Table 7.
Model evaluation(10CV)
| Accuracy | Recall | F1 Index | Kappa | Precision | MCC | |
|---|---|---|---|---|---|---|
| LR | 0.719 | 0.674 | 0.719 | 0.357 | 0.615 | 0.362 | 
| KNN | 0.655 | 0.573 | 0.655 | 0.163 | 0.546 | 0.184 | 
| SVM | 0.692 | 0.640 | 0.692 | 0.290 | 0.579 | 0.297 | 
| NB | 0.659 | 0.614 | 0.659 | 0.232 | 0.524 | 0.237 | 
| DT | 0.896 | 0.884 | 0.896 | 0.768 | 0.871 | 0.774 | 
| RF | 0.577 | 0.505 | 0.577 | 0.017 | 0.386 | 0.022 | 
| PSO-FCM [15] | 0.954 | 0.956 | – | – | 0.955 | 0.908 | 
| PCA + K-Means + LR [12] | 0.973 | 0.970 | 0.970 | 0.942 | 0.974 | 0.943 | 
| VAE + SAE With CNN [26] | 0.923 | – | – | – | – | – | 
| K-Means + LR [11] | 0.954 | 0.954 | – | 0.897 | 0.954 | 0.899 | 
| Conv-Lstm [24] | 0.972 | 0.939 | – | – | – | – | 
| SVC [17] | 0.790 | 0.700 | 0.715 | – | 0.731 | – | 
| LE [19] | 0.750 | 0.720 | 0.730 | – | 0.730 | – | 
| X-BLR [29] | 0.940 | 0.940 | 0.930 | – | 0.920 | – | 
| CGLSTM [30] | 0.978 | 0.896 | 0.856 | – | 0.914 | – | 
| KFPredict [32] | 0.935 | 0.980 | – | – | 0.850 | – | 
| My model | 0.981 | 0.984 | 0.980 | 0.962 | 0.977 | 0.965 |