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Abstract

Psychiatric disorders share neurobiology and frequently co-occur. This neurobiological and 

clinical overlap highlights opportunities for transdiagnostic treatments. In this study, we used 

coordinate and lesion network mapping to test for a shared brain network across psychiatric 

disorders. In our meta-analysis of 193 studies, atrophy coordinates across six psychiatric disorders 

mapped to a common brain network defined by positive connectivity to anterior cingulate and 

insula, and by negative connectivity to posterior parietal and lateral occipital cortex. This network 

was robust to leave-one-diagnosis-out cross-validation and specific to atrophy coordinates from 

psychiatric versus neurodegenerative disorders (72 studies). In 194 patients with penetrating head 

trauma, lesion damage to this network correlated with the number of post-lesion psychiatric 

diagnoses. Neurosurgical ablation targets for psychiatric illness (four targets) also aligned with the 

network. This convergent brain network for psychiatric illness may partially explain high rates of 

psychiatric comorbidity and could highlight neuromodulation targets for patients with more than 

one psychiatric disorder.

Introduction

Psychiatric disorders are often studied individually1. However, up to half of patients who 

meet criteria for one psychiatric disorder also meet criteria for another2–7. These patients are 

difficult to diagnose and treat6,8–13. Relative to those with one disorder, patients with two 

or more have worse treatment outcomes, more functional impairment, and a greater risk of 

premature death9,13–21.

High rates of psychiatric comorbidity are often attributed to symptom heterogeneity 

within diagnoses and symptom overlap between diagnoses 22,23. The “p factor” intends 

to capture this shared variation across diagnoses, accounting for comorbidity and 

severity of psychopathology5,24–27. Genomic28–34 and epidemiological35,36 evidence further 

suggest that psychiatric comorbidity reflect a shared risk architecture. For example, any 

psychiatric disorder significantly increases the absolute risk of developing later psychiatric 

disorders35,36. In this context, it is unsurprising that many psychotherapies and medications 

reduce symptoms of various psychiatric disorders37–40.

Psychiatric comorbidity is an important consideration for neuromodulation treatments like 

transcranial magnetic stimulation (TMS) that often target one psychiatric disorder at a time. 
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Targeting methods are increasingly focused on specific symptoms within a diagnosis41–44, 

a strategy that may be difficult to scale and optimize in the setting of high psychiatric 

comorbidity. By contrast, neurosurgical ablation of single treatment targets has shown 

effectiveness across psychiatric disorders45–47, suggesting that transdiagnostic targets are 

feasible.

Neuroimaging has revealed important insights into the neurobiological basis of psychiatric 

illness 48–57. However, prior work has critical limitations that we seek to address. First, 

studies often attempt to map abnormalities to common brain regions50,58 rather than to 

a common brain network. Natural heterogeneity and noise prevent some abnormalities 

from consistently mapping to the same brain region across studies. However, these 

same abnormalities map to different brain regions within the same brain network. 

Network-level analyses account for such a possibility, thereby increasing the statistical 

power to detect commonalities across studies56,57,59. Second, prior studies rarely test 

specificity by comparing psychiatric disorders to other brain disorders. Finally, the causal 

interpretation of neuroimaging findings is ambiguous when studies focus on correlates 

of illness. Neuroimaging correlates might cause, compensate for, or be coincidentally 

related to psychiatric disorders. The correct interpretation of these correlates is essential 

for developing effective neuromodulation targets60,61.

In this study, we used morphometric and brain lesion datasets coupled with a wiring diagram 

of the human brain to derive a convergent brain network for psychiatric illness.

Results

Significant, Sensitive, and Specific Transdiagnostic Network

Traditional ALE meta-analysis of psychiatric coordinates (Dataset 1) identified gray matter 

decreases in bilateral anterior insula, dorsal anterior cingulate cortex, dorsomedial prefrontal 

cortex, thalamus, amygdala, hippocampus, superior temporal gyrus, and parietal operculum, 

consistent with prior work50 (Figure 1A). These regions survived cluster-wise multiple 

comparisons correction (Figure 1A Significant Results). However, fewer than 35% of 

studies contributed to any one cluster (Figure 1A Sensitivity), and no cluster was specific 

to psychiatric (Dataset 1) versus neurodegenerative coordinates (Dataset 2) (Figure 1A 

Specificity, two-sample t-test, nothing survives multiple comparisons correction).

Coordinate network mapping identified results that were more statistically robust than 

those from the ALE meta-analysis (Figure 1B Significant Results, one-sample t-test, 

voxels survive multiple comparisons correction). Psychiatric atrophy coordinates from 85% 

of studies were functionally connected to the same network of brain regions (Figure 

1B Sensitivity). This network was defined by positive connectivity to bilateral insula, 

anterior cingulate cortex, posterior cingulate, and left frontal pole, and by negative 

connectivity to right inferior temporal gyrus, posterior parietal cortex, bilateral lateral 

occipital cortex (superior division), brainstem, and cerebellum (Supplementary Figure 1, 

Supplementary Table 1). The topography of this transdiagnostic network was independent of 

statistical threshold (Supplementary Figure 2) and specific to psychiatric (Dataset 1) versus 

neurodegenerative disorders (Dataset 2)(Figure 1B Specificity, two-sample t-test, voxels 
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survive multiple comparisons correction). The strongest peak of this transdiagnostic network 

was in the posterior parietal cortex (Brodmann Area 7) near the intraparietal sulcus (MNI 

Coordinates: −22, −70, 64).

All Psychiatric Diagnoses Independently Contribute

Leave-one-diagnosis-out analyses (Dataset 1) assessed whether any single diagnosis was 

disproportionately influencing our results. With ALE meta-analysis, dropping one diagnosis 

repeatedly changed the map topography, resulting in low spatial correlations with the 

comprehensive ALE map from all diagnoses (spatial r = 0.344–0.453, Supplemental Table 

2). In contrast, coordinate network mapping results were robust to leave-one-out analyses 

(spatial r = 0.980–0.998) and significantly more robust than the ALE maps (p<0.001). These 

results did not change when we excluded negatively correlated regions from the coordinate 

network mapping results (Supplementary Table 2).

Network Damage Correlates with Psychiatric Comorbidity

We overlayed lesions from an independent dataset (Dataset 3; Figure 2A) onto the ALE 

map and the transdiagnostic network in order to evaluate whether damage to either 

map correlated with the number of post-lesion psychiatric diagnoses (i.e., psychiatric 

comorbidity). Each lesion was associated with a post-lesion SCID score (i.e., number of 

psychiatric diagnoses).

We found no evidence of a correlation between psychiatric comorbidity and damage 

to the ALE map (Pearson r=0.02, p=0.766; Figure 2B). By contrast, there was a 

statistically significant correlation between psychiatric comorbidity and lesion damage to 

the transdiagnostic network (Figure 2B and Figure 2C; Pearson r=−0.21, p=0.01), which was 

independent of statistical threshold (Supplemental Figure 3). A multiple regression model 

showed that the transdiagnostic network, but not the ALE map, independently predicted the 

number of post-lesion psychiatric diagnoses (p = 0.003 versus 0.1, respectively).

Replication in an Independent Lesion Dataset

The same lesion dataset (Dataset 3) was used to generate a data-driven lesion network 

showing connections that co-vary with the number of psychiatric diagnoses (Figure 3A and 

Figure 3B). The topography of this lesion network was similar when we controlled for lesion 

size (spatial r=0.96). Despite being derived from an independent dataset, the topography 

of this lesion network was similar to the coordinate-based transdiagnostic network (r=0.65) 

and more similar than expected by chance (p=0.02 with 10,000 permutations: Supplemental 

Figure 4). The lesion network was also significantly more similar to the transdiagnostic 

network than it was to the ALE map (r=0.65 versus r=0.11, p=0.02).

Neurosurgical Ablation Targets the Network

All four published neurosurgical ablative targets for psychiatric disorders (Dataset 4) 

intersected the transdiagnostic network (Figure 4). One-sample t-tests showed anterior 

capsulotomy (p<0.001), anterior cingulotomy (p<0.001), subcaudate tractotomy (p<0.001), 

and limbic leucotomy (p<0.001) damage the regions positively connected to psychiatric 

coordinates. Two-sample t-tests showed that these findings were all specific to psychiatric 
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versus neurodegenerative coordinates (anterior capsulotomy p=0.044, anterior cingulotomy 

p=0.007, subcaudate tractotomy p = 0.002, and limbic leucotomy p<0.001).

Spatial Correlation with Canonical Brain Networks

Canonical brain networks most similar to our transdiagnostic network were the visual 

(spatial r= 0.48), dorsal attention (spatial r=0.32), and default mode (spatial r=−0.34) 

networks (Supplemental Table 3). However, none of these canonical networks aligned 

with our transdiagnostic network as well as our data-driven lesion network for psychiatric 

comorbidity (spatial r=0.65).

Discussion

Psychiatric disorders are typically studied individually despite sharing neurobiology and 

frequently co-occurring. This neurobiological and clinical overlap highlights opportunities 

for transdiagnostic treatments that target a shared brain network. In this study, we used 

morphometric and brain lesion datasets coupled with a wiring diagram of the human brain to 

derive this convergent brain network for psychiatric illness.

There are five main findings. First, atrophy coordinates across psychiatric disorders 

mapped better to a common brain network than they did to common brain regions. This 

transdiagnostic network included positive connectivity to insula, anterior cingulate, posterior 

cingulate, and left frontal pole as well as negative connectivity to posterior parietal cortex, 

lateral occipital cortex, brainstem, and dorsal attention regions of the cerebellum62. Second, 

this network was robust to leave-one-diagnosis out analyses. Third, this network was 

specific to psychiatric versus neurodegenerative disorders. Fourth, lesion-induced damage 

to the network correlated with the number of post-lesion psychiatric diagnoses. Finally, this 

network aligned with neurosurgical ablation targets for psychiatric disorders, suggesting 

possible therapeutic relevance and generating testable hypotheses for neuromodulation 

studies.

Our study builds on prior work leveraging neuroimaging, genetic, and phenotypic data to 

identify commonalities across psychiatric diagnoses6,26,50,51,63–72. An example of this prior 

work is the ALE meta-analysis by Goodkind et al.50 showing convergent gray matter loss in 

bilateral insula and anterior cingulate. We reproduced these ALE results, but we also found 

limitations in terms of sensitivity, specificity, robustness, and correlation with lesion-induced 

effects. We addressed these limitations by analyzing the same dataset with coordinate 

network mapping and by leveraging additional datasets. Our findings are consistent with 

recent work suggesting that coordinate network mapping can identify convergent findings 

across neuroimaging studies in ways that complement ALE meta-analyses53,54,57. More 

broadly, our findings suggest that atrophy coordinates across psychiatric diagnoses map 

better to a brain network than they do to an individual brain region.

Our transdiagnostic network includes positive peaks in the bilateral insula, anterior 

cingulate, posterior cingulate, and left frontal pole. As expected, many of these positive 

peaks are consistent with Goodkind et al. and with an ENGIMA consortium study that 

examined structural variance across six major psychiatric disorders48,49. Our positive peaks 
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are commonly associated with psychiatric illnesses, with hypothesized roles in salience 

detection, emotion regulation, self-referential processes, and executive function48–50,73–76.

Our transdiagnostic network also includes negative peaks in the posterior parietal cortex, 

occipital cortex, brainstem, and dorsal attention regions of the cerebellum62. In fact, 

the strongest overall peak in our network was a negative peak near the intraparietal 

sulcus in Brodmann Area 7. Our negative peaks are not traditionally associated with 

psychiatric illnesses. Instead, they are associated with non-specific processes such as visual 

processing and multisensory integration77–86. However, data-driven transdiagnostic research 

has increasingly highlighted occipitoparietal regions as well as cerebellum63,72,80–83,87. 

For example, a data-driven analysis of connectome-wide functional connectivity found 

an association between higher “p factor” scores and connectivity abnormalities between 

visual association cortex and frontoparietal networks implicated in executive control and 

self-referential processes 63. Similarly, an integrated analysis of structural connectomes and 

single nucleotide polymorphisms highlighted occipital cortex and its links to default mode 

and cognitive control networks in a “vulnerability network” for psychiatric illness64. There 

is also evidence from data-driven multimodal neuroimaging that higher “p factor” scores are 

associated with structural changes within cerebello-thalamo-cortical circuit as well as visual 

association cortex, although the reproducibility of the cerebellum finding has been slightly 

less consistent 71,72,87.

Taken together, the positive and negative peaks that emerged from our analyses represent a 

transdiagnostic network that might be implicated in selective attention and multisensory 

processing, both of which are important for cognitive control 63,72,80–83,87. This 

transdiagnostic network cuts across canonical brain networks. There is precedent for looking 

beyond single canonical brain networks to explain transdiagnostic psychopathology64. For 

example, the triple network model proposes that general psychopathology is associated 

with an imbalance between multiple networks (i.e., CEN, DMN, and salience network)88. 

Similarly, the “vulnerability network” for psychiatric illness mentioned above overlapped 

with but was not fully encapsulated by canonical networks64. In our study, no single 

canonical network showed more spatial similarity to our transdiagnostic network than the 

network generated from an independent lesion dataset (Dataset 3).

In the end, our study answers important questions about if and where psychiatric 

neuroimaging findings converge, but it does not address why or how these locations 

contribute to psychiatric illness.

Our transdiagnostic network was derived from gray matter atrophy across psychiatric 

disorders. Gray matter atrophy is challenging to interpret, especially in psychiatric disorders 

for which there are few sources of causal information. Even studies that show reversal 

of gray matter atrophy with successful treatment provide limited causal insights, as 

morphometric changes could still be correlates or epiphenomena of illness or treatment 
57,89–91. An important strength of our study is that we tested correlative findings from 

a morphometric dataset with brain lesions associated with psychiatric illness in an 

independent dataset (dataset 3). These tests examined the correlation between lesion location 

and the number of post-lesion psychiatric diagnoses quantified via SCID. It is possible 
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that some participants had psychiatric illnesses that preceded the brain lesion or the SCID. 

Similarly, some participants may have had psychiatric illnesses that were causally unrelated 

to the brain lesions. However, such cases would bias us against the present findings59,92. 

Our lesion location results were statistically significant despite these sources of noise, 

highlighting the possibility that the true effect size is larger than what we observed.

Despite its limitations, mapping brain lesions is an important strategy for beginning to 

address the causality gap in psychiatric neuroimaging60,61,93. Our results highlight the 

importance of causal sources, as lesion-induced effects on our transdiagnostic network 

were opposite of what one may have predicted if atrophy was causally linked with greater 

psychiatric illness or higher psychiatric comorbidity. In our study, atrophy in anterior 

cingulate and bilateral insula (as well as regions positively connected to them) correlated 

with transdiagnostic psychiatric illness. This finding alone provides limited insight into how 

such atrophy should be interpreted. However, brain lesions that intersect anterior cingulate 

and bilateral insula (as well as regions positively connected to them) correlated with 

lower psychiatric comorbidity, aligning with neurosurgical ablation targets for psychiatric 

disorders. Taken together, our results suggest that transdiagnostic gray matter atrophy in 

anterior cingulate and bilateral insula are not causally related to psychiatric illness. Instead, 

this atrophy may be a consequence of or a compensation for psychiatric illness. This 

interpretation is difficult to contextualize because no prior studies leveraged brain lesions to 

assess transdiagnostic circuitry or comorbidity. The field of epilepsy offers some precedent 

for interpreting volumetric changes as an effect of a disorder rather than a cause of it. 

In patients with epilepsy, gray matter atrophy and cortical thinning may be prevented or 

diminished with resective surgery94–96. Similar models have been proposed for psychiatric 

disorders, but more data are needed97–99.

Our preliminary results may have therapeutic relevance for neuromodulation. Historically, 

lesion-based treatments have often targeted the same brain region for different psychiatric 

diagnoses45–47. Our transdiagnostic network aligns with these lesion-based targets and 

identifies testable targets for future trials that consider psychiatric comorbidity. For example, 

our peak near the intraparietal sulcus could be targeted with excitatory TMS in patients with 

multiple psychiatric disorders. This trial would be justified by mounting evidence that brain 

lesions can provide the causal insights necessary for treatment target derivation100–102. Our 

results may also have relevance for medications and psychotherapies that are effective for 

multiple psychiatric illnesses, but it is challenging to measure their focal effects on brain 

networks.

There are several limitations to consider. First, this study was retrospective rather 

than prospective. We intentionally used data from published meta-analyses to minimize 

selection bias, so future studies are needed to prospectively test our findings. Second, our 

morphometric dataset (Dataset 1) had no accompanying metadata on demographics, illness 

severity or duration, medication use, or biopsychosocial variables that might vary across 

studies and influence morphometric changes. However, these variables should increase the 

probability of a false negative. Our transdiagnostic network survived multiple statistical 

tests across multiple datasets despite these sources of noise, highlighting the possibility that 

the true effect size may be larger than what we observed. Third, we only had access to 
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a single lesion dataset that quantified the number of post-lesion psychiatric diagnoses at a 

single timepoint (Dataset 3). It is possible that some participants had psychiatric illnesses 

that preceded the brain lesion or was unrelated to the brain lesion. However, such cases 

would bias us against the present findings. Future work replicating our findings in additional 

independent lesion datasets is needed. Fourth, coordinate and lesion network mapping 

were performed with a normative connectome. Prior work suggests that disorder-specific 

connectomes do not change results43,103, but future studies could explore this possibility 

further. Fifth, our study highlights similarities across psychiatric diagnoses, but it does not 

address differences between them.

In summary, atrophy coordinates across psychiatric disorders mapped to common brain 

network that was sensitive, specific, robust, and aligned with lesion-induced effects. This 

network may help explain high rates of psychiatric comorbidity and could highlight 

neuromodulation targets for patients with psychiatric comorbidities.

Methods

Dataset Overview

We analyzed four independent published datasets in full to minimize selection bias. In each 

dataset, participants provided informed consent to data collection or the institutional review 

board approved retrospective analysis of symptom and imaging data.

Dataset 1 was sourced from a published activation likelihood estimation (ALE) meta-

analysis of whole-brain voxel-based morphometry studies comparing patients with 

psychiatric disorders to healthy controls50. The authors excluded neurodevelopmental 

disorders, personality disorders, patients with neurological comorbidities, and disorders 

assessed in fewer than 10 studies. These criteria yielded a sample size of 15892 individuals 

from 193 studies50 covering six diagnostic categories (i.e., schizophrenia, bipolar disorder, 

depression, addiction, obsessive-compulsive disorder, and anxiety). Each of the 193 studies 

reported MNI coordinates at which patients with psychiatric disorders had more atrophy 

than controls.

Dataset 2 was sourced from published neuroimaging studies in patients with Alzheimer’s 

disease, behavioral variant frontotemporal dementia, corticobasal syndrome, and progressive 

non-fluent aphasia54. Each of the 72 studies reported a series of coordinates at which 

patients with neurodegenerative disorders had more atrophy than controls.

Dataset 3 was sourced from the Vietnam Head Injury Study, a multi-decade prospective 

follow-up study of veterans with and without penetrating head injuries104,105 . Data 

from 194 veterans who had completed the Structured Clinical Interview for Diagnostic 

and Statistical Manual of Mental Disorders (SCID) after a penetrating head injury were 

analyzed. For each participant, penetrating lesions were localized using head CT and post-

lesion psychiatric diagnoses were quantified via SCID. The lesion masks used in this study 

were identical to those used in prior studies106,107. These lesion masks were created by 

manual segmentation, spatial normalization to Montreal Neurological Institute (MNI) 152 
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atlas space, and binarization such that voxels inside the lesion were assigned a value of “1” 

and voxels outside the lesion were assigned a value of “0”107.

Dataset 4 was sourced from published neurosurgical ablation coordinates for depression, all 

of which have also been used for multiple psychiatric disorders46.

Activation Likelihood Estimation

First, we mapped atrophy coordinates to common brain regions by replicating the Goodkind 

et. al.50 results using Dataset 1 and GingerALE108 (10,000 permutations, cluster-forming 

threshold at voxel-level p < 0.005, cluster-level I-corrected threshold p < 0.05). We assessed 

sensitivity by quantifying the number of studies contributing to each significant cluster. 

Next, we assessed specificity by comparing ALE maps for psychiatric disorders (Dataset 

1) versus neurodegenerative disorders (Dataset 2) using the Contrast Analysis function in 

GingerALE (10,000 permutations), which searches for statistically significant differences 

in convergence between two datasets. We also generated an unthresholded ALE map for 

analyses requiring whole-brain coverage.

Coordinate Network Mapping

Next, we mapped atrophy coordinates to a common brain network. This network was 

identified in accordance with previously published methods using custom Python code54. 

Study-level atrophy maps were created with spherical seeds (4mm radius) centered at 

each coordinate associated with greater atrophy in patients with psychiatric disorders 

versus controls. A normative connectome of healthy controls (n=1000)109 was used to 

generate resting-state functional connectivity maps for each study-level atrophy map 

(Figure 1B). Resting-state functional connectivity data were processed in accordance with 

prior work109. A composite t-map was generated from these study-level maps using a 

voxel-wise one-sample t-test, with Bonferroni correction resulting in a threshold t-value 

of 5.66 (p<0.05/285,903 voxels = 1.76×10−7). Sensitivity was assessed by combining 

thresholded (t>5) study-level maps into a composite map depicting the percentage of studies 

overlapping at each brain voxel. We will refer to this coordinate network overlap map as the 

“transdiagnostic network.”

To ensure the transdiagnostic network was not dependent on our threshold choice, we 

repeated our analysis at higher thresholds as in prior work (t>7, t>10)54. We assessed 

specificity by comparing the resting state functional connectivity maps from psychiatric 

coordinates (Dataset 1) to similar maps from neurodegenerative coordinates (Dataset 2) 

using a voxel-wise two-sample t-test and Permutation Analysis of Linear Models (PALM) 

in FSL110,111, correcting for multiple comparisons using threshold-free cluster enhancement 

with a voxel-based FWE-corrected p<0.05. Note that this specificity map was generated 

using unthresholded functional connectivity maps, and thus is independent of the statistical 

threshold used to generate the overlap map.

Leave-One-Diagnosis-Out Analyses

We assessed the impact of each psychiatric diagnosis on our results by repeating ALE and 

coordinate network mapping in serial fashion, each time with one psychiatric diagnosis 
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omitted (Dataset 1). Spatial correlation was used to compare each leave-one-diagnosis-out 

map to the comprehensive ALE map and transdiagnostic network101,107. Two-sample t-tests 

were used to determine whether coordinate network mapping was more robust than ALE 

meta-analysis for leave-one-diagnosis out analyses (p < 0.05).

Lesion Network Mapping

We used an independent lesion dataset (Dataset 3) to inform the causal interpretation of the 

ALE map and our transdiagnostic network (Dataset 1). First, we hypothesized that damage 

to our transdiagnostic network, but not the ALE map, would correlate with psychiatric 

comorbidity. To test this hypothesis, we overlayed each lesion onto the ALE map and the 

transdiagnostic network. The sum of lesion-circumscribed voxel values is considered the 

“damage score” 107,112. We assessed the correlation between damage score and the number 

of post-lesion psychiatric diagnoses while controlling for lesion size, GAF, and outliers.

Second, we hypothesized that a network derived from lesions associated with psychiatric 

disorders (Dataset 3) would align better with the transdiagnostic network than it did 

with the ALE map (Dataset 1). To test this hypothesis, we computed the whole-brain 

connectivity of each lesion using a normative connectome. Connections that co-varied 

with the number of psychiatric diagnoses were identified, generating a lesion network 

for psychiatric comorbidity. We used permutation testing101 with custom Matlab code to 

assess the similarity between this lesion network and the ALE map and the transdiagnostic 

network. Briefly, we recomputed the lesion network 10,000 times by randomly assigning 

SCID scores to connectivity profiles. Each randomly generated map was compared to the 

ALE map and the transdiagnostic network via spatial correlation. Significance was defined 

as greater spatial correlation between real versus randomly permuted maps in at least 95% of 

instances (p<0.05).

Neurosurgical Ablation Alignment

We tested whether neurosurgical ablation targets for psychiatric disorders aligned better with 

the transdiagnostic network than they did with the ALE map. We placed 10mm spheres 

at published target coordinates for anterior capsulotomy, anterior cingulotomy, subcaudate 

tractotomy, and limbic leucotomy 46. For each sphere, we calculated the “damage score” 

by summing the lesion-circumscribed voxel values on the ALE map and the transdiagnostic 

network 107,112. Significance (p < 0.05) was assessed in Excel by comparing this damage 

score versus zero (via one-sample t-test). We also compared the damage score of each 

simulated lesion versus the damage score on the neurodegenerative network (via two-sample 

t-test).

Canonical Network Comparison

We compared the transdiagnostic network to canonical Yeo networks via spatial correlation. 

This exploratory analysis, run using custom Python code, tested the extent to which the 

transdiagnostic network was distinct from existing canonical networks.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mapping atrophy coordinates in psychiatric illness to networks rather than regions. (A) 

Atrophy coordinates from 15892 individuals in 193 VBM studies were analyzed via ALE. 

The results of this regional analysis aligned with those published previously (Significant 

Results). However, none of the ALE clusters had more than half of studies contributing to 

them (Sensitivity), and none of the ALE clusters were specific to psychiatric disorders 

versus neurodegenerative disorders (Specificity, two-sample t-test, no voxels survived 

multiple comparisons correction). (B) The same atrophy coordinates were analyzed via 

coordinate network mapping (CNM), a network-based analysis. Functional connectivity 

between atrophy coordinates in each study and the rest of the brain was computed using 

a normative connectome (n=1000). Positive functional connectivity is shown in warm 

colors, and negative functional connectivity (i.e., anticorrelations) are shown in cool colors. 

Relative to ALE results, CNM results were statistically stronger (Significant Results, one-

sample t-test, voxels displayed survived multiple comparisons correction), explained more 

variance (Sensitivity), and survived comparison to neurodegenerative disorders (Specificity, 

two-sample t-test, voxels displayed survived multiple comparisons correction).
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Figure 2. 
Network mapping results align better with lesion-induced psychiatric diagnoses than 

traditional ALE. (A) A coverage map depicting the number of lesions in an independent 

dataset (dataset 3) that intersected each voxel in the brain. (B) The top panel shows three 

lesions overlayed onto the ALE map. The number above each brain slice represents the 

network damage score, or the sum of the voxel values circumscribed by each lesion. The 

number below each brain slice represents the number of psychiatric diagnoses associated 

with that lesion. We found no evidence of a correlation between network damage and 

the number of post-lesion psychiatric diagnoses (Pearson r=0.02, p=0.766). The bottom 

panel shows the same three lesions overlayed onto the transdiagnostic network from 

coordinate network mapping (CNM). (C) There was a correlation between network damage 

and the number of post-lesion psychiatric diagnoses (Pearson r=−0.21, p=0.01). Lesions 

with positive network damage scores on the transdiagnostic network were correlated with 

lower psychiatric comorbidity. By contrast, lesions with negative network damage scores 

on the transdiagnostic network were correlated with higher psychiatric comorbidity. A 

multiple regression model showed that the transdiagnostic network, but not the ALE map, 

independently predicted the number of post-lesion psychiatric diagnoses (p = 0.003 versus 

0.1, respectively).
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Figure 3. 
Convergent network topography across atrophy and brain lesions associated with psychiatric 

illness. (A) Brain lesions from an independent dataset (Dataset 3) were analyzed via 

lesion network mapping, a network-based analysis. Functional connectivity between each 

brain lesion and the rest of the brain was computed using a normative connectome. (B) 

The lesion network map shown reflects the correlation between each brain voxel and 

post-lesion psychiatric diagnoses. This lesion network map was compared to the coordinate 

network map (Dataset 2) via permutation testing. Briefly, the lesion network map was 

recomputed 10,000 times after random assignment of psychiatric diagnoses to functional 

connectivity profiles. Each of the 10,000 recomputed lesion network maps was compared 

to the coordinate network map via spatial correlation. The real lesion network map showed 

a higher spatial correlation to the coordinate network map than randomly permuted lesion 

network maps in greater than 98% of the instances (r=0.65, p=0.02). The lesion network was 

also significantly more similar to the transdiagnostic network than it was to the ALE map 

(r=0.65 versus r=0.11, p=0.02).
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Figure 4. 
Alignment between neurosurgical ablation targets for psychiatric disorders and our 

coordinate-based transdiagnostic network. Spheres were placed at published coordinates for 

anterior capsulotomy, anterior cingulotomy, subcaudate tractotomy, and limbic leucotomy. 

These spheres were overlayed onto the transdiagnostic network from CNM. All targets 

hit the regions with positive connectivity to atrophy coordinates, which aligns with prior 

analyses showing that atrophy in these regions correlates with lower psychiatric comorbidity. 

One-sample t-tests showed anterior capsulotomy (p<0.001), anterior cingulotomy (p<0.001), 

subcaudate tractotomy (p<0.001), and limbic leucotomy (p<0.001) damage the regions 

positively connected to psychiatric coordinates. Two-sample t-tests showed that these 

findings were all specific to psychiatric versus neurodegenerative coordinates (anterior 

capsulotomy p=0.044, anterior cingulotomy p=0.007, subcaudate tractotomy p = 0.002, and 

limbic leucotomy p<0.001).
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