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Abstract 

Nitrogen Dioxide (NO2 ) is a common air pollutant associated with several adverse 
health problems such as pediatric asthma, cardiovascular mortality,and respiratory 
mortality. Due to the urgent society’s need to reduce pollutant concentration, several 
scientific efforts have been allocated to understand pollutant patterns and predict pol-
lutants’ future concentrations using machine learning and deep learning techniques. 
The latter techniques have recently gained much attention due it’s capability to tackle 
complex and challenging problems in computer vision, natural language processing, 
etc. In the NO2 context, there is still a research gap in adopting those advanced meth-
ods to predict the concentration of pollutants. This study fills in the gap by comparing 
the performance of several state-of-the-art artificial intelligence models that haven’t 
been adopted in this context yet. The models were trained using time series cross-
validation on a rolling base and tested across different periods using NO2 data from 
20 monitoring ground-based stations collected by Environment Agency- Abu Dhabi, 
United Arab Emirates. Using the seasonal Mann-Kendall trend test and Sen’s slope 
estimator, we further explored and investigated the pollutants trends across the dif-
ferent stations. This study is the first comprehensive study that reported the temporal 
characteristic of NO2 across seven environmental assessment points and compared the 
performance of the state-of-the-art deep learning models for predicting the pollutants’ 
future concentration. Our results reveal a difference in the pollutants concentrations 
level due to the geographic location of the different stations, with a statistically sig-
nificant decrease in the NO2 annual trend for the majority of the stations. Overall, NO2 
concentrations exhibit a similar daily and weekly pattern across the different stations, 
with an increase in the pollutants level during the early morning and the first working 
day. Comparing the state-of-the-art model performance transformer model demon-
strate the superiority of ( MAE:0.04 (± 0.04),MSE:0.06 (± 0.04), RMSE:0.001 (± 0.01), R 2 : 
0.98 (± 0.05)), compared with LSTM (MAE:0.26 (± 0.19), MSE:0.31 (± 0.21), RMSE:0.14 (± 
0.17), R 2 : 0.56 (± 0.33)), InceptionTime (MAE: 0.19 (± 0.18), MSE: 0.22 (± 0.18), RMSE:0.08 
(± 0.13), R 2:0.38 (± 1.35) ), ResNet (MAE:0.24 (± 0.16), MSE:0.28 (± 0.16), RMSE:0.11 (± 
0.12), R 2:0.35 (± 1.19) ), XceptionTime (MAE:0.7 (± 0.55), MSE:0.79 (± 0.54), RMSE:0.91 
(± 1.06), R 2 : −4.83 (± 9.38) ), and MiniRocket (MAE:0.21 (± 0.07), MSE:0.26 (± 0.08), 
RMSE:0.07 (± 0.04), R 2 : 0.65 (± 0.28) ) to tackle this challenge. The transformer model 
is a powerful model for improving the accurate forecast of the NO2 levels and could 
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strengthen the current monitoring system to control and manage the air quality in the 
region.

Keywords:  Nitrogen Dioxide, Forecast, Artificial Intelligence, Deep Learning, Temporal 
Models, Transformer Model

Introduction
Humanity faces many global environmental challenges embedded in global warming, 
environmental degradation, biodiversity loss, and poor air quality [1–3]. Poor air quality, 
which contains a high level of gaseous air pollutants, negatively impacts human health 
by causing respiratory and pulmonary diseases and the environment by contributing to 
climate change and acid rain [1, 3–9]. The deterioration in the air quality was associated 
with rapid social development and urbanization, which increased human activities such 
as vehicle usage, traffic, cooking, and building cooling and heating [4]. In addition to the 
air pollutants produced by human activities, pollutants are also released from nature [1]. 
One of the major air pollutants is Nitrogen dioxide (NO2).

NO2 is a toxic pollutant made up of nitrogen and oxygen atoms [10].The pollutant 
level increase in the air due to human and natural sources such as vehicles, aviation, 
manufacturing, power plants, indoor pollutant, soil processes, and lightning [3, 7–12].
It is also known NO2 plays a vital role in increasing the density of other hazardous out-
door air pollutants such as ground-level ozone (O3 ) and fine particles (PM2.5 ) [11–13]. 
In 2019, NO2 was estimated to cause 637,000 new pediatric asthma incidents in China 
[7] and 1.85 million new cases globally [11].Besides asthma, it increases the risk of other 
diseases, such as cardiovascular mortality, respiratory mortality, and lung cancer inci-
dence or mortality [3, 13]. To mitigate the pollutant’s adverse effects, the World Health 
Organization (WHO) issued new Air Quality Guidelines (AQG) on September 22, 2021, 
to set the annual average threshold of NO2 concentration to 10 micrograms per cubic 
( µg/m3 ) [7]. The scientific community also supported the efforts by conducting several 
epidemiological studies to reveal the association between pollutants and diseases and 
computational analyses to understand the pollutants’ pattern and predict pollutants’ 
future concentration. The previous computational analysis studies supported the atmos-
pheric management decision-makers to track and monitor the pollutant level and issue 
applicable regulations and laws to reduce the adverse risk of NO2 pollutants (for sure 
by understanding its causes). These early warning system projects are directed toward 
understanding the pollutant’s hourly, daily, monthly, and annual concentration pattern 
[14], investigating the impact of different unexpected interventions such as the COVID-
19 pandemic on it is level [11, 12, 15], and predict future pollutant concentration using 
statistical, machine learning (ML), and artificial intelligence (A.I.) methods [3, 8, 9]. The 
latter methods have recently gained much attention due it’s capability to tackle complex 
and challenging problems in computer vision, natural language processing, etc. Air qual-
ity prediction is also categorized as challenging and complex tasks that faces human-
ity due to the fact that the pollutants concentration is correlated and associated with 
several environmental and physical factors such as meteorological, traffic pollution, 
and industrial emissions that vary across time and space [8, 16]. Surveying the previ-
ous scientific efforts to build predictive models, earlies efforts focused in using classi-
cal statistical methods such as the auto-regressive model (AR), moving aver- age model 
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(MA), auto-regressive integrated moving average model (ARIMA), and seasonal ARIMA 
(SARIMA) [17]. While the recent works moved toward utilized ML and A.I. algorithms 
such as the multilayer perceptron model (MLP) [1], long short-term memory (LSTM) 
[8],and Bidirectional convolutional LSTM [3]. The shift towards ML and A.I. algorithms, 
which remarkably outperform the performance of classical statistical methods, improves 
pollutant forecasting since those methods automatically learn and extract the features 
from the data and use the new data representation (extracted features) for generalization 
to the unseen data [8].

Even though the recent studies provide clear evidence of the power of ML and A.I. 
to improve the prediction of the future NO2 concentration with best reported R 2 range 
from 0.87 to 0.9 and RMSE range from 0.21 to 19.14, the domain is still in its infancy to 
tackle this challenge. In the NO2 context, there is still a research gap in adopting those 
advanced deep learning for sequences data to predict the concentration of pollutants, as 
an example of unadopted techniques, Transformer for time series, MINImally RandOm 
Convolutional KErnel Transform (MiniRocket), InceptionTime etc.

The main objective of this study is to explore the NO2 temporal characteristics along 
with comparing and validating the performance of several state-of-the-art A.I. mod-
els, namely: MINImally RandOm Convolutional KErnel Transform (MiniRocket) [18], 
Residual Network (ResNet) for time series [19], XceptionTime [20], InceptionTime 
[21] and Transformer for time series [22] to improve the accuracy of NO2 forecasting. 
We trained our models using data collected and provided by Abu-Dhabi. Environment 
Agency- Abu Dhabi (EAD), United Arab Emirates (UAE), for different environmental 
monitoring stations. To recapitulate, the contributions of the paper are as follows:

•	 This is the first study that investigates the temporal characteristics of NO2 concentra-
tion across 19 stations covering seven environmental assessment points in the UAE.

•	 This work is among the first comprehensive work to adopt and compare the perfor-
mance of several state-of-the-art deep learning models to improve the accuracy of 
forecasting future NO2 concentration.

Methods
Study area

UAE was established in 1971 and consists of seven emirates: Abu Dhabi, Dubai, Sharjah, 
Ajman, Umm Al Quwain, Ras Al Khaimah, and Fujairah. Abu-Dhabi, the UAE’s capi-
tal and the largest emirate accounts for 87% (67,000 km2 ) of the total area with 23.5◦ N 
54.5◦ E geographic coordinates [15].

In‑Situ observation data of NO2 concentration

This study focuses on NO2 concentration prediction for several air quality stations in 
Abu Dhabi, which were collected and provided by the EAD. EAD is the environment 
regulator that aims to protect and enhance the region’s air quality, groundwater, and 
biodiversity. Since 2007, the agency started to collect and monitor air quality data; by 
operating 20 fixed ground stations with annual data capture of air quality is approxi-
mately 75% [23] in addition to 2 mobile stations across three regions in Abu Dhabi: Al 
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Ain Region (Eastern Region), Al Dhafra Region (Western Region), and Central Region 
(Greater Abu Dhabi and it’s surrounding) (Fig. 1). The stations cover seven environmen-
tal assessment points: urban traffic, urban background, rural traffic, rural background, 
rural industrial, suburban background, and suburban industrial. The monitoring stations 
provided with air quality and meteorological sensors to record wind speed, wind direc-
tion, temperature, relative humidity, net radiation, barometric pressure, and pollutants 
such as Sulfur Dioxide (SO2 ), Nitrogen Dioxide (NO2 ), Ozone (O3 ), Carbon Monoxide 
(CO), particulate matter (PM) and Hydrogen Sulfide (H2S) [24–26]. The monitors follow 
the technical testing standards of ISO/IEC 17,025:2017. The pollutants data measured 
across all the stations were transmitted to the Air Quality Management System database. 
The dataset gets further quality inspection, control, assessment, verification, and statisti-
cal processing to be presented on the EAD web portal (https://www.adairquality.ae). All 
the air pollution measurement systems follow ISO, CEN/EN, and U.S. standards [15]. 
Our focus in this study is NO2 micrograms per cubic ( µg/m3 ) concentration data col-
lected from 20 fixed ground stations from January 1, 2019, at 0:00 to December 31, 2020, 
at 23:00. For each station, we provided with 17,544 hly NO2 concentration values.

Data Pre‑processing

We used rolling k-fold cross-validation for training different models. We divide each 
station’s data into training and testing sets as in (Fig.  2). In the begin the training set 
-which we used to train different deep learning models- consists of the historical data 
from January 1, 2019, 0:00 until December 31, 2019, 23:00 (12 months) while the testing 
set -which we will use to evaluate and compare the performance of different models- 
consists of the data from January 1, 2020 0:00 until January 31, 2020 (one month ahead). 
We repeated the process in which every-time we add one more month to the training set 
and used them to predict one month ahead.

Our data contains missing values which is expected from a real-life data (Additional 
file  1: Table  S1 and Figures  S1–S19); we notice a high percentage (62.64%) of NO2 

Fig. 1  The study area map The geographic distribution of the 20 NO2 stations across UAE
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concentrations values were missing from station 13; therefore, we excluded this sta-
tion form the future analysis. To deal with missing values for the remaining stations, 
we applied univariate time series weighted moving average; this technique outperforms 
other techniques for dealing with time series missing values, as reported in [27]. Pre-
cisely for this study, the exponential weighted moving average (EWMA) technique with 
five moving average windows was applied:

Where, Z t  is the value of the series at time t; EWMAt  is the EWMA value at time t. w 
represents the weighting factors that decrease exponentially, e.g., at time (t-x,t+x); w= 
1

2x
 ; where x is observations directly next to a central value. After imputing the missing 

values, we average the daily NO2 concentration for each station and use the averaged val-
ues in this work for further analysis. Before training the different models, the input data 
was standardized by removing the mean and scaling to unit variance. We further divide 
our training data into two data sets: 80% training set and 20% validation set (Fig. 2); the 
validation set used to monitor and prevent overfitting during the training of different 
deep learning models by comparing validation errors to the training error over epochs.

Temporal characteristics of NO2 pollutant emissions

To reveal the annual trend of the univariate NO2 daily level, we used the seasonal Kend-
all test [14, 28]. It is a nonparametric test for testing the time series’ monotonic or con-
sistent upward or download trends. The Seasonal Kendall S k statistic is computed as 
following:

Where m is the total number of seasons, and S i is ith season S from m. S i is Mann-Ken-
dall, which is computed using the following equation:

(1)EWMAt = w ∗ Zt + (1− w) ∗ Zt−1

(2)Sk =

m
∑

i=1

Si

(3)S =

n−1
∑

i=1

n
∑

j=i+1

sign(yj − yi)

Data (2019-2020)

Train (12 months) Test (1 month)

Train (13 months) Test (1 month)

Train (23 months) Test (1 month)

…
Training Subset (80%) Validation set (20%)

Train each split and average
each split’s test error.

Validate deep learning model
performance during training.

Fig. 2  Time Series Cross-validation: The training set increases sequentially, maintaining the temporal order of 
the data for predicting one month ahead (testing set). The training set divided further into a training set and 
validation set using 80:20% for monitoring the models performance during training
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Where S computes the difference between the future measure values y j and all the pre-
vious values y i . The sign(y j-yi ) is +1 (positive differences),0 (no differences), or -1 (nega-
tive differences).

After computing and summing the seasonal statistics (Sk ), the normalized Z sk test sta-
tistic is computed as follows:

The positive value of the normalized Z sk imply an increased trend in the series, and the 
negative values indicate a decreased trend.

We also computed Theil-Sen’s Slope Estimator [28, 29], a nonparametric method used 
to quantify the change in the time series magnitude: direction and volume. This tech-
nique is robust since it is not affected by outliers present. The slope of two points in the 
time series is computed using the following equation:

Where i and j are two points in the time series. Sen’s method estimated slope (Q∗ ) as the 
median N values of Q; the Q∗ estimated as following:

Where n is the total number of samples in the time series, all the statistical analyses were 
tested at the 95% significance level with a two-tailed test.

Predictive deep learning models

In this study, the daily NO2 concentration was predicted using several state-of-the-art 
deep learning models for time series and sequences, namely: MINImally RandOm Con-
volutional KErnel Transform (MiniRocket) [18, 30], Residual Network (ResNet) for time 
series [19], XceptionTime [20], InceptionTime [21] and Transformer for time series [22].

•	 MiniRocket: is a high-speed, lesser computational state-of-the-art deep learning 
model. The methods select 10,000 non-random kernels with size 9 to generate model 
feature maps. Those kernels will vary in terms of the padding, dilation, non-trainable 
weights, and non-trainable bias. The model uses those fixed, non-trainable, and inde-
pendent random convolutional kernels to extract a new feature (features maps) from 
the input sequence. The generated feature maps are fed to the proportion of positive 
values (PPV) pooling which used to detect a specific patterns from the input. Finally, 
it will pass into a linear model such as the ridge regression model or deep learning 
head for prediction.

(4)Zsk =















Sk−1
√

Var(Sk )
if Sk > 0.

0 if Sk = 0.
Sk+1

√

Var(Sk )
if Sk > 0.

(5)Q =

xi − xj

i − j
k �= j

(6)Q∗

=

{

Q(n+1)/2 if N is odd
QN−2+Q(N+2)/2

2
if N is even

(7)N =

n(n− 1)

2
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•	 ResNet:is a deep learning model consisting of three residual blocks with linear resid-
ual connection to reduce the vanishing gradient effect exhibited due to the increase 
of the network depth followed by a 1D global Average pooling layer. Each residual 
block consists of three convolutions layers with 7, 5, and 3 kernel filters followed by 
a 1D convolution layer; it ends with a batch normalization layer and Rectified Linear 
Unit (ReLU) activation function.

•	 XceptionTime: architecture consists of stacking several XceptionTime modules with 
residual connection (a 1X1 Conv layer and batch normalization). In which the ReLU 
activation function is applied to the residual connection and the XceptionTime mod-
ule feature map to introduce non-linearity in the network. The modules are followed 
by an adaptive average pooling layer to reduce overfitting and increase the robust-
ness of the network to learn the temporal translation of the input sequence, and 
finally, several 1X1 convolution layers with batch normalization and ReLU. Xcep-
tionTime module includes two parallel paths: the first path has a 1X1 convolution 
layer followed by three Depthwise Separable Convolutions with different/multiple 
one-dimensional kernels to extract long and short-time dependency series features 
simultaneously. At the same time, the second path has a max pooling layer followed 
by a 1X1 Convolution layer. The module output consists of concatenating the feature 
maps learned by the two paths.

•	 InceptionTime: The network consists of two residual blocks: each with three incep-
tion modules and two linear skip-connection (1X1 convolution layer), followed 
by global average pooling. The inception module contains two parallel paths: the 
first path has a bottleneck layer (one-dimensional Convolutional Neural Network 
(1DCNN)) that works as a dimensionality reduction to reduce the number of param-
eters and improve model generalization; the 1DCNN is followed by three parallel 
depthwise separable convolutions and pointwise convolutions layers with different 
filter sizes to learn long and short time dependency features. The second path has 
one MaxPooling followed by a bottleneck layer. The output of the inception module 
consists of the concatenation of the feature maps generated by two paths. Also, in 
this network, ReLU is used as an activation function. Similar to the XceptionTime, 
this model also adopts the one-dimensional: convolutional, max pooling, and batch 
normalization to apply for temporal data. The final network consists of ensembling 
five different inception networks with different weights and initialization to improve 
network stability.

•	 Transformer or Transformer-decoder architecture: The model learns the long-term 
dependency in the sequence using a self-attention mechanism that gives more atten-
tion to the important subsets of the sequence over unimportant set. The model core 
component is the encoder part of the original transformer network to learn a new 
representation for the time series. The model needs to learn the association between 
previous tokens for encoding the current token. Each of the tokens will be assigned 
with query, key, and value. The query and the key will be used to decide the relation-
ship between the current token and the previous one. While the value defines the 
new representation of the current token. The self-attention score of the previous and 
current tokens is calculated as the dot product of keys with queries, which will be fed 
to a softmax layer and scaled to create a ’soften’ probability distribution. The high-
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est attentions score indicates a higher relevance between the current token and the 
previous token and vice versa. Finally, the current token’s encoder is calculated using 
the dot product of the scaled attention scores and token value vector. To account for 
the temporal characteristic of the time series, the positional encoding is added to the 
calculate the relative distance between the current token and the previous one. Since 
the input has a temporal resolution, the network used 1-DCNN to compute the keys 
and queries of the self-attention layer and positional encoding. Moreover, the model 
replaces layer normalization with batch normalization after the self-attention layer to 
alleviate the outliers’ issue in the time series dataset.

Table 1 presents the hyperparameters used to train the different deep learning mod-
els. All the models were trained using 100 epochs with 64 batch sizes,sequence of 
length 10,and Adam optimizer. In this study, we used a fixed architecture component 
for each mode; as reported in Table 1, we only tuned the learning rate for each sta-
tion and model pair. The suggested learning rate was selected based on the valley 
algorithm.

Benchmarking

We benchmark our study using Long Short-Term Memory (LSTM) model to compare 
the performance of the state-of-the-art models against. LSTM is a recurrent neu-
ral network (RNN) for analyzing sequence data. It addresses long-term dependency 
problem which cause vanishing gradient problem in the RNN model. LSTM intro-
duces three gates: forget gate, input gate, and output gate; those gates control the net-
work memorizing process: read, store, and write historical information [31].

Models performance evaluation metrics

Four evaluation measures are used to evaluate and compare the performance of the 
different models, precisely, correlation coefficient (R2 ), mean square error (MSE), root 
means square error (RMSE), and mean absolute error (MAE) [1].

The analyses were performed using R programming language (version 3.6.1): imputeTS 
[32] package (version 3.2) to impute time series missing values. In addition to several 
Python (version 3.8.13) packages: tsai [33](version 0.3.1) to train the deep learning mod-
els, scikit-learn (version 1.1.1) to compute the evaluation metrics, and pymannkendall ( 
version 1.4.2)to calculate the temporal characteristics of the time series.

Table 1  Deep learning models selected hyperparameters used during training

Model Hyperparameters

MiniRocket Number of features: 10000; Maximum dilations per kernel: 16; scoring: MSE

ResNet Windows size = 24, filter size = 32, kernel sizes: 7, 5 and 4

XceptionTime Filter size = 16, adaptive average pooling: 32

InceptionTime Filter size = 32, kernel sizes: 24, depth : 6; dilation: 1

Transformer Windows size = 24, embedding size: 32, Size of the intermediate

feed forward layer:16, number of layers: 2 and number of heads: 4



Page 9 of 20AlShehhi and Welsch ﻿Journal of Big Data           (2023) 10:92 	

Results
Temporal characteristics of NO2 pollutant emissions

The geographical study area of this work is the UAE; specifically, its capital Abu 
Dhabi. Figure 3 shows the average daily NO2 concentration for the 19 monitoring sta-
tions from January 1, 2019, to December 31, 2020; in parallel, table  2 presents the 

Fig. 3  NO2 concentration Daily mean NO2 concentration of 19 stations during the period from 1/1/2019–
31/12/2022. The gray curves represent all the stations’ curves, while the colored curve represents the specific 
station trend

Table 2  Statistical descriptions of the NO2 concentration for the 19 stations (Unit: micrograms per 
cubic ( µg/m3))

∗p<.05

Station Mean Std. Min Max Mann-Kendall P-value Theil-Sen’s Trends
seasonal statistical test Slope Estimator

Station 1 56.44 17.09 15.36 143.03 −179 0.0 * −10.51 Decreasing

Station 2 31.42 13.97 7.40 89.71 −165 0.0 * −9.70 Decreasing

Station 3 27.89 14.86 3.92 80.07 −85 0.0 * −5.17 Decreasing

Station 4 47.8 21.98 5.74 159.70 −11 0.6 * −0.83 No trend

Station 5 32.31 15.56 8.85 96.67 55 0.00 * 2.51 Increasing

Station 6 29.7 12.17 6.23 64.51 −111 0.00 * −5.19 Decreasing

Station 7 42.13 23.69 7.156 156.62 −127 0.00 * −9.35 Decreasing

Station 8 15.73 6.72 3.44 47.79 −19 0.35 * −0.74 No trend

Station 9 14.85 6.23 3.95 45.00 61 0.00 * 1.60 Increasing

Station 10 9.63 1.44 6.60 16.86 −60 0.00 * −0.32 Decreasing

Station 11 21.68 9.01 6.64 61.11 15 0.47 * 0.41 No trend

Station 12 16.68 5.75 5.08 39.5 −113 0.00 * −2.73 Decreasing

Station 14 33.79 21.05 2.36 109.13 −135 0.00 * −7.50 Decreasing

Station 15 32.70 20.69 4.58 128.26 −181 0.0 * −12.15 Decreasing

Station 16 47.86 19.68 11.2 119.31 −51 0.01 * −3.40 Decreasing

Station 17 14.81 5.44 4.02 33.90 −103 0.00 * −2.66 Decreasing

Station 18 21.27 10.02 2.97 79.31 −75 0.00 * −2.88 Decreasing

Station 19 23.38 12.77 3.51 76.33 −71 0.00 * −4.76 Decreasing

Station 20 8.60 2.94 2.77 22.53 −71 0.00 * −1.18 Decreasing
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statistical description of the NO2 concentration for each station and trend statisti-
cal test. The monitoring stations cover seven environmental assessment points: urban 
traffic, urban background, rural traffic, rural background, rural industrial, suburban 
background, and suburban industrial.

The highest mean NO2 concentration was reported in 2019 from station 1 (56.44 µ
g/m3 ; urban traffic), while the lowest average values were reported in station 20 (8.60 
µg/m3 , rural background) for the same year. From Fig. 3, we observed that NO2 con-
centration is lower in stations 10 and 20 (rural background) and higher in stations 
1,4, 15, and 16 (all of them are in the Abu Dhabi Capital Region). There is an appar-
ent annual periodicity in the NO2 emission; a high NO2 emission is found early in the 
year, reduced during the summertime, and increased again after the summertime. The 
nonparametric seasonal Mann-Kendall trend test and Sen’s slope estimator (Table 2) 
reported a significant decrease in the annual trend (p<0.05) of the NO2 concentra-
tion for most of the stations, however, a significant increase is reported for stations 5 
and 9. Figure 4 presents the temporal hourly and daily NO2 concentration variations 
of the 19 stations during 2019 and 2020. Overall, NO2 concentrations exhibit a simi-
lar pattern across the different stations. During 2019 and 2022, Friday and Saturday 
were for the weekend, while Sunday until Thursday were the working days. The hourly 
emission of NO2 is highest in the early morning from 5:00 am to 10:00 am and lowest 
in the mid-afternoon from 2:00 pm to 4:00 pm. For the day of the week temporal vari-
ation, we can notice NO2 production is lower during weekends, especially Friday, the 
first day of the weekend, and increases during the working days. For stations 10 and 
20, the temporal hourly and daily NO2 concentration is flattening since those regions 
represent a Rural Background consisting mainly of a desert; therefore, not so many 
human activities that contribute to increase the concentration of the pollutants.

Fig. 4  NO2 temporal variation Temporal hourly and daily of the week NO2 concentration from variations 
for the 19 stations from 2019 to 2020. The hourly concentration of NO2 is highest in the early morning and 
lowest in the mid-afternoon. The station geo-location have an impact on the pollutant concentrates, the 
highest concentration found in the traffic area and lowers in the rural area
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Predictive deep learning models

Using time series cross-validation, we trained the models using a series of training sets 
for each model to forecast NO2 concentration for one month ahead (the observation 
that forms the test set). The model performance metrics were computed by averag-
ing the model performance over the test sets. We trained several state-of-the-art deep 
learning models for sequence data, namely, MiniRocket, ResNet for time series, Xcep-
tionTime, InceptionTime and Transformer for time series. In this study, we trained the 
models using data from different monitoring stations which exhibit various environmen-
tal assessment points. Table  3 presents the performance of the trained models in the 
testing set. Overall, the Transformer-based deep learning model reports the best per-
formance in the unseen data compared with other deep learning models: MiniRocket, 
ResNet for time series, XceptionTime, and InceptionTime. For the Transformer model, 
the minimum RMSE is 0.00102 (±0.00071) reported by station 12 with MAE: 0.02488 
(±0.0091) and MSE: 0.03018 (±0.01055). The same model reports the maximum RMSE 
(0.01468 (±0.03387)) for station 10 with MAE: 0.06707 (± 0.06861) and MSE: 0.08505 
(±0.08629). The performance of the Transformer is outperform other models in all 
the stations. It is important to emphasize that R 2 is a measure of goodness-of-fit, not a 
measure of model’s predictive capability [34]; the high R 2 value for the model explained 
by the increase in the variance of the time series; in which having a larger variance in the 
time series can cause the R 2 value to be closed to one, and can be deceiving when calcu-
lating the model quality. Finally for model interpenetration, we used permutation fea-
ture importance for interpreting the transformer model; Table 4 presents that the model 
assigned a high weights to the fourth day for predict the future NO2 value. In Fig. 5, we 
visualize the Transformer model’s average residual performance by calculating the dif-
ference between the predicted and actual values. Transformer-based models show good 
performance during fall and bad during summertime. During the Covid-19 period, the 
model performed severely due to the sudden change in the trends.

Discussion
The atmospheric model and its composition research are receiving increased inter-
est among the scientific community to tackle major global challenges such as climate 
change, air quality, urbanization, etc. [2]. One of the important atmospheric research 
tracks is a short-term and annual average air quality forecast that supports the deci-
sion makers to adopt the appropriate regulations and laws for improving air quality and 
public health [2, 8]. Air quality prediction is considered a challenging task since air pol-
lutants concentration is governed by environmental and physical factors such as mete-
orological factors, traffic pollution, and industrial emissions that vary across time and 
space [8, 16].

This study aims to investigate the NO2 patterns in the UAE and implement several 
state-of-the-art deep learning models, MiniRocket, ResNet for time series, Xcep-
tionTime, InceptionTime, and Transformer, for future NO2 forecasting using histori-
cal data. The data was collected from different monitoring stations that distributed 
and exhibited various environmental assessment regions across Abu-Dhabi: urban 
traffic, urban background, rural traffic, rural background, rural industrial, suburban 
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background, and suburban industrial. The UAE’s primary sources of NO2 emissions 
come from the production and refining of oil and gas, power generation, and water 
desalination, while the second source is from vehicles and ships [35]. From Fig. 3, Sta-
tion 1, which has the highest pollutant emissions located in an urban area with traffic; 
so, the vehicle emission explains this increase in the pollutant, while station 20, which 
has the lowest NO2 emission, is a rural area. We can conclude that traffic is one of 
the primary sources of NO2 concentrations. In general, we notice a reduction in the 
NO2 pollutants during summertime; the latter is explained by the involvement of NO2 
in producing the ground-level ozone (O3 ) pollutant during summer. From a chemi-
cal point of view, NO2 and carbon monoxide are photochemical reactions combined 
with solar radiation to produce O 3 ; most of these reactions happen during summer 
[8, 36]. Most stations exhibit a decrease in the annual NO2 level except for stations 5 
and 9. The reduction in the pollutant trend of most stations reflects the UAE’s efforts 
to improve the air quality. Some of the notable efforts are: launching the National Air 
Quality Platform [37] for the researchers to study the different factors that affect pol-
lutant levels in the region; collaborating with several federal and local government 
agencies to create joint initiatives and best practices to improve air quality; encour-
aging the society to reduce the pollutants emission and adopt environment-friendly 
practices [38]. In 2020 and with the spread of coronavirus disease (COVID-19), UAE 
took several measures to control the spread of the disease, such as lockdown and 
social distancing; those measures significantly reduced the NO2 emission, as reported 
in [15]. This study confirmed the same findings (Fig.  3); NO2 concentration was 
decreased from the End of March 2020 until early July 2020; due to mobility restric-
tions (traffic and vehicles usage reduction); these findings are valid for all the stations 
except for the Al Dhafra Region stations (a vast expanse of the desert). For the day 
of the week temporal pattern, the pollutant emission increases in the early morning, 
especially during the working days, due to motor vehicle movement and traffic. The 

Fig. 5  TSTransformer Residuals: TSTransformer Model average residuals of NO2 concentrations for each 
month in 2020 (Across all the stations) on the testing set
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daily pattern is expected to change; as in 2022, all the federal government entities in 
the UAE operates from Monday until half day on Friday, with the weekend starting 
from the second half of Friday until Sunday [39].

For the predictive model, the Transformer-based deep learning model outperforms 
other models to forecast daily NO2 concentration for one month ahead; the best perfor-
mance was reported in station 12 (MAE:0.02488 (±0.0091), MSE:0.03018 (±0.01055), 
RMSE: 0.00102 (±0.00071), R 2 : 0.99376 (±0.00692)). While XceptionTime reported the 
worst results across all the stations. The transformer model’s superiority is explained by 
the attention head, which is a powerful technique to effectively learn the new represen-
tation of the sequence data by relating different positions in the sequence. The overall 
performance of the Transformer model indicates it is capable of capturing the pollut-
ants’ daily and weekly cycle patterns exhibited in the pollutants trend (Figs. 3, 4). One of 
the limitations is the existence of the none meteorological interventions such as Covid-
19, which lower the model performance. Overall, the model’s performance is good when 
trained using different time series, which exhibited different variability of NO2 concen-
tration. In cooperated with other pollutants data could be improved the overall model 
performance.

Previous studies applied different ML and AI models to improve the NO2 concentra-
tion prediction. One of the earliest studies [13] used cluster-based bagging machine 
learning models to predict NO2 concentration for the state of California. The model was 
trained using historical NO2 data, traffic-related NOx modeled by CALINE4 dispersion 
model, traffic density, distance to shoreline and roadways, air temperature, population 
density, humidity, precipitation, and wind speed. The model reported (R2=0.87−0.9, 
RMSE=0.21−0.27). Another study utilized Tehran metropolis air quality data, Iran [1], 
to build a multi-linear regression (MLR) and multilayer perceptron model (MLP) models 
and used the trained model to forecast future NO2 concentration. The study improved 
NO2 prediction by incorporating additional features to the model, such as traffic and 
green space information, the day of the week, and meteorological parameters. The MLP 
model reported (R2 = 0.89, RMSE= 0.32) which outperform MLR (R2 = 0.81, RMSE= 
13.151). A third study used data from 35 monitoring stations in Beijing, China [8], to 
propose a novel multi-output and multi-index supervised learning model based on 
LSTM. The model predicts several air pollutants: PM2.5 , CO, NO2 , O 3 , and SO2 , using 
meteorological and gaseous pollutant data from the closest five neighbors’ stations-as 
input to the model. The model best performance reported for NO2 prediction was (R2 = 
0.875, RMSE= 9.688, MAE = 6.47). Another study [9]also used China monitoring sta-
tions data; it proposed a novel method that integrates discrete wavelet transformation 
for time series decomposition followed by training LSTM Network to improve NO2 level 
prediction. The model inputs multiple covariates: PM2.5 , PM10 , NO2 , SO2 , O 3 , CO, wind 
speed, temperature, and weather conditions. The reported performance of the proposed 
model in the unseen data is MAE =4.3377 and RMSE = 5.9291. Finally, a recent study 
[3], using Madrid, Spain, data proposed several deep learning models, namely LSTM and 
ConvLSTM and Bidirectional convolutional LSTM (BiConvLSTM), to predict NO2 level. 
The model inputs NO2 historical information, ultraviolet radiation, wind speed, wind 
direction, temperature, relative humidity, barometric pressure, solar irradiance, precipi-
tation and traffic intensity, occupancy time, and average traffic speed of 24 monitoring 
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stations. It found that BiConvLSTM (RMSE = 19.14, MAE =13.06) outperform LSTM 
(RMSE =38.89, MAE =32.17) and ConvLSTM (RMSE =32.95, MAE =32.04) for NO2 
prediction.

Even though there are several efforts to improve the accuracy of future NO2 level 
prediction using machine learning and deep learning models, the best reported R 2 and 
RMSE from the previous published works range from 0.87 to 0.9 and from 0.21 to 19.14, 
respectively. NO2 prediction is a complex task, that is why all the previous works inte-
grate environmental and physical factors such as traffic data, wind speed, wind direc-
tion, humidity, air temperature, and air pressure to reach the best-reported results.

By validating that NO2 exhibits a periodic pattern, as reported in Fig. 3 and Fig. 4, we 
implemented several state-of-the-art deep learning models for sequence data using NO2 
historical information only to predict future NO2 levels. This study proves that Trans-
former deep learning models are superior to learning the temporal data representation 
to make precision forecasting compared to statistical models, machine learning, and 
early neural network models. Even though there is a change in the NO2 pattern due to 
the COVID-19 pandemic, the models reported a reasonable performance in comparison 
with what had been reported in the literature so far.

Conclusion
In this study, we implement various state-of-the-art deep learning models to predict the 
NO2 emissions using pollutant univariate historical data; the models were tested across 
different monitoring stations in Abu-Dhabi that exhibit various environmental assess-
ment points. We reveal a general decrease in the NO2 annual patterns for most stations, 
and we confirm the impact of the COVID-19 lockdown on reducing the NO2 . Using the 
Transformer deep learning model for time series data, we improved the accuracy of NO2 
forecasting. Our findings outperformed all the results reported in the literature for the 
same task using only NO2 historical data. This study trained and validated the models 
on a particular type of air pollutant (NO2 ); however, several hazardous pollutants are of 
significant importance for atmospheric management decisions, such as PM2.5 , O 3 , etc. 
Future work will be directed toward implementing and testing the different deep learn-
ing models to predict different air pollutants concentrations; predicting NO2 concentra-
tions at hourly intervals and using the deep learning techniques to reveal the association 
between different pollutants such as NO2 and ozone production. Moreover, this study 
implemented different models for each station (in total we trained 1,368: 6 models, 19 
stations, 12 months prediction for cross-validation), which are computationally time-
consuming and expensive. Investigating the capabilities of training a single model and 
adopt it(transfer learning) to all other stations will be considered to reduce the computa-
tion resource.
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