Table 2.
Overview of metabolic engineering for microbial ester production
| Enzyme source | Production host | Ester products | Titer | Genetic manipulations | References |
|---|---|---|---|---|---|
|
S. cerevisiae (ATF1) |
Clostridium autoethanogenum | Ethyl acetate | 0.3 mM | Using CO-based feedstocks for microbial ester production | [104] |
| Butyl acetate | 4.5 mM | ||||
|
F. ananassa (AAT) |
S. cerevisiae | Ethyl crotonate | 125.59 ± 2.04 mg/L | The expression cassettes with different strengths to regulate the expression of key genes | [91] |
| S. cerevisiae (ATF1) | E. coli | Neryl acetate | 11.712 ± 0.653 mg/L | Overexpression of tHMG1 and supplementation with 2 g/L pyruvate | [105] |
| S. cerevisiae (ATF1) | E. coli | Isobutyl acetate | 2.48 g/L | Removing byproduct pathways (Δldh, ΔpoxB, Δpta) and overexpressing AAT | [82] |
| S. cerevisiae (ATF1) | E. coli | Isoamyl acetate | 0.78 g/L | ||
|
Staphylococcus aureus (CAT) |
E. coli | Isoamyl acetate | 8.8 g/L | A systematic modular design approach to control proteome reallocation for the selective microbial biosynthesis of branched-chain acetate esters via manipulation of substrate specificity and expression level of multiple pathway enzymes | [79] |
| S. cerevisiae (ATF1) | Pseudomonas putida KT2440 | Hexyl acetate | 160.5 mg/L | Overexpression of transporters | [106] |
|
V. cerevisiae (ATF1) |
E. coli | Indole-3-ethanol acetate | 550 ± 24.05 mg/L | Biosynthesis of indole-3-ethanol acetate directly from a renewable carbon source | [89] |
| S. cerevisiae (ATF2) | industrial yellow rice wine yeast strain | Ethyl acetate | 137.79 mg/L | Overexpressing the alcohol acetyltransferase-encoding gene ATF2 | [107] |
| Isoamyl acetate | 26.68 mg/L | ||||
| Isobutyl acetate | 7.60 mg/L | ||||
|
Wickerhamomyces anomalus (EAT1) |
S. cerevisiae | Ethyl acetate | 6.48 ± 0.32 g/L | A novel alcohol acetyltransferase family | [42] |
| S. cerevisiae (ATF1) | E. coli | Isobutyl acetate | 17.2 g/L | Engineered E. coli has an ability to produce acetate ester, isobutyrate ester, butyrate ester | [7] |
| Tetradecyl acetate | 137 mg/L | ||||
|
Strawberry (AAT) |
S. cerevisiae | Ethyl hexanoate | 42.35 ± 1.75 mg/L | Optimizing the synthetic pathway of ethyl hexanoate | [108] |
| S. cerevisiae (ATF1) | E. coli | Farnesyl acetate | 128 ± 10.5 mg/L | Biosynthesis of the advanced biofuel farnesyl acetate directly from glucose | [109] |
| Farnesyl acetate | 201 ± 11.7 mg/L | ||||
|
Strawberry (AAT) |
S. cerevisiae | Ethyl butyrate | 99.65 ± 7.32 mg/L | Introduced a butyryl-CoA synthesis pathway into S. cerevisiae | [110] |
|
Kiwifruit (AeAT9) |
S. cerevisiae | Ethyl acetate | 1.69 g/L | Impeded mitochondrial transport and utilization of pyruvate and acetyl-CoA to increase the ethyl acetate accumulation in the cytoplasm | [90] |
|
Strawberry (AAT) |
Clostridium acetobutylicum | Butyl butyrate | 40.60 mg/L | The one-step fermentation of butyl butyrate from glucose in the engineered C. acetobutylicum | [99] |
|
Apple (AAT) |
50.07 mg/L | ||||
| S. cerevisiae (ATF1) | E. coli | 2-Phenylethyl acetate | 687 mg/L | An economical process for the biosynthesis of 2-PEAc directly from glucose | [111] |
| S. cerevisiae (ATF1) | S. cerevisiae | Isobutyl acetate | 260.2 mg/L | Increase the ester production by improving the mitochondrial pyruvate concentration towards branched-chain alcohol biosynthesis | [112] |
| 3-Methyl-1-butyl acetate | 296.1 mg/L | ||||
| 2-Methyl-1-butyl acetate | 289.6 mg/L | ||||
|
Rosa hybrida (AAT) |
E. coli | Geranyl acetate | 10.36 g/L | Biosynthesis of monoterpene esters | [113] |
|
Strawberry (AAT) |
E. coli | Butyl acetate | 0.64 g/L | Engineer modular microbial platforms for anaerobic production of butyryl-CoA-derived designed esters from renewable feedstocks | [84] |
| Butyl butyrate | 0.45 g/L | ||||
| Ethyl butyrate | 0.41 g/L | ||||
| S. cerevisiae (ATF1) | E. coli | Anisyl acetate | 355 mg/L | An efficient artificial biosynthetic pathway from glucose to anisyl acetate | [114] |
| S. cerevisiae(ATF1) | E. coli | Butyl acetate | 22.8 g/L | Optimization of AAT expression and redox balance with auto-inducible fermentative controlled gene expression | [115] |
|
Marinobacter hydrocarbonoclasticus (WS2) |
S. cerevisiae | Fatty acid ethyl ester | 5 g/L | Push–pull-block strategy | [116] |
| S. cerevisiae (ATF1) | E. coli | Isoprenyl acetate | 28 g/L | Harnessing the IPP-bypass MVA pathway | [117] |
|
Strawberry (AAT) |
Clostridium tyrobutyricum | Butyl butyrate | 62.59 g/L | Under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far | [118] |