in the SpaceMarkers algorithm is inconsistent with the varying distances associated 

with these two types of intercellular interactions. Identification of intercellular interactions 

in such scenarios requires a mathematical framework for spatially resolved causal inference 

which models distinct cell types, varying ranges and gradients of influence for cytokine-

secretions and surface interactions, and spatially resolved expression of individual genes. 

One such example is MESSI24, which uses mixture-of-experts and multi-task learning 

approaches to predict the gene expression in a particular cell type with the help of signaling 

genes in neighboring cells. Future work integrating these methods with latent features in 

place of individual genes will both reduce the computational complexity and enhance the 

biological interpretability of these spatially aware network inference methods.

4. STAR Methods

RESOURCE AVAILABILITY

Lead Contact: Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the Lead Contact, Elana J Fertig (ejfertig@jhmi.edu)

Materials Availability: This study did not generate new materials.

Data and Code Availability:

• Processed 10x Visium data from the PDAC lymph node, PanIN, and HCC 

samples have been deposited at the Gene Expression Omnibus (GEO) and are 
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publicly available as of the date of publication. Accession numbers are listed in 

the key resources table.

• The original code for the SpaceMarkers package is available at www.github.com/

FertigLab/SpaceMarkers under MIT license and archived on Zenodo (https://

doi.org/10.5281/zenodo.7621285). The scripts used for the analysis presented 

in this paper is available at www.github.com/atuldeshpande/SpaceMarkers-paper 

and archived on Zenodo (https://doi.org/10.5281/zenodo.7621291).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

High Resolution Figures: High resolution versions of the figures in this manuscript are 

available on Zenodo (https://doi.org/10.5281/zenodo.7622690).

METHOD DETAILS

4.1. Sample collection, preparation, and storage

Invasive breast ductal carcinoma:  The fresh frozen invasive breast ductal carcinoma was 

collected in 2011 and obtained from BioIVT. The tumor was stage IIA, ER Positive, PR 

Negative, Hercep Test 2+. The RNA quality of the sample, as measured with Bioanalyzer 

(Agilent) was RIN = 9.26. The sample was embedded in optimal cutting temperature (OCT) 

compound and immediately frozen. Cryosections of 10 μm were placed on Visium Gene 

Expression slides (10x Genomics).

PDAC metastatic lymph node:  The PDAC peritumoral lypmh node was surgically 

resected during curative surgery at the Johns Hopkins University. The lymph node was 

embedded in OCT and immediately frozen. Pathological examination of an H&E stained 

cryosection identified a PDAC metastasis to the lymph node. A cryosection of 10 μm were 

placed on a Visium Gene Expression slide (10x Genomics).

PanIN sample:  The PanIN sample was a surgical specimen from a collection 

obtained during 2016 to 2018 available in the Johns Hopkins University School of 

Medicine Department of Pathology archives under Institutional Review Board approval 

(IRB00274690) under a waiver of consent.

HCC sample:  The HCC sample was surgically obtained as part of a clinical trial 

(NTC03299946) for neoadjuvant cabozantinib and nivolumab previously described18. The 

surgical specimen was immediately embedded in OCT, frozen and a 10 μm cryosection was 

placed in a Visium Gene Expression slide (10x Genomics).

4.2. ST library preparation—Briefly, following tissue permeabilization optimization, 

according to 10x Genomics instructions, samples were fixed in methanol, stained (H&E) 

and imaged. Sequencing libraries were prepared using the Visium Spatial Gene Expression 

Reagent Kit (10x Genomics), following manufacturer’s instructions, and sequenced on an 

Illumina NovaSeq.
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4.3. SpaceMarkers algorithm—Here we describe the SpaceMarkers algorithm to 

identify genes associated with nonlinear effects of latent feature interactions. To facilitate 

exposition, we will refer to the spatial component of the latent features as ”patterns”.

Modeling pattern interactions in the residual space:  We assume a generic latent 

space representation model where the ST data matrix D is factorized into two low-rank 

matrices A and P . Consequently, the matrix product AP  is a low-rank approximation of the 

high-dimensional spatial RNAseq data, accounting for all linear combinations of the latent 

patterns such that

Dij ≐ (AP )ij + εij,

where measurement noise εij are independent and normally distributed with zero mean 

(see14 for the CoGAPS-specific model). However, this assumption associates the CoGAPS 

residuals purely with measurement noise, disregarding any molecular changes resulting 

from inter-pattern interactions. To that end, we introduce an additional term f(A, P ))ij which 

represents the unknown molecular changes due to pattern interactions such that

Dij ≐ (AP )ij + f(A, P )ij + εij,

where the measurement noise εij are independent and normally distributed with zero mean 

and variance σij
2. Thus, we hypothesize that the residuals represent both measurement noise 

and the molecular changes from inter-pattern interactions. Within the scope of this paper, 

we seek to only identify genes which exhibit higher residual effects associated with two 

interacting patterns. To this end, we use CoGAPS with the default settings and analyze the 

residual space of the CoGAPS factorization results. That is, we use the CoGAPS residuals as 

an estimate of f(A, P ))ij such that

f(A, P )ij ≐ E f(A, P )ij ∣ D, A, P = Dij − (AP )ij

in regions where two patterns interact (i.e., have overlapping influence) versus regions where 

each pattern has exclusive influence. To identify the genes associated with the nonlinear 

interactions between a given pair of patterns, we first identify hotspots of pattern influence 

for each pattern. If both patterns have overlapping influence in a spot, they are deemed to 

be interacting in that spot. The CoGAPS residuals are computed in the interacting regions 

as well as in regions where each pattern is individually active. When the null hypothesis of 

non-interaction between the patterns is true, the residuals have no dependence on underlying 

regions (interacting or exclusive). On the other hand, genes associated with higher CoGAPS 

residuals in the interacting regions compared with the regions with exclusive pattern 

influence from either pattern show a strong dependence on spatial overlap between the 

patterns, and thus reject the null hypothesis. These genes constitute the SpaceMarkers, 

markers of spatial interaction between the two patterns in question. Focusing on strictly 

higher residuals avoids the confounding factors from decreased gene expression due to 

heterogeneous spot populations compared to homogeneous ones.
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Identifying regions of pattern influence and pattern interaction:  For each spatially 

resolved pattern, we identify its region of influence by using a Gaussian kernel-based 

spatial smoothing approach. Through the spatial smoothing, we model a pattern’s influence 

extending beyond a spot to its neighboring spots as well. Given the pattern intensity p si

associated with a i-th spot si = xi, yi  in the sample, we calculate the spatially smoothed 

pattern intensities by using the leave-one-out method

pwp si = ∑
sj ≠ si

wp si, sj p sj

with the spatial Gaussian kernel

wp si, sj = 1
2πσwp

e
−d si, sj

2

2σwp
2 ,

where d si, sj = xi − xj
2 + yi − yj

2 is the distance between the i-th and j-th spots, and σwp is 

the kernel width. We used the Smooth.ppp function in the R package spatstat2 to perform the 

smoothing. We obtain a null-distribution by applying the kernel-based smoothing to spatially 

permuted pattern values (by pseudorandomly assigning spot locations (nperm = 100)). This 

null-distribution is assumed to be normal, and we obtain the sample mean μp and standard 

deviation σp for each pattern. We identify the pattern’s region of influence as the set of spots 

with outliers

pwp si > μp + τpσp,

where τp is the outlier threshold for the pattern. The optimal values of the kernel width wp

and outlier threshold τp are the arguments that minimize the spatial autocorrelation (Moran’s 

I) of the residuals

r si = p si − pwp si .

The optimal kernel width wp for each pattern is the value which minimizes the Moran’s 

I in the residuals over all spots in the sample. Subsequently, the optimal outlier threshold 

τp minimizes spatial autocorrelation of the residuals r si  over the spots contained in the 

resulting region of pattern influence. If a spot is influenced by two or more patterns, these 

patterns are said to be interacting in such a spot. For each pattern pair of interest, the set of 

all such spots is defined as their interacting region.
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nPattern values and number of learned patterns for different CoGAPS runs. The values 

shown in boldface are used in further analysis.

Sample # genes # spots numPatterns (Learned Patterns)

PDAC metastatic lymph node 18418 1351 5(5), 8(10), 15(21)

PanIN 16,954 1,872 5(5), 10(10)

Invasive breast ductal carcinoma 24228 4898 5(5), 10(9), 15(14), 20(16)

HCC 20423 3006 5(4), 10(7), 15(9), 20(10), 30(18)

Statistical test to identify genes associated with pattern interactions:  For a given pair 

of patterns p1 and p2 with a substantial regions of exclusive pattern influence and pattern 

interaction, we define three subregions characterized by

• The spots with p1 influence and no p2 influence.

• The spots with p2 influence with no p1 influence.

• The spots with overlapping influence from both p1 and p2.

The elements from each row of R corresponding to the subregions described above denote 

the CoGAPS residuals in the respective subregions. For each gene (row) i, we perform a 

non-parametric Kruskal-Wallis test23 for stochastic dominance of the CoGAPS residuals in 

at least one of the three subregions, with a posthoc Dunn’s test11 to ascertain the relative 

dominance between the respective subregions. Of particular interest to us are the genes 

which have statistically significantly higher CoGAPS residuals (FDR¡0.05) in the interacting 

region relative to the other two subregions as well as genes which exhibit statistically 

significantly higher CoGAPS residuals exclusively in the interacting region compared to at 

least one of the two other subregions.

4.4. Multi-resolution CoGAPS analysis—The ST genes by spot counts data for each 

sample was filtered to remove genes and spots with no or constant signal and then log2 

normalized. The final matrix size of the input data matrix D are noted in the table below. 

The element Dij represents the expression of the i-th gene in the j-th spot. The CoGAPS 

(version 3.5.8) 38 algorithm was run using the filtered and normalized counts data as 

input. Additionally, default CoGAPS parameters were used except for nIterations = 50,000, 

sparseOptimization = TRUE, distributed = single-cell, and nSets = 4. CoGAPS factorization 

results in two lower-dimensional matrices: an amplitude matrix (A) containing gene weights 

and a pattern matrix (P) containing corresponding spot weights estimated for a pre-specified 

number of latent features (nPatterns). On each of the input datasets, the algorithm was tested 

for a range of nPatterns.

The pattern weights for each spot were plotted over the tissue to show association 

between a pattern and a tissue region. In highRes Breast cancer analysis, genes were 

assigned to the pattern they were most strongly associated with using the patternMarker 

function in CoGAPS (version) in R (version). The genes for each pattern were submitted 
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to the Molecular Signatures Database and searched within the BIOCARTA, KEGG, and 

HALLMARK pathways27,42,26. Pathways were considered significant if FDR < 0.05.

4.5. Scatterpie visualizations—We use the A and P matrices in the CoGAPS result to 

represent each Visium spot as a combination of overlapping latent patterns. To this end, we 

calculate the fractional gene expression FSEkj in pattern k at spot j as

spotFEkj =
Pkj∑iAik

∑k Pkj∑iAik
,

where i is the gene index. We use the ‘vizAllTopics’ function from the ‘STdeconvolve’ 

package29 to visualize each spot as a pie chart showing the fractional gene expression in 

each pattern.

4.6. ProjectR analysis with matched single-cell RNAseq data—For the HCC 

sample in Figure 6, we have matched single-cell RNAseq data from the same patient. This 

scRNAseq data was preprocessed using the ‘sctransform’ package17, a normalization and 

variance stabilization method based on regularized negative binomial regression method, 

available in Seurat package in R. The transfer learning method, ProjectR, was used to 

project the spatial patterns from the HCC sample onto matched scRNAseq data from the 

same patient. Although the Visium data for CoGAPS and single-cell datasets use different 

normalization methods, our previous studies have shown that projectR can identify related 

cellular attributes across various data types and modalities in spite of batch effects41. The 

R package projectR (version 1.6.0) was used to project the A matrix of the CoGAPS result 

into the target dataset. The CoGAPS result object and the counts data from the matched 

scRNAseq dataset were used as input where FULL = TRUE. Each individual cell in the 

scRNAseq dataset is associated with the pattern with the highest projection. We limit the 

pattern association to the dominant patterns in the spatial data, namely Patterns 1,2, and 8.

4.7. Gene Set Enrichment Analysis using MsigDB—For each gene list query 

corresponding to SpaceMarkers for pairs of patterns, we compute their overlaps with gene 

sets belonging to the HALLMARK, BIOCARTA and KEGG pathways in MsigDB27,26,42, 

and report statistically significant overlaps (FDR<0.05).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

Latent space analyses of spatial transcriptomics show spatially varying cellular activity

SpaceMarkers identifies genes associated with spatially interacting latent features

SpaceMarkers identifies molecular changes from tumor-immune interaction in various 

tumors
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Figure 1. 
SpaceMarkers identifies genes associated with cell-cell interaction using spatially 

overlapping patterns

A. Identifying interaction region: The input to the SpaceMarkers algorithm are spatially 

resolved latent features resulting from latent space analyses (e.g. CoGAPS patterns). The 

images on the left show the intensity levels of two spatially resolved CoGAPS patterns. For 

each pattern, the SpaceMarkers algorithm first identifies regions of influence (red and blue 

spots, respectively) using a Gaussian-kernel based outlier detection method. The patterns are 
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deemed to be interacting in the region with overlapping influence (yellow spots) from both 

patterns. It also identifies regions with mutually exclusive influence from each pattern (red 

and blue spots).

B. Identifying SpaceMarkers genes: The second stage of the SpaceMarkers algorithm 

performs a non-parametric Kruskal-Wallis statistical test with posthoc analysis on the gene 

expression data in the three regions (pattern 1 only, pattern 2 only, and interaction region) 

to identify molecular changes due to cell-cell interaction. The output is a list of genes 

associated with the pattern interaction (see Methods).
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Figure 2. 
SpaceMarkers identifies molecular changes associated with immune-metastatic pancreatic 

cancer interaction in the lymph node

A. H&E staining of a peritumoral pancreatic lymph node with metastasis from PDAC 

(arrow) and annotated germinal center and immune cells (dark lines).

B. Visualization of the relative activity in the CoGAPS patterns associated with metastatic 

PDAC (Pattern 6) and immune cells in the lymph node (Pattern 9). Each spot is represented 
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as a pie chart with fractional gene expression at the location aggregated over the all genes for 

Pattern 6 (orange), Pattern 9 (blue), and all Other patterns put together (white).

C. Boxplots of the expression of selected genes showing higher expression levels in the 

interaction region of Pattern 6 and Pattern 9 compared to the regions with exclusive 

influence from Pattern 6 and Pattern 9 respectively.

D. Table showing Hallmark gene set pathways significantly overrepresented in the region of 

interaction between Pattern 6 and Pattern 9, with size of overlap and FDR value (see Table 

S2 for KEGG and Biocarta pathways).
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Figure 3. 
Residual mode can help to mitigate the confounding effects of other cell types present in the 

interaction region

A. Tissue regions annotated by CODA based on morphological features show clusters of 

acinar cells in close proximity to the neoplasia duct.

B. CoGAPS analysis reveals two patterns representing the stromal region (Pattern 6, 

orange), the neoplasia region (Pattern 9, blue) and all Other patterns (white).
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C. Scatterpie chart showing the overlap between Pattern 6 and Pattern 9 also illustrated how 

the acinar cells coincide with the interaction region between the two patterns.

D. Two markers of acinar cells identified among the top SpaceMarkers of interaction 

between Patterns 6 and 9 also show overexpression in their interaction region.

E. Overrepresented pathways associated with neoplasia-stromal interactions identified by 

SpaceMarkers analysis in DE mode demonstrate overrepresentation of acinar cell markers.

F. Other relevant pathways are overrpresented in comparison to acinar markers with 

SpaceMarkers analysis in residual mode.
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Figure 4. 
Low-resolution CoGAPS and SpaceMarkers analysis identifies markers of interaction 

between broad patterns in breast cancer tissue

A. Images of the breast cancer tissue showing activity levels of the immune, DCIS, and 

invasive carcinoma patterns respectively overlaid on annotated H&E slides showing regions 

with invasive carcinoma, DCIS lesions, immune cells and stroma.

B. Scatterpie visualization shows the relative activity levels and overlap between the invasive 

carcinoma (green), immune (orange), DCIS (blue) and all Other patterns combined (white).
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C. Overrepresented pathways associated with DCIS-immune interactions and cancer-

immune interactions (FDR < 0.05).
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Figure 5. 
High-resolution CoGAPS and SpaceMarkers analysis of breast cancer tissue reveal greater 

heterogeneity in intercellular interactions (see Supplemental Figure S4 for SpaceMarkers 

with STdeconvolve).

A. Multiple patterns associated with invasive carcinoma and DCIS regions identified in 

higher-resolution CoGAPS analysis with 16 patterns highlights the heterogeneity in the 

tumor and TME by further resolving the underlying pathology (see Supplemental Figure S3 

for remaining patterns).
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B. Alluvial plot showing the most dominant pattern associated with each spot using low-

resolution and high-resolution CoGAPS respectively. Spots dominated by low resolution 

DCIS pattern are dominated by three distinct DCIS-related patterns associated with different 

lesions in the high-resolution analysis. Invasive pattern in low resolution resolves into three 

invasive carcinoma related patterns associated with varying levels of immune infiltration in 

the high-resolution analysis. For alluvial plot with all 16 patterns, see Supplemental Figure 

S4A..

C. Relative activity levels of immune patterns with two invasive patterns reveals that the 

immune (orange) and Invasive.2 (blue) patterns have no overlap, hence do not interact. 

Immune interaction with Invasive Carcinoma (green) is captured through the overlap 

between Immune and Invasive.3 pattern. White represents all other patterns combined.

D. Relative activity levels of immune pattern (orange) with three DCIS patterns (blue, green, 

and yellow) associated with separate lesions reveals distinct overlapping regions associated 

with each interaction. White represents all other patterns combined.

E. SpaceMarkers of Immune-DCIS and Immune-Invasive interactions reveal functional 

heterogeneity of the enriched pathways mirroring the spatial heterogeneity revealed in 5C. 

and 5D. (FDR < 0.05). (See Table S4 for complete list of gene sets).
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Figure 6. 
Contextualizing scRNAseq data using SpaceMarkers and transfer learning from matched 

ST-scRNAseq data in HCC (see also Supplemental Figures S5 and S6).

A. CoGAPS factorization reveals spatial patterns associated with tumor annotations of tumor 

and immune cells. (see Supplemental Figure S5).

B. Scatterpie visualization shows the relative pattern activity levels associated with the 

spatially overlapping tumor (orange) and immune (blue) patterns in each Visium spot using 

a pie chart (white represents activity from all other patterns). SpaceMarkers are genes 
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exhibiting nonlinear effects in the residual space of the CoGAPS patterns in the region with 

tumor-immune overlap.

C. Transfer learning of Patterns 1, 2, and 8 from ST data to matched scRNAseq data. Scatter 

plot shows projections of the spatial patterns onto individual cells in the scRNAseq data. 

Individual cells in the scRNAseq data are associated with the pattern having the highest 

projection in the cell.

D. Expression heatmap of SpaceMarkers in tumor and immune cells from matched single-

cell data from the same tumor provide the spatial context of the individual cells.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Processed spatial and single-cell 
transcriptomics data.

This paper. GEO:GSE22441

Software and Algorithms

SpaceMarkers v0.81 This paper. doi:10.5281/zenodo.7621285

SpaceMarkers analysis scripts. This paper. doi:10.5281/zenodo.7621291

STdeconvolve MIller et al., 2022 https://github.com/JEFworks-Lab/
STdeconvolve

CoGAPS v3.15.2 Sherman et al., 2020 doi:10.18129/B9.bioc.CoGAPS

projectR v1.6.0 Sharma et al., 2022 doi:10.18129/B9.bioc.projectR

GSEA Subramanian et al., 2005; https://www.gsea-
msigdb.org/

GSEA v4.2.3

Seurat v4.1.0 Hao*, Hao*, et al., 2021 Version 4.1.0

Other

Gene sets www.msigdb.com MSigDB v7.5.1 (Hallmark, Biocarta, and 
Kegg)

High resolution figures This paper. doi:10.5281/zenodo.7622690
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