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Abstract: Importance: Accurate pre-treatment prediction of distant metastasis in patients with Na-
sopharyngeal Carcinoma (NPC) enables the implementation of appropriate treatment strategies for 
high-risk individuals. 

Purpose: To develop and assess a Convolutional Neural Network (CNN) model using pre-therapy 
Magnetic Resonance (MR) imaging to predict distant metastasis in NPC patients. 

Methods: We retrospectively reviewed data of 441 pathologically diagnosed NPC patients who un-
derwent complete radiotherapy and chemotherapy at Renmin Hospital of Wuhan University (Hubei, 
China) between February 2012 and March 2018. Using Adobe Photoshop, an experienced radiolo-
gist segmented MR images with rectangular regions of interest. To develop an accurate model ac-
cording to the primary tumour, Cervical Metastatic Lymph Node (CMLN), the largest area of inva-
sion of the primary tumour, and image segmentation methods, we constructed intratumoural and 
intra-peritumoural datasets that were used for training and test of the transfer learning models. Each 
model’s precision was assessed according to its receiver operating characteristic curve and accura-
cy. Generated high-risk-related Grad-Cams demonstrated how the model captured the image fea-
tures and further verified its reliability. 

Results: Among the four models, all intra-peritumoural datasets performed better than the corre-
sponding intratumoural datasets, with the CMLN intra-peritumoural dataset exhibiting the best per-
formance (average area under the curves (AUCs) = 0.88). There was no significant difference be-
tween average AUCs of the Max and NPC tumour datasets. AUCs of the eight datasets for the four 
models were higher than those of the Tumour-Node-Metastasis staging system (AUC=0.67). In 
most datasets, the xception model had higher AUCs than other models. The efficientnet-b0 and 
xception models efficiently extracted high-risk features. 

Conclusion: The CNN model predicted distant metastasis in NPC patients with high accuracy. 
Compared to the primary tumour, the CMLN better predicted distant metastasis. In addition to intra-
tumoural data, peritumoural information can facilitate the prediction of distant metastasis. With a 
larger sample size, datasets of the largest areas of tumour invasion may achieve meaningful accura-
cy. Among the models, xception had the best overall performance. 
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1. INTRODUCTION

Nasopharyngeal Carcinoma (NPC) is one of the most
prevalent malignancies in southern China and Southeast Asia 
[1, 2]. However, its anatomical location makes it inaccessi-
ble, and radiotherapy is the primary treatment for NPC be-
cause it is extremely sensitive to radiation. In recent years, 
intensity-modulated radiotherapy has replaced conventional 
traditional radiotherapy. Intensity-modulated radiotherapy 
improves local recurrence-free survival [3], especially in 
patients with advanced NPC. According to prior studies, the 
locoregional control rate is more than 90%, and the major 
cause of treatment failure is the occurrence of Distant Metas-
tasis (DM) [4, 5]. Most NPC patients develop cervical lymph 
node metastasis and DM. The vast majority of DM occurs 3 
years after completion of radiotherapy; approximately half of 
the patients present with metastasis within 1 year, while a 
quarter present in the second and third years [6]. Although 
improvements in radiotherapy and chemotherapy have in-
creased the survival rate of patients with DM, the 5-year 
survival rate remains < 10% [7]; furthermore, most patients 
die earlier as metastasis progress. Thus, identifying high-risk 
patients with DM before commencing more aggressive ther-
apeutic strategies is necessary. 

Currently, oncologists select treatment methods for NPC 
patients based on their Tumour-Node-Metastasis (TNM) 
stage [8]. However, patients with the same TNM stage can 
have different outcomes even when they receive the same 
treatment [9]. An explanation could be that the TNM stage 
reflects only the anatomical differences in the types of tu-
mour invasion while neglecting intratumoural variations. 
Various studies predicted the risk of DM in NPC patients 
based on molecular mechanisms. Epstein-Barr (EB) virus 
DNA load, neutrophil-to-lymphocyte ratio, pre-treatment 
serum EB virus shell antigen IgA antibody levels, mi-
croRNA signatures, and epidermal growth factor receptor 
overexpression are factors related to metastasis and progno-
ses [10-14]. However, none of these indicators have high 
predictive specificity and accuracy. 

With recent and rapid advancements in artificial intelli-
gence technology, Deep Learning (DL) algorithms can effi-
ciently analyse and process large datasets of medical images. 
These algorithms can play key roles in preoperative diagno-
ses, evaluation of curative effects, and determination of 
prognoses of NPC [15-18]. Recent studies demonstrated that 
the diagnostic accuracy of a DL-based NPC detection model 
is significantly higher than that of imaging experts; also, it 
can automatically outline the primary focus of the nasophar-
ynx to achieve accurate tumour segmentation [13, 19-21]. 
Some studies compared the prognostic accuracy of a Mag-
netic Resonance Imaging (MRI)-based DL model to that of 
the TNM system, reporting that the accuracy of the DL mod-
el in predicting overall survival, DM-free survival, and lo-
coregional recurrence-free survival in NPC patients was 
higher than that of the TNM system-based model [15, 16]. 
These findings indicate that the DL model can effectively 
predict the curative effect in NPC patients. However, the use 
of a DL model to predict DM of NPC is yet to be estab-
lished. Some previous studies on DM prediction in NPC pa-
tients were based on radiomics approaches [6, 22, 23]. A 
study was based on DL; however, their dataset comprised 
less than 200 images; hence this model’s accuracy may be 

unideal [24]. Predicting the risk of DM and providing indi-
vidualised and accurate treatment suggestions before metas-
tasis can occur is key to improving the therapeutic effect in 
NPC patients and achieving long-term survival. This study 
aimed to establish a pre-treatment DL model using MR im-
ages of the nasopharynx and neck to predict the risk of DM, 
facilitating a more rigorous screening and intensive treat-
ment strategy for high-risk patients, thus improving treat-
ment efficacy and survival rates among NPC patients.  

2. MATERIALS AND METHODS

2.1. Patient Screening 

In total, 441 patients with primary NPC diagnosed and 
treated at the Renmin Hospital of Wuhan University between 
February 2012 and March 2018 were retrospectively select-
ed. Data on patients’ age, sex, clinical TNM stage, treatment 
modality, pathological results, and pre-treatment MR images 
were collected together with other data. The TNM staging 
was based on the 7th American Joint Committee on Cancer 
manual [25]. Patients were routinely examined using a bone 
scan, chest Computed Tomography (CT), abdominal ultra-
sound, and MRI and were diagnosed with DM if one of the 
tests confirmed its presence. If the imaging diagnosis was 
unclear, the suspected site was biopsied, or a dynamic peri-
odic review was performed every 3 months for at least 12 
months. If the lesion further enlarged, the patient was con-
sidered to have DM. If no significant change in the lesion 
was observed during the follow-up period, DM was exclud-
ed. Since more than 90% of patients develop DM within 3 
years of initial NPC diagnosis, we followed up with patients 
without DM for at least 3 years. When data was collected, 
we observed that some patients who did not return to our 
hospital were diagnosed with DM at local hospitals. There-
fore, in addition to ensuring regular follow-ups for 3 years, 
we also ensured strict telephone follow-ups for all patients 
and excluded patients lost to the telephonic follow-up. Pa-
tients were only classified as not having DM when all clini-
cal, imaging, and telephonic follow-up data indicated that the 
patient had no DM. When any of these data indicated the 
presence of DM, we classified patients into the DM group. 
The inclusion criteria were as follows: primary NPC patho-
logically diagnosed and treated at our hospital; MRI exami-
nation of the nasopharynx within 1 month before treatment; 
bone scan, chest CT, abdominal ultrasound, and MRI data; 
received regular reviews; and complete and uninterrupted 
treatment. The exclusion criteria were as follows: the presence 
of a primary malignant tumour at other sites, clinical uncer-
tainty as to whether metastasis occurred, surgery included in 
the treatment plan, failed telephonic follow-ups, interrupted 
treatment owing to intolerance to radiotherapy or chemothera-
py, or lack of required imaging data. Patient screening and the 
exclusion criteria are shown in the flowchart (Fig. 1). 
2.2. Image Acquisition and Pre-Processing 

All patients underwent nasopharynx and neck imaging 
with a 1.5-T MR scanner providing pre-treatment axial T1-
weighted enhanced images, which were stored in DICOM 
format at a size of 512 × 512 pixels. Segmenting the Region 
of Interest (ROI), axial T1-weighted enhanced images ob-
tained from the nasopharynx and neck scans were imported 
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into Adobe Photoshop software. The rectangular area closest 
to the tumour tissue was manually delineated, layer by layer, 
all segregated by an experienced radiologist. The approxi-
mate size of the ROI, including all tumour tissues and cervi-
cal metastatic lymph nodes, was 400 × 200 pixels in each 
layer of the image; however, the size of the rectangular ROI 
varied according to tumour size. We used the Padding opera-
tion in the convolutional neural network (CNN) to fill the 
"0" pixels around the image and convert all segmented imag-
es into 512 × 512 pixels. An NPC-CMLN dataset was estab-
lished based on the segregated ROIs of primary tumours and 
Cervical Metastatic Lymph Nodes (CMLNs) in NPC patients 
to compare the role of the primary tumour and CMLNs in 
predicting DM. The NPC and CMLN datasets were estab-
lished based on the primary tumour and CMLNs, respective-
ly. Since tumour size may also provide important information 
for predicting DM, we selected three slices of the largest tu-
mour invasion areas to establish a Max tumour dataset. As 
reported, the peritumoural region has diagnostic value for pre-
dicting the tumour state [26]; therefore, we also enlarged the 
ROI of the tumour by 3 mm to include the peritumoural area, 
defined as the intra-peritumoural area of the tumour. Each of 
the above four datasets included the intratumoural and intra-
peritumoural sub-datasets, comprising eight datasets in total: 
NPC-CMLN intratumour, NPC intratumour, CMLN intra-
tumour, Max tumour intratumour, NPC-CMLN intra-
peritumour, NPC intra-peritumour, CMLN intra-peritumour, 
and Max tumour intra-peritumour. Patients were divided into 
the metastatic and nonmetastatic groups according to the 
presence or absence of metastasis during the follow-up peri-
od, and each MR image was labelled according to the pa-
tient’s results. In total, 441 NPC patients were assigned to 
the training and test groups in a 4:1 ratio based on a random 
number table. 

2.3. Network Architecture and Model Development  

We developed an end-to-end DL framework based on the 
MR images of the nasopharynx and neck to predict DM us-
ing Keras 2.2.0 and TensorFlow 2.0 in Python version 3.6. 
The DL network comprises convolution, activation, pooling, 
batch normalisation, and zero padding layers, which com-
plete feature extraction, nonlinear feature acquisition, repre-
sentative feature selection, model training acceleration, and 
image size unification during model training, respectively. 
We transferred the efficient net-b0, inception-resnet-v2, res-
net50 and xception CNN models frequently used in recent 
years for training. As the base network in the efficient net 
series, efficientnet-b0 comprises 16 MBconv blocks, two 
convolutional layers, a global average pooling layer and a 
fully connected layer, with the smallest model size and fast-
est detection speed. The inception-resnet-v2 network con-
sists of a stem, Inception -resnet blocks and a prediction lay-
er, characterized by the introduction of resnet residual struc-
ture in the inception module and the integration of the ad-
vantages of the two modules, thus improving the perfor-
mance of model image recognition. Resnet50 is composed of 
49 convolutional layers and one fully connected layer. In this 
residual network, a convolutional neural network with a 
depth of 50 layers is constructed by stacking 16 residual 
blocks, so the network has a stronger feature extraction ca-
pability for images. Xception is an improved network pro-
posed by Google for inception3, which introduces deep sepa-
rable convolution and residual join to reduce the number of 
model parameters while maintaining high accuracy and solv-
ing the problem of gradient disappearance or explosion. The 
eight datasets were used to train each model (Fig. 2). Finally, 
32 training models were obtained. We used transfer learning 
to overcome the limited number of training images. We 
modified the last layer of the CNN, mainly deleting its top 
layer and adding a customised full connection layer on the 

 
Fig. (1). Flowchart of the patient selection process. (A higher resolution / colour version of this figure is available in the electronic copy of 
the article). 
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Fig. (2). Models for the prediction of DM. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

top layer. We used the Adam Optimizer for network training. 
The training aimed to optimise the DL model parameters and 
establish a connection between MR images and the DM. The 
model training process is an iterative process where the func-
tion of each iteration is to optimise the model until the best 
prediction performance is obtained. We used cross entropy 
as the cost function to evaluate the model’s predictive per-
formance. The batch size and initial learning rate were set as 
32 and 0.0001, respectively, and training was stopped after 
40 epochs of model training. We set the dropout rate for the 
full link layer as 0.5 and added regular terms to the objective-
function to prevent overfitting. To further clarify the principles 
and explain the prediction results of the DL model, we used a 
visualisation algorithm to demonstrate how the DL model 
learned the DM-related information. The training queue con-
tained approximately 80% of the dataset (354/441 patients), 
while the test queue contained 20% (87/441).  

2.4. Statistical Analysis 

Statistical analyses for clinical data comparison were per-
formed using SPSS (version 24.0) and Python (version 3.6). 
The Kolmogorov-Smirnov test was used to verify the nor-
mality of data distribution. Continuous variables conforming 
to a normal distribution were expressed as means  ±  stand-
ard deviations. The chi-square (χ2) test was used to compare 
the frequency data, while the t-test used continuous data. The 
areas under the Receiver Operating Characteristic (ROC) 
curves (AUCs), accuracy, sensitivity, specificity and F1-
score were calculated to evaluate the performances of the 
eight datasets and the TNM staging system. Differences 

were considered statistically significant at P < 0.05. We 
demonstrated the prediction process of the model and its 
reliability by extracting feature maps from the final convolu-
tional layer and generating Grad-Cams for high-risk areas of 
the image using the Matplotlib package in Python. 

3. RESULTS 

3.1. Clinical Characteristics of the Study Population 

After screening, 441 patients who met the eligibility cri-
teria were enrolled in the primary (N = 354) and test (N = 
87) cohorts. There were no significant differences in the 
general information between the training and test groups 
Table 1. 

3.2. Performance of the Models 

Compared to that of the TNM classification (AUC = 
0.67), after the training of the four models, the eight datasets 
(NPC-CMLN intratumour, NPC intratumour, CMLN intra-
tumour, Max tumour intratumour, NPC-CMLN intra-
peritumour, NPC intra-peritumour, CMLN intra-peritumour, 
and Max tumour intra-peritumour) exhibited an increased 
ability to predict the occurrence of DM, with the average 
AUCs being 0.77 (0.76-0.78), 0.74 (0.70-0.76), 0.81 (0.77-
0.85), 0.72 (0.68-0.77), 0.82 (0.78-0.89), 0.78 (0.74-0.84), 
0.88 (0.86-0.91), and 0.79 (0.76-0.81), respectively. The 
performance of TNM classification is similar to that in pre-
vious studies [27-29]. Among the four models, the four 
intra-peritumour datasets performed better than the four 
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Table 1. Clinical characteristics of patients in the training and test cohorts. 

- 

Training Cohort - P - Test Cohort - P - P 

DM NO DM - - - DM NO DM - - - - 

Patients 92 262 - - - 22 65 - - - - 

Age 50.93 ± 12.96 51.07 ± 11.02 - 0.92 - 50.45 ± 14.61 50.94 ± 11.29 - 0.87 - 0.88 

Sex - - - - - - - - - - - 

Male 62 198 - 
0.13 

- 18 48 - 
0.45 

- 
0.65 

Female 30 64 - - 4 17 - - 

Staging1 - - - - - - - 
- 

- 
- 

- 

Ⅰ 0 7 - 

0.00 

- 0 5 - 

0.00 

- 

0.55 
Ⅱ 1 47 - - 0 7 - - 

Ⅲ 34 156 - - 9 36 - - 

Ⅳ 57 52 - - 13 17 - - 

T stage1 - - 
- 

- 
- 

- - 
- 

- 
- 

- 

T1 7 32 - 

0.00 

- 2 7 - 

0.08 

- 

0.46 
T2 18 106 - - 4 24 - - 

T3 18 79 - - 6 17 - - 

T4 49 45 - - 10 17 - - 

N stage1 - - 
- 

- 
- 

- - 
- 

- 
- 

- 

N0 3 40 - 

0.00 

- 1 10 - 

0.00 

- 

0.76 
N1 8 59 - - 1 17 - - 

N2 63 153 - - 15 36 - - 

N3 18 10 - - 5 2 - - 

Treatment - - - - - - - - - - - 

CCR2 37 143 - 
0.02 

- 9 39 - 
0.12 

- 
0.47 

IC+CCR3 55 119 - - 13 26 - - 

Note: 1Based on the 7th edition of the American Joint Committee on Cancer /International Union Against Cancer staging system. 
2Concurrent chemoradiation. 
3Including induction chemotherapy + radiotherapy, induction chemotherapy + concurrent chemoradiation CCR, concurrent chemoradiation; DM, distant metastasis; IC, induction 
chemotherapy. 
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Fig. (3). Receiver operating characteristic curves of DL Models. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 
 
corresponding intratumour datasets; the CMLN dataset 
exhibited the best performance (Fig. 3). 

The average accuracy curve results of the NPC-CMLN intra-
tumour dataset, NPC intratumour dataset, CMLN intra-
tumour dataset, Max tumour intratumour dataset, NPC- 
CMLN intra-peritumour dataset, NPC intra-peritumour 
dataset, CMLN intra-peritumour dataset, and Max tumour 
intra-peritumour dataset were 74.17%, 69.40%, 74.91%, 

68.45%, 75.82%, 75.22%, 80.39%, and 74.13%, respective-
ly, which were higher than those of the TNM staging sys-
tem (70.11%). The accuracy of the intra-peritumour datasets 
was higher than that of the four corresponding intratumour 
datasets, with the accuracy of the CMLN dataset being the 
highest (Fig. 4). In addition to accuracy, sensitivity, specificity 
and F1-score of the models were calculated, which were simi-
lar to the ROC curve results Table 2. 
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Fig. (4). Receiver operating characteristic curve of the TNM staging system. (A higher resolution / colour version of this figure is available in 
the electronic copy of the article). 
 
Table 2. Area under the receiver operating characteristic curves and the accuracy of the DL Models and TNM staging system. 

Datasets Models 
AUC Accuracy 

Intratumour Intra-Peritumour Intratumour Intra-Peritumour 

NPC-CMLN Efficientnet-b0 - 0.76 - 0.81 - 74.40 - 73.28 -

- Inception-resnet-v2 - 0.78 - 0.78 - 76.04 - 74.78 - 

- Resnet50 - 0.78 - 0.81 - 72.27 - 72.95 - 

- Xception - 0.77 - 0.89 - 76.68 - 82.25 - 

- - Average - 0.77 - 0.82 - 74.85 - 75.82 

NPC Efficientnet-b0 - 0.74 - 0.74 - 69.08 - 75.06 - 

- Inception-resnet-v2 - 0.70 - 0.76 - 71.20 - 73.62 - 

- Resnet50 - 0.74 - 0.76 - 71.20 - 72.95 - 

- Xception - 0.76 - 0.84 - 66.11 - 79.25 - 

- - Average  0.74 - 0.78 - 69.40 - 75.22 

CMLN Efficientnet-b0 - 0.81 - 0.88 - 76.81 - 79.58 - 

- Inception-resnet-v2 - 0.77 - 0.86 - 72.96 - 80.24 - 

- Resnet50 - 0.81 - 0.87 - 76.52 - 79.50 - 

- Xception - 0.85 - 0.91 - 73.35 - 82.25 - 

- - Average - 0.81 - 0.88 - 74.89 - 80.39 

Max tumour Efficientnet-b0 - 0.73 - 0.76 - 67.42 - 75.38 - 

- Inception-resnet-v2 - 0.68 - 0.79 - 64.63 - 71.65 - 

- Resnet50 - 0.70 - 0.80 - 71.20 - 72.97 - 

- Xception - 0.77 - 0.81 - 70.56 - 76.50 - 

- - Average - 0.72 - 0.79 - 68.45 - 74.13 

TNM - - 0.67 70.11 
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Fig. (5). Accuracy curves of DL Models. (A higher resolution / colour version of this figure is available in the electronic copy of the article). 

 
Class activation mapping is a powerful technique for 

computer vision classification tasks; it allows researchers to 
study the categorisation of images to better understand which 
parts of the image contribute the most to the model output. 
We used class activation mapping to generate Grad-Cams of 
yellow, green, and purple. The three colours of the Grad-
Cams represented different degrees of predictive signifi-
cance. The yellow region had the greatest correlation with 
classification, followed by the green and purple regions, 
which showed no predictive significance. The yellow and 
green areas for patients with DM represented characteristics 
that correlated with a higher metastatic risk. The presentation 
of the Grad-Cams aided a better understanding of how the 
DL network captured image features for prediction and re-
solved doubts regarding CNN's ability to learn in the appro-
priate direction. The yellow mainly distributed in the tumour 
region indicates the learning direction of the model is cor-
rect, while the concentration of the yellow area in the sur-
rounding normal tissue area indicates the wrong learning 
direction. The more concentrated the yellow area is in the 
tumour region, the stronger the interpretability of the model. 
Efficientnet-b0, inception - resnet-v2, and xception models 
extracted high-risk features mainly concentrated in the tu-
mour region, with efficientnet-b0 and xception being more 
concentrated. However, the high-risk features extracted by 
the resnet50 model deviated from the tumour region. Com-
pared to the four intratumoural datasets (Fig. 5), the Grad-

Cams of the four intra-peritumoural datasets were more fo-
cused on tumour regions (Fig. 6). 

The loss function value in the model training process 
evaluates the degree of inconsistency between the predicted 
value and real value of the models and is a standard used to 
measure the quality of model prediction-the smaller the loss 
function, the better the model’s robustness. We used the effi-
cientnet-b0 model as an example (Fig. 7). With iteration of 
the epoch, there was a constant decrease in training and test 
losses, indicating that our model was constantly learning. In 
both the intratumoural and intra-peritumoural datasets, the 
CMLN and NPC-CMLN datasets had the smallest loss val-
ues (Fig. 8). 

4. DISCUSSION 

The assessment of medical images is not limited to quali-
tative diagnosis but includes the acquisition and analysis of 
rich quantitative information providing data on disease se-
verity, best treatment choice, and patient prognosis [30, 31]. 
Artificial intelligence plays an increasingly important role in 
this process because of its powerful feature extraction and 
screening abilities. The traditional evaluation of tumour im-
ages relied on qualitative characteristics, such as tumour 
densities, enhancement patterns, regularity of tumour mar-
gins, and relationship with surrounding tissues. However, the 
more "hidden" information regarding factors, such as patient 
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Fig. (6). Grad-Cams of the DL Models in intra-peritumour datasets. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article). 

 

 
Fig. (7). Grad-Cams of the DL Models in intratumour datasets. (A higher resolution / colour version of this figure is available in the electronic 
copy of the article). 
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Fig. (8). Loss function curves of the DL Models. (A higher resolution / colour version of this figure is available in the electronic copy of the 
article).  
prognosis, late DM, and response to specific drug therapies, 
could not be identified. As a subset of artificial intelligence, 
DL retrieves this "hidden" information because of its superi-
or ability to automatically learn image features. This is a 
convenient way for researchers and clinicians to improve the 
accuracy of assessments and provide tailored medical ser-
vices. With the gradual application of intensive radiotherapy 
in clinical practice, the risk of local recurrence in NPC pa-
tients has shown an increased level of control, with DM be-
coming the main cause of death in these patients [32, 33]. 
Although additional induction chemotherapy can, to a certain 
extent, reduce the risk of DM in some patients, it also signif-
icantly increases the incidence of adverse events [34, 35]. If 
the risk of DM can be predicted before radiotherapy and 
chemotherapy, intensive treatment can be selected for those 
at high risk of DM, ensuring the best treatment plan in the 
high-risk group while minimising the risk of serious adverse 
reactions, due to additional radiotherapy and chemotherapy, 
in the low-risk group. 

Currently, treatment measures are formulated mainly 
based on the tumour’s TNM stage. However, in our study, 
the AUC and accuracy of the TNM stage in predicting the 
risk of DM in patients were only 0.67 and 70.11%, respec-
tively. In a previous study on cervical cancer, the peritu-
moural region was found to play a role in predicting lymph 
node metastases [36]. Therefore, we also explored whether 
the information in the tumor tissue predicted DM. Compared 
to those of the NPC-CMLN intra-peritumoural, NPC intra-
peritumoural, CMLN intra-peritumoural, and Max tumour 
intra-peritumoural datasets, the average AUCs of the NPC-
CMLN intratumoural, NPC intratumoural, CMLN intra-
tumoural, and Max tumour intratumoural datasets decreased 
from 0.82 to 0.77, 0.78 to 0.74, 0.88 to 0.81, and 0.79 to 
0.72, respectively, suggesting that the peritumoural region 
plays a role in predicting DM in NPC patients. Our results 
showed that in both the intratumoural and intra-peritumoural 
datasets, the CMLN datasets had the highest AUCs, indicat-
ing that the CMLN had a higher predictive value for DM 
than the primary tumour of NPC. Moreover, comparing the 
CMLN datasets, the number of images in the NPC-CMLN 

datasets was significantly larger; however, the AUCs were 
lower than those of the CMLN, which further suggested that 
CMLNs are more significant in predicting DM than the pri-
mary tumour of the NPC. The AUCs of the Max tumour 
datasets were similar to those of the NPC datasets; however, 
the number of images comprising the Max tumour datasets 
was significantly lower than those of the NPC datasets be-
cause the Max tumour datasets were composed of only 3 
images in each patient, and the number of images in the 
training cohort was < 1000, which was far lower than that of 
the NPC datasets. Accuracy may have been limited by the 
small number of images in the dataset. The dataset with slic-
es of the largest invasion area may provide meaningful and 
accurate values with larger sample size.  

Since different models have different data preferences, 
we chose four commonly used network models to train the 
datasets, thus avoiding some limitations of the models. We 
compared the average values of each dataset among the four 
models to obtain more stable and reliable results. By analysing 
the Grad-Cams generated by the four CNN models, we ob-
served that the high-risk features captured by the efficientnet-
b0and xception models were within the tumour region. The 
efficientnet-b0 and xception models’ Grad-Cams were more 
concentrated, indicating the correctness of the above models’ 
learning, while the resnet50 model extracted features that de-
viated from the tumour region. This was because each model 
had different data processing methods with different features 
being captured. Therefore, we trained multiple network mod-
els in the training model and selected the one most suitable for 
our data, according to its extracted features and accuracy. Af-
ter comparing the above characteristics of the four models, we 
found that the xception model performed best. Compared to 
the four intratumoural datasets, the Grad-Cams of the four 
intra-peritumoural datasets were easier to interpret. This fur-
ther indicated that the intra-peritumoural datasets better-
predicted metastasis. Previous publications on DM of NPC 
were radiomics-based studies with very limited sample sizes 
[6, 22, 23]. Recently, a DL-based study attempted to predict 
DM of NPC. The authors included 186 NPC patients; howev-
er, their dataset comprised only image slices showing the max-
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imum tumour extension. Thus, less than 200 images constitut-
ed the dataset; hence, the AUC value of their constructed 
model was only 0.66 [24]. Compared to previous studies, the 
advantages of our study are mainly reflected in the following 
three aspects: 1) The diversity of the data sets’ construction 
methods, i.e., we compared the roles of the primary tumour to 
CMLN, intratumoural to peritumoural regions, and all slices 
of the tumour to three slices, showing the maximum tumour 
extension in predicting distant metastasis; 2) multiple network 
models were selected to balance the data preferences of indi-
vidual models; 3) the sample size of images included in the 
present study was significantly larger than those in previous 
studies. 

Although our DL model exhibited good predictive per-
formance, our study had some limitations. First, our cohort 
size was relatively limited, but to ensure the quality of the 
dataset, we strictly excluded 1,135 patients from the initial 
list, leaving only 441 patients. Furthermore, given that EB 
virus DNA, lactic dehydrogenase, and haemoglobin levels 
are predictors of DM [37], using the DL to integrate these 
data and information from MR images to form a hybrid 
model is likely to obtain better predictive accuracy. Unfortu-
nately, the technical restrictions of our medical record sys-
tem prevented the retrieval of clinical laboratory data; thus, 
we were unable to implement this mixed DL model.  

CONCLUSION 

Our study demonstrated that a CNN that analyses pre-
treatment MR images could accurately predict DM in NPC 
patients. Our findings also indicated that both tumour re-
gions and tissues surrounding the tumours could provide 
important information for predicting DM. Compared to the 
primary tumour, the CMLN showed better performance in 
predicting DM, suggesting that CMLN may be riskier than 
invasions of primary sites of the NPC. 
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