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Abstract 

Background  Choosing the appropriate antipsychotic drug (APD) treatment for patients with schizophrenia (SCZ) can 
be challenging, as the treatment response to APD is highly variable and difficult to predict due to the lack of effective 
biomarkers. Previous studies have indicated the association between treatment response and genetic and epigenetic 
factors, but no effective biomarkers have been identified. Hence, further research is imperative to enhance precision 
medicine in SCZ treatment.

Methods  Participants with SCZ were recruited from two randomized trials. The discovery cohort was recruited from 
the CAPOC trial (n = 2307) involved 6 weeks of treatment and equally randomized the participants to the Olanzapine, 
Risperidone, Quetiapine, Aripiprazole, Ziprasidone, and Haloperidol/Perphenazine (subsequently equally assigned to 
one or the other) groups. The external validation cohort was recruited from the CAPEC trial (n = 1379), which involved 
8 weeks of treatment and equally randomized the participants to the Olanzapine, Risperidone, and Aripiprazole 
groups. Additionally, healthy controls (n = 275) from the local community were utilized as a genetic/epigenetic refer‑
ence. The genetic and epigenetic (DNA methylation) risks of SCZ were assessed using the polygenic risk score (PRS) 
and polymethylation score, respectively. The study also examined the genetic-epigenetic interactions with treatment 
response through differential methylation analysis, methylation quantitative trait loci, colocalization, and promoter-
anchored chromatin interaction. Machine learning was used to develop a prediction model for treatment response, 
which was evaluated for accuracy and clinical benefit using the area under curve (AUC) for classification, R2 for regres‑
sion, and decision curve analysis.
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Results  Six risk genes for SCZ (LINC01795, DDHD2, SBNO1, KCNG2, SEMA7A, and RUFY1) involved in cortical morphol‑
ogy were identified as having a genetic-epigenetic interaction associated with treatment response. The developed 
and externally validated prediction model, which incorporated clinical information, PRS, genetic risk score (GRS), and 
proxy methylation level (proxyDNAm), demonstrated positive benefits for a wide range of patients receiving differ‑
ent APDs, regardless of sex [discovery cohort: AUC = 0.874 (95% CI 0.867–0.881), R2 = 0.478; external validation cohort: 
AUC = 0.851 (95% CI 0.841–0.861), R2 = 0.507].

Conclusions  This study presents a promising precision medicine approach to evaluate treatment response, which 
has the potential to aid clinicians in making informed decisions about APD treatment for patients with SCZ.

Trial registration Chinese Clinical Trial Registry (https://​www.​chictr.​org.​cn/), 18. Aug 2009 retrospectively regis‑
tered: CAPOC—ChiCTR-RNC-09000521 (https://​www.​chictr.​org.​cn/​showp​roj.​aspx?​proj=​9014), CAPEC—ChiCTR-
RNC-09000522 (https://​www.​chictr.​org.​cn/​showp​roj.​aspx?​proj=​9013).

Keywords  Schizophrenia, Antipsychotic drug, Treatment response, Prediction model, Genetics, Epigenetics

Background
Schizophrenia (SCZ), a complex mental disorder that 
affects 1% of people worldwide [1], leads to severe per-
sonal disability and imposes considerable burdens on 
public health and the economy [2]. Early and appropri-
ate treatment with antipsychotic drug (APD) can control 
or improve symptoms and reduce the risk of relapse [3]. 
However, treatment response to APD, as measured by 
the reduction in scores on the Positive and Negative Syn-
drome Scales (PANSS), varies widely among individuals 
with SCZ and is hard to predict due to the lack of effec-
tive biomarkers. As a result, decision-making for medica-
tion treatment in SCZ can be a challenging and imprecise 
process, as it often involves a trial-and-error approach. 
This can lead to reduced adherence, thereby hindering 
the progress of precision medicine in psychiatry.

Studies have revealed the contribution of both genetic 
and epigenetic factors to the onset of SCZ [4, 5] and its 
response to treatment [6, 7]. Multiple therapeutic targets 
have been identified, such as muscarinic acetylcholine 
receptors [8], glutamate receptors (e.g., N-methyl-D-
aspartate receptor), gamma-aminobutyric acid recep-
tors, and oxytocin [9], leading to the recognition of SCZ 
subtypes with distinct neurobiological underpinnings 
[10]. Research on patients with treatment-resistant 
schizophrenia (TRS) also showed that genetic [11] and 
epigenetic [12] factors impact the outcome of antip-
sychotic drug treatment, suggesting subtype-specific 
responses in SCZ patients. However, limitations such as 
small sample sizes, potential bias from nonrandomized 
studies, a lack of comprehensive evaluation for different 
APD, and nonreproducible results impede the develop-
ment of clinical biomarkers and personalized treatment 
for SCZ and require further attention. To date, no study 
has investigated the interaction between genetics and 
epigenetics or yielded a predictive biomarker for treat-
ment response.

To identify the genetic or epigenetic factors that deter-
mine a patient’s response to APD and develop practi-
cal predictive biomarkers for treatment response, we 
employed participants with SCZ from two large, mul-
ticenter, randomized trials as our discovery (CAPOC, 
n = 2307) [6] and external validation cohorts (CAPEC, 
n = 1379) [13]. As illustrated in Fig.  1, in the discovery 
cohort, we examined the correlations between treatment 
response to APD, genetic risk reflected by polygenic risk 
scores (PRS), and epigenetic risk reflected by polymethyl-
ation scores (PMS). A variety of techniques, including dif-
ferential methylation analysis, methylation quantitative 
trait loci (meQTL), colocalization, promoter-anchored 
chromatin interaction (PAI), and epigenome-wide asso-
ciation study (EWAS), were utilized to identify specific 
factors associated with APD treatment response. We 
then developed and validated a prediction model for 
treatment response that incorporated clinical informa-
tion, PRS, genetic risk score (GRS, a biomarker reported 
in our previous study [6]) and proxyDNAm. This model 
was robust, generalizable, and clinically useful, therefore 
helping to inform treatment decisions and support the 
use of a precision medicine approach for SCZ.

Methods
Study design and participants
This study followed the CONSORT [14] and TRIPOD 
[15] reporting guidelines for investigation and modeling. 
A total of 2307 patients with SCZ who received Olan-
zapine, Aripiprazole, Risperidone, Quetiapine, Halop-
eridol, Ziprasidone, or Perphenazine treatment for six 
weeks were recruited from the Chinese Antipsychotics 
Pharmacogenomics Consortium (CAPOC) across five 
research centers, including Peking University Sixth Hos-
pital, West China Hospital of Sichuan University, the 
Second Xiangya Hospital of Central South University, 
Beijing Anding Hospital Affiliated to Capital Medical 

https://www.chictr.org.cn/
https://www.chictr.org.cn/showproj.aspx?proj=9014
https://www.chictr.org.cn/showproj.aspx?proj=9013
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University, and Beijing Huilongguan Hospital [6]. A total 
of 1379 patients with SCZ who received Aripiprazole, 
Olanzapine, or Risperidone treatment for 8  weeks were 
recruited from the Chinese Antipsychotics Pharmacoge-
netics Consortium (CAPEC) across multiple hospitals, 
including Peking University Sixth Hospital, Beijing Hui-
longguan Hospital, the Sixth Hospital of Hebei Province, 
Jinzhou Kangning Hospital, and Xi’an Mental Health 
Centre) [13]. To calculate the PRS and conduct the risk-
related methylation analysis, 275 healthy controls (HCs) 
were employed and were genotyped and methylation 
profiled under the same pipeline. HCs were recruited 
from our Schizophrenia × Gene × Environment project 
(SGE) [16] and were recruited from the local community 

through advertisement under the screening of Structured 
Clinical Interview for Diagnostic and Statistical Manual 
of Mental Disorders IV (DSM-IV, nonpatient edition). 
HCs had no lifetime history of psychotic illness and no 
family history of psychosis. All participants were of Han 
Chinese ancestry and were right-handed. The age of 
HCs was (24.7 ± 3.2) years old, and the ratio of males to 
females was 138:137. To ensure that sample sizes met the 
statistical requirements for subsequent analyses, we cal-
culated the statistical power of sample size by G*power 
software (version 3.1, https://​www.​psych​ologie.​hhu.​de/​
arbei​tsgru​ppen/​allge​meine-​psych​ologie-​und-​arbei​tspsy​
cholo​gie/​gpower) under the models of Pearson correla-
tion, χ2 correlation, analysis of variance (ANOVA), and 

Fig. 1  Research flow diagram. The flow diagrams illustrate the trial profiles and research design. a This study used participants from two 
randomized trials: CAPOC and CAPEC. The flow diagram describes the detailed profile of the trials. b Multiomics analyses were conducted to 
investigate the relationship between genetic/epigenetic risks of SCZ and treatment response to APDs, and developed a prediction model for 
treatment response in the discovery cohort (CAPOC). We used an external validation cohort (CAPEC) to validate the prediction models. CAPOC 
Chinese Antipsychotics Pharmacogenetics Consortium; CAPEC Chinese Antipsychotics Pharmacogenomics Consortium

https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
https://www.psychologie.hhu.de/arbeitsgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower
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multiple linear regression (see Additional file 2: Fig. S1). 
All study protocols were approved by the Institutional 
Ethics Review Boards at each site and can be accessed in 
the Chinese Clinical Trial Registry (https://​www.​chictr.​
org.​cn/​showp​roj.​aspx?​proj=​9013 and https://​www.​chictr.​
org.​cn/​showp​roj.​aspx?​proj=​9014). Written informed 
consent was obtained from all participants.

Inclusion and exclusion criteria
Inclusion criteria (1) had a diagnosis of SCZ based on 
the Structured Clinical Interview of DSM-IV; (2) were 
of Han Chinese ancestry; (3) were aged 18–45 years; (4) 
scored more than 60 on the PANSS and scored more 
than four on at least three positive items; (5) were physi-
cally healthy with all laboratory parameters within nor-
mal limits; (6) were able to provide informed consent. 
Both first-episode and relapsed patients with SCZ were 
enrolled from the inpatient departments of the psychiat-
ric hospitals affiliated with CAPOC or CAPEC.

Exclusion criteria (1) were diagnosed with schizoaffec-
tive disorder, delusional disorder, brief psychotic disor-
der, schizophreniform disorder, psychosis associated with 
substance use or medical conditions, learning disability, 
pervasive developmental disorder, delirium, dementia, 
amnesia, or other cognitive disorders; (2) had severe, 
unstable physical diseases (such as diabetes, thyroid dis-
eases, hypertension, and cardiac diseases), malignant 
syndrome or acute dystonia, well documented histories 
of epilepsy and hyperpyretic convulsion, a DSM-IV diag-
nosis of alcohol or drug dependence, or a history of drug-
induced neuroleptic malignant syndrome; (3) required 
long-acting injectable medication to maintain treat-
ment adherence; (4) were regularly treated with clozap-
ine for treatment resistance [17] during the past month 
(patients who had taken clozapine for reasons other than 
treatment resistance were eligible); (5) were treated with 
electroconvulsive therapy during the last month; (6) had 
previously attempted suicide, or had experienced the 
symptoms of severe excitement and agitation; (7) had 
abnormal liver or renal function (i.e., aspartate ami-
notransferase ≥ 80 U/L, alanine aminotransferase ≥ 80 
U/L, blood urea nitrogen ≥ 9.75  mmol/L, urine creati-
nine ≥ 21.6 mmol/d); (8) did not have a legal guardian (it 
was a hospital stipulation that written informed consent 
was required from the patient’s legal guardian); (9) had 
QTc prolongation, a history of congenital QTc prolonga-
tion, or recent (i.e., within the past 6 months) myocardial 
infarction; (10) were pregnant or breastfeeding; or 11) 

had a contraindication to any of the drugs to which they 
could be assigned (only applicable to patients).

Randomization
As described in our previous study [6], we used a Micro-
soft Excel randomization generator without any strati-
fication factors to establish the group assignment. A 
trained research assistant who had no further role in the 
trial generated the random allocation sequence, which 
would be concealed until after baseline assessments. 
The researchers performing both the baseline and the 
follow-up assessments were masked to the group assign-
ments of each participant. Patients and psychiatrists 
were unmasked to assigned APD: in the CAPOC cohort, 
we randomly and equally allocated consecutive eligible 
patients to the Aripiprazole, Olanzapine, Quetiapine, 
Risperidone, Ziprasidone, or one of the first-generation 
APD (Haloperidol or Perphenazine) groups; those ran-
domly assigned to the first-generation APD group were 
subsequently randomly and equally assigned to receive 
Haloperidol or Perphenazine. In the CAPEC cohort, we 
randomly and equally assigned the eligible patients to 
the Olanzapine, Risperidone, or Aripiprazole group for 
8-week treatment. Using the same randomization gen-
erator, we randomly selected participants for methylation 
profiling from both the CAPOC and CAPEC cohorts.

Treatment procedure
According to the study protocol [6], the dosages of APD 
were appropriately adjusted within 2 weeks of randomi-
zation based on the effectiveness of the treatment. Each 
APD had a permissible range of dosages, with olanzapine 
ranging from 5 to 20  mg/d, risperidone ranging from 2 
to 6 mg/d, quetiapine ranging from 400 to 750 mg/d, ari-
piprazole ranging from 10 to 30 mg/d, ziprasidone rang-
ing from 80 to 160 mg/d, haloperidol ranging from 6 to 
20 mg/d, and perphenazine ranging from 20 to 60 mg/d. 
Subsequently, the dosages were maintained at a constant 
level throughout the duration of the study. The equiva-
lent dose for each APD used in this study was calculated 
according to the chlorpromazine equivalent dose part in 
Additional file 1.

Primary outcome and subgrouping rule for multiomics 
analysis
The primary outcome as treatment response was evalu-
ated by the PANSS reduction rate at the last follow-up, 
which can be calculated as described below:

PANSS reduction rate =
PANSS baseline total score − PANSS endpoint total score

PANSS baseline total score − 30
×100

https://www.chictr.org.cn/showproj.aspx?proj=9013
https://www.chictr.org.cn/showproj.aspx?proj=9013
https://www.chictr.org.cn/showproj.aspx?proj=9014
https://www.chictr.org.cn/showproj.aspx?proj=9014
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As the treatment response is a continuous variable, we 
labeled participants with SCZ into two groups: response 
group (RES, PANSS reduction rate ≥ 50%) and nonre-
sponse group (non-RES, PANSS reduction rate < 50%).

Estimation of genetic and epigenetic risks
Polygenic risk scores (PRSs) were utilized to estimate the 
genetic risk. The calculation of PRS in the case–control 
study was conducted using the software PRSice2 (ver-
sion v2.3.3, https://​chois​hingw​an.​github.​io/​PRSice). 
The parameters for calculation included: (1) employ-
ing binary phenotype mode (case and control); (2) using 
summary level genome-wide association study data for 
SCZ, bipolar disorder (BP), and major depressive disor-
der (MDD) in the East Asian population from the Psychi-
atric Genomics Consortium (www.​med.​unc.​edu/​pgc) as 
the genetic reference; (3) determining empirical P-value 
through 10,000 permutations; (4) incorporating princi-
pal components that explained the 95% variances, batch 
number and genotyping platform as covariates.

The epigenetic risk was estimated using the epige-
netic clocks and PMS. Epigenetic clocks were calculated 
by DNA Methylation Age Calculator (https://​dnama​ge.​
genet​ics.​ucla.​edu), which normalized the data used in the 
calculation, as opposed to normalization by our methyla-
tion profiling pipeline. DNA methylation age and DNA 
methylation age acceleration, two recommended epige-
netic clock measurements [18], were selected to estimate 
the epigenetic clock profile. The PMS was calculated in 
two steps by the R package BioMM [5]. The first step 
involved constructing machine learning models for each 
pathway, where CpG sites were mapped. The second step 
entailed constructing a collective model of the pathway 
models. The final output was a quantified score repre-
senting the likelihood of participants having SCZ. For 
each step, 1000 bootstrapping iterations were conducted.

Multiomics analyses
Genotyping and DNA methylation data were obtained 
from peripheral whole blood samples of participants. 
Through high-throughput sequencing procedures and 
quality control (see Genotyping and methylation quan-
tification in Additional file  1), genotyping data for 
6,266,169 SNPs from 3961 participants (2307 partici-
pants in CAPOC, 1379 participants in CAPEC, and 275 
participants in SGE) were acquired. Among these partici-
pants with genotyping data, DNA methylation detection 
was conducted on 855 participants (531 participants ran-
domly selected from CAPOC, 49 participants randomly 
chosen from CAPEC, and 275 participants in SGE), and 
methylation data for 718,089 CpG sites were obtained. 
For participants with methylation data, technical rep-
lication (see Technical replication of DNA methylation 

profiling in Additional file  1) was conducted: 194 par-
ticipants were randomly chosen for Illumina sequenc-
ing-based BSP detection to verify the chip detection site 
results, and among these 194 participants, 20 were fur-
ther randomly selected to undergo Sequenom MassAR-
RAY® Methylation validation.

Differential methylation analysis was conducted to 
identify risk-related differentially methylated regions 
(risk-DMRs) between cases (patients with SCZ) and 
controls (HCs) as well as response-related DMRs (RES-
DMRs) between the RES and non-RES groups. meQTL 
analysis was used to find genetic-epigenetic interactions 
and locate allele-specific methylated (ASM) genes from 
risk-DMRs and RES-DMRs, which were validated in the 
mQTL Database (http://​www.​mqtldb.​org). Biological 
refinement was performed for ASM genes: (1) Bayesian 
colocalization analysis was used to find a locus affect-
ing traits of treatment response and risk of SCZ; (2) PAI 
analysis was used to estimate chromatin accessibility and 
to identify the RES-related altered PAI genes from ASM 
genes; (3) EWAS was used to determine which CpG site’s 
(from ASM genes) methylation level was associated with 
treatment response. A detailed protocol for each analy-
sis can be found in the Additional file 1 section, includ-
ing methylation quantitative trait loci (meQTL) analysis, 
Bayesian colocalization analysis, epigenome-wide asso-
ciation analysis, epigenome-wide differential methylation 
analysis, and prediction of promoter-anchored chroma-
tin interaction.

Machine‑learning model development
A machine-learning approach was utilized to regress the 
methylation level (output) from the genotype of meQTL 
(input, with covariates including age and sex) as a proxy 
DNA methylation (proxyDNAm) model by the R package 
caret (https://​github.​com/​topepo/​caret). The epigenome-
wide methylation-profiled samples from the discovery 
cohort and SGE cohort were divided into the training 
dataset (a total of 602 participants) and the test dataset 
(a total of 258 participants) at a 7:3 ratio. Due to the sen-
sitivity of machine-learning algorithms to data distribu-
tion, data in the training dataset were cantered, scaled, 
and Gaussian-distributed mapped before model devel-
opment by using the “preProcessing” function from the 
R package caret. The preprocessing pattern (mean and 
standard error) from the training dataset was stored and 
applied to the test dataset to prevent data leakage. Quan-
tile random forest (QRF), random forest (RF), and sup-
port vector machines with polynomial kernel (SVMPoly) 
were utilized to build the proxy models. To mitigate the 
underfitted or overfitted issues, a 10-time repeated ten-
fold cross-validation (10 × tenfold CV) or leave-one-out 

https://choishingwan.github.io/PRSice
http://www.med.unc.edu/pgc
https://dnamage.genetics.ucla.edu
https://dnamage.genetics.ucla.edu
http://www.mqtldb.org
https://github.com/topepo/caret
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cross-validation (LOOCV) was performed in the train-
ing stage. Hyperparameters [n_estimators (the number 
of trees in the forest), max_depth (the maximum depth 
of the trees), min_samples_split (the minimum number 
of samples required to split an internal node), min_sam-
ples_leaf (the minimum number of samples required 
to be at a leaf node), and max_features (the number of 
features to consider when looking for the best split) for 
QRF and RF; C (the regularization parameter), degree 
(the degree of the polynomial kernel), gamma (the ker-
nel coefficient), coef0 (the independent term in the poly-
nomial kernel function), shrinking (whether to use the 
shrinking heuristic), tol (the tolerance for stopping cri-
terion), and max_iter (the maximum number of itera-
tions) for SVMPoly] for each algorithm were optimized 
by the random search function. The proxy models were 
built for 28 CpG sites that have a significant correlation 
of methylation level between brain and blood. The per-
formance of the proxy models was assessed by determin-
ing the Pearson correlation coefficient between raw and 
predicted values. Sixteen proxy models with correlation 
significance (Pearson’s P value ≤ 0.05) in the test dataset 
were deemed suitable for generating the proxy methyla-
tion level.

We used the clinical information (PANSS baseline 
score, sex, age, and APD), PRS, GRS, and proxy methyl-
ation level (proxyDNAm) in four combination patterns 
(clinical information + PRS, clinical information + GRS, 
clinical information + proxyDNAm, and clinical infor-
mation + PRS + GRS + proxyDNAm) to develop the pre-
diction model for treatment response (RES-prediction 
model) with the algorithms including quantile random 
forest, random forest, and support vector machines 
with radial basis function kernel by R package caret. 
The preprocessing and optimization of the hyperparam-
eters of the models were the same as those of proxyD-
NAm. We performed 10 times tenfold cross-validation 
or leave-one-out cross-validation (LOOCV) to train the 
model to avoid underfitting or overfitting issues. The 
performance of RES-prediction models in classifica-
tion was evaluated by the area under the curve (AUC), 
while their performance in regression was evaluated by 
metrics including the mean absolute error (MAE), root 
mean square error (RMSE), mean absolute percentage 
error (MAPE), coefficient of determination (R2), and 
correlation coefficient by R package MLmetrics (https://​
github.​com/​yanya​chen/​MLmet​rics). Clinical values 
of RES-prediction models were evaluated by decision 
curve analysis in the R package rmda (https://​github.​
com/​mdbro​wn/​rmda).

Statistical analysis
All statistical analyses were conducted through R pack-
age stats (version 4.2.2). Pearson correlation analysis was 
employed to estimate the correlation coefficient between 
two continuous variables. The Wilcoxon test was utilized 
to assess the difference between the means of continuous 
variables of two groups, considering a P value < 0.05 as 
significant.

Results
Characteristics of participants and study design
The demographic and clinical characteristics and the 
study design are described in Table 1 and Fig. 1, respec-
tively. The statistical power of the given sample size was 
sufficient and is described in Additional file  2: Fig. S1. 
Technical replication of DNA methylation profiling indi-
cated the nominal effect of APD on methylation and 
a trusted profiling result (Additional file  2: Fig. S2 and 
Table  S1). The chlorpromazine equivalent doses of par-
ticipants with SCZ are represented in Additional file  2: 
Table S2 and revealed that the final doses of ziprasidone, 
aripiprazole, and perphenazine were significantly higher 
in the non-RES group than in the RES group. Partial 
correlation analysis, controlling for drugs, sex, and age, 
revealed that chlorpromazine equivalent doses were not 
significantly correlated with the PANSS total score at 
baseline or the PANSS reduction rate.

Genetic and epigenetic risks of SCZ reflected treatment 
response
Given the shared symptoms of anhedonia, abnormal 
social behavior, and impaired brain connectivity and the 
demonstrated genetic coheritability among SCZ, BP, and 
MDD [19], we calculated the PRSs of SCZ (PRS-SCZ) 
[4], BP (PRS-BP) [20], and MDD (PRS-MDD) [21] based 
on three large GWAS (genome-wide association study) 
studies in the East Asian population to investigate the 
relationship between treatment response and genetic 
risks of SCZ, BP, and MDD. A significant correlation 
between PRS-SCZ and PRS-BP was identified (r = 0.106, 
95% CI 0.066–0.146, P = 2.73 × 10–7), but not between the 
PRS-SCZ and PRS-MDD (r = 0.027, 95% CI − 0.013 to 
0.067, P = 0.190; Additional file 2: Fig. S3). Furthermore, 
a significant correlation was observed between treatment 
response and PRS-SCZ (r = − 0.045, 95% CI − 0.085 to 
− 0.003, P = 0.032; Additional file 2: Fig. S4). While PRS-
BP and PRS-MDD did not display significant correlations 
with treatment response, their contribution to explaining 
the variance in treatment response was noted (Additional 
file 2: Fig. S5).

https://github.com/yanyachen/MLmetrics
https://github.com/yanyachen/MLmetrics
https://github.com/mdbrown/rmda
https://github.com/mdbrown/rmda
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Subsequently, the relationship between treatment 
response and epigenetic risks for SCZ, as estimated by 
two epigenomic assessments (epigenetic clock [18] and 
genome-wide PMS [5]), was investigated in methylation-
profiled participants (ncase = 531, ncontrol = 280). A signifi-
cant correlation between treatment response and PMS 
was found (r = − 0.150, P = 3.7 × 10–4; Additional file  2: 
Fig. S6), whereas no significant correlation with the epi-
genetic clock was observed (Additional file 2: Fig. S7).

Identify treatment response‑related genetic and/
or epigenetic factors
Differential methylation (differentially methylated 
region, DMR) analysis and meQTL analysis were con-
ducted to detect DNA methylation changes and exam-
ine the genetic-epigenetic interactions. A total of 
9707 DMRs (risk-DMRs, including 107,095 CpG sites 
mapped to 10,666 genes; top 20 risk-DMRs are listed 
in Additional file  2: Table  S3) were identified between 
cases and controls (ncase = 531, ncontrol = 280), as well 
as 266 DMRs (RES-DMRs, including 6474 CpG sites 
mapped to 421 genes; top 20 RES-DMRs are listed 
in Additional file  2: Table  S4) between non-RES and 
RES (nnon-RES = 196, nRES = 384). Furthermore, 378,825 
single-nucleotide polymorphism (SNP)-CpG pairs 
were identified as meQTLs, with 168,978 SNPs affect-
ing 55,712 CpG sites (Padj < 1 × 10–8). The CpG sites 
from DMRs and meQTLs were mainly enriched in the 
region of promoters (e.g., 1st exon, 5’UTR, TSS200 and 
TSS1500) within the CpG island, suggesting the regula-
tion of allele-specific methylation on the gene expres-
sion of transcription factors (Additional file 2: Fig. S8).

A total of 324 SCZ risk- and treatment response-
related genes were discovered to exhibit ASM (ASM 
genes, Fig.  2a). These genes demonstrated high expres-
sion levels in brain regions such as the cerebral cortex, 
hippocampus, and cerebellum and were involved in 
metabolic processes, protein binding, and intracellular 
anatomical structures. Additionally, they were associated 
with abnormal brain morphologies and neurological or 
psychiatric diseases, such as Alzheimer’s disease, Parkin-
son’s disease, intellectual disability, and cocaine addiction 
(Additional file 2: Fig. S9 and Table S5).

Colocalization analysis identified 1047, 1042, and 1 
meQTL colocalized with SCZ risk loci from the sum-
mary GWAS results of SCZ, BP, and MDD, respec-
tively (PP4 > 0.8, PP4: posterior probability for a shared 
signal). Four colocalization signals were identified in 
the ASM genes (called COLOC genes, Fig.  2b), includ-
ing rs11125746 (chr2:58501047 G > A, LINC01795), 
rs12674515 (chr8:38137530 A > G, DDHD2), rs28759130 
(chr12:123849774 C > A, SBNO1) and rs498541 
(chr18:77589655 G > A, KCNG2).

PAI analysis [22] revealed a significant difference in 
chromatin interaction strength (− log10 of PAI) in 14 
ASM genes (PSMR < 5% FDR and PHEIDI > 0.01 (SMR: 
Summary-based Mendelian Randomization;HEIDI: Het-
erogeneity in dependent instruments), called PAI genes, 
Fig. 2c) between cases and controls (Wilcoxon test, two-
tailed, P = 2.49 × 10–35) and between non-RES and RES 
groups (Wilcoxon test, two-tailed, P = 5.84 × 10–11). Data 
investigation of sequenced methylation, transcription, 
and chromatin interaction in multiple tissues found that 
RUFY1 (Chr5: 179550554—179610012), which is a gene 
associated with endolysosomal recycling [23], cortical 
surface area, and cortical thickness [24], showed blood‒
brain consistency in methylation, transcription, and 
chromatin interaction (Additional file 2: Fig. S10).

EWAS detected one genome-wide significant 
(Padj < 1 × 10–8) signal located in SEMA7A (called the 
EWAS gene, Fig. 2d) from the ASM genes.

Linkage disequilibrium analysis suggested that the 
genes from COLOC, PAI, and EWAS were associated 
with cortical morphology (Additional file  2: Table  S6–
S11). The genetic-epigenetic interactions from the 
meQTLs of the genes identified in COLOC, PAI, and 
EWAS were validated by the mQTL database, with the 
exception of rs11125746 from LINC01795.

Development, validation, and evaluation of the predictive 
model for treatment response
According to allele-specific methylation in genetic-epige-
netic interactions, information on age, sex and meQTLs 
from LINC01795, DDHD2, SBNO1, KCNG2, SEMA7A, 
and RUFY1 was included to generate proxyDNAm 
models (ntrain = 568, ntest = 243) for the CpG sites that 
were affected by the meQTLs and showed high brain-
blood correlation in DNA methylation (Additional file 2: 
Table S12). Finally, proxyDNAm models for 18 CpG sites 
from five meQTL-validated genes (DDHD2, SBNO1, 
KCNG2, SEMA7A, and RUFY1) were established (Addi-
tional file 2: Fig. S11 and Table S13).

Our primary objective was to develop a prediction 
model for treatment response. To accomplish this, we 
used clinical information (PANSS baseline score, APD, 
sex, and age), proxyDNAm, PRSs, and GRS to assess 
which combination pattern of data was adequate to 
develop the RES-prediction model [clinical informa-
tion + PRSs (C + P model), clinical information + GRS 
(C + G model), clinical information + proxyDNAm (C + M 
model), and clinical information + PRSs + GRS + proxyD-
NAm (C + PGM model)]. Figure  3a, b illustrate the 
regression performance of four RES-prediction models 
in the discovery cohort (n = 2307) and external validation 
cohort (n = 1379), respectively. Figure 3c and d illustrate 
the classification performance of four RES-prediction 
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models in the discovery cohort and external validation 
cohort, respectively. The C + PGM model [discovery 
cohort: AUC = 0.874 (95% CI 0.867–0.881), R2 = 0.478, 
r = 0.76 (95% CI 0.74–0.78); external validation cohort: 
AUC = 0.851 (95% CI 0.841–0.861), R2 = 0.507, r = 0.75 
(95% CI 0.72–0.77)] outperformed other models (Addi-
tional file 2: Table S14) in predicting treatment response. 
The performance of the C + PGM model in different APD 
and in males and females is described in Table 2.

Decision curve analysis revealed that the C + PGM 
model offered the highest standardized net benefit at 
all risk thresholds (Fig. 3d, solid line and dashed line in 
green) compared to other RES-prediction models in both 

the discovery cohort and external validation cohort, sug-
gesting its potential as a precision medicine approach.

Discussion
In this study, we found the correlation between genetic/
epigenetic risks of SCZ, BP, and MDD and treatment 
response to APDs, in which we located the genetic-epi-
genetic interactions from six genes involved in cortical 
morphology. Based on the observation, we developed 
and externally validated a prediction model to esti-
mate the treatment response of patients with SCZ when 
receiving different APDs, which incorporated the clini-
cal information (age, sex, and APD), genetic risks of SCZ, 

Fig. 2  Multiomics analyses. Genetic and epigenetic factors reflecting treatment response were investigated by meQTL and DMR, and the results 
were refined using three different approaches. a Upon comparison of meQTLs, risk-DMRs, and RES-DMRs, 324 genes were identified as ASM 
genes associated with SCZ risk and treatment response. b Within the ASM genes, colocalization identified four signals, including rs11125746 in 
LINC01795, rs12674515 in DDHD2, rs28759130 in SBNO1, and rs498541 in KCNG2. c PAI identified 14 genes showing significant differences in 
overall PAI strength under the case‒control condition and non-RES versus RES condition. Among them, RUFY1 displayed brain‒blood consistency 
in methylation, transcription, and chromatin interaction, along with a significant difference in PAI strength. d EWAS identified one genome-wide 
significant (Padj < 1 × 10–8) signal located in the SEMA7A gene. Solid and dashed gray lines represent genome-wide and suggestive significance, 
respectively. meQTL. Methylation quantitative trait loci; DMR. Differentially methylated region; PAI. Promoter-anchored chromatin interaction; SCZ. 
Schizophrenia; RES. Response; ASM. Allele-specific methylated; GWAS. Genome-wide association study; PP4. Posterior probability for a shared signal; 
SMR. Summary-based Mendelian randomization; LINC01795. Long intergenic non-protein coding RNA 1795; DDHD2. DDHD domain containing 
2; SBNO1. Strawberry notch homolog 1; KCNG2. Potassium voltage-gated channel modifier subfamily G member 2; RUFY1. RUN and FYVE domain 
containing 1; MIR885. microRNA 885, BEGAIN brain enriched guanylate kinase associated; SLC7A7. Solute carrier family 7 member 7; KLF5. KLF 
transcription factor 5; SEMA7A. Semaphorin 7A
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Fig. 3  Performance of the optimal prediction model for treatment response in the discovery and validation cohorts. Visualization of regression 
performance of four RES-prediction models in a discovery cohort and b external validation cohort. The solid line represents the linear relationship 
between the scaled prediction value and scaled PANSS reduction rate. c, d illustrate the AUCs of four RES-prediction models. Solid lines in different 
colors represent receiver operating curves for different RES-prediction models, and the ribbons in different colors represent the confidence intervals 
of different models in the c discovery cohort and d external validation cohort. e Decision curves for four RES-prediction models in the discovery 
cohort (solid line) and external validation cohort (dashed line); lines in different colors represent different models. PANSS. Positive and negative 
syndrome scale; RES. Response; AUC. Area under the curve; C + P. Clinical information + PRS; C + G. Clinical information + GRS; C + M. Clinical 
information + proxyDNAm; C + PGM. Clinical information + PRS + GRS + proxyDNAm; PRS. Polygenic risk score; GRS. Genetic risk score
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BP, and MDD, proxyDNAm, and GRS [6]. The prediction 
model in external validation showed good regression per-
formance as well as clinical net benefit across all thresh-
olds of risks, suggesting that it can inform clinicians of 
the estimated treatment response to APDs, thereby aid-
ing in the choice of APDs and improving the treatment 
outcomes of patients with SCZ.

The high biological interpretability of the results was 
the first advantage of our study. Abnormalities in corti-
cal morphology (e.g., thinner cortex and smaller cortical 
surface area) were unique to SCZ [25] and distinguished 
it from BP and MDD [26]. Previous studies have identi-
fied overlapped risk loci between SCZ, cortical thickness, 
and cortical surface area [27, 28] and established con-
nections between treatment response and cortical mor-
phology [29]. Our study identified six genes (LINC01795, 
DDHD2, SBNO1, KCNG2, RUFY1, and SEMA7A) that 
are associated with cortical morphology and play crucial 
roles in neurofunction. For example, DDHD2 encodes 
a phospholipase enzyme involved in endosomal mem-
brane trafficking [30], while KCNG2 encodes a potassium 
voltage-gated channel-related protein[31]. SEMA7A 
regulates axon guidance, synapse elimination, hippocam-
pal neurogenesis, mesolimbic dopaminergic pathways, 
and maturation of the cortical circuit [32, 33]. RUFY1 
encodes an effector protein for small GTPases, influences 
receptor surface expression and modulates dopamine 

release, synaptic current, glutamatergic transmission, 
membrane excitability, and long-term depression [34–
39]. The CpG sites identified in our study may influence 
gene transcriptional expression, as methylation levels in 
promoter regions can inhibit transcription, while gene 
body methylation can enhance transcription [40]. Addi-
tionally, individual DNA methylation levels are stable 
in the long-term and are less affected by antipsychotic 
drug treatment [41–43], thus enabling us to reflect DNA 
methylation changes in the brain through peripheral 
blood samples, which involve a low economic burden for 
patients and are widely accessible. Therefore, the model 
can inform the selection of APDs before treatment and 
the adjustment of APDs during treatment.

The second strength of our study was the flexibil-
ity and robustness of our prediction model. The proxy 
methylation models (proxyDNAm) were developed to 
infer DNA methylation levels from meQTL, serving as 
a middleware that leverages genotype information to 
provide epigenetic information for the RES-prediction 
model. The RES-prediction model is flexible in terms 
of input and can save costs compared to methylation 
profiling, and it can also cooperate with other genetic 
biomarkers for improved prediction accuracy. The RES-
prediction model was externally validated and dem-
onstrated net benefit in predicting treatment response 
for all risk thresholds, offering accurate predictions for 

Table 2  Classification and regression performance of the optimal prediction model (C + PGM model) for treatment response

AUC​ area under the curve; MAE mean absolute error; MAPE mean absolute percentage error; RMSE root mean squared error; R2 coefficient of determination; APD 
antipsychotic drug; CAPOC Chinese Antipsychotics Pharmacogenomics Consortium; CAPEC Chinese Antipsychotics Pharmacogenetics Consortium;
* Predicted value and record positive and negative syndrome scales (PANSS) reduction rate were scaled into the range from − 1 to 1

Cohort AUC​ MAE* MAPE* RMSE* R2

Discovery cohort (CAPOC, n = 2307)

APD All 0.874 0.209 1.332 0.272 0.478

Aripiprazole 0.882 0.220 1.203 0.290 0.481

Haloperidol 0.850 0.179 2.243 0.236 0.501

Olanzapine 0.878 0.180 1.644 0.239 0.510

Perphenazine 0.901 0.211 1.185 0.267 0.517

Quetiapine 0.856 0.241 1.081 0.305 0.392

Risperidone 0.892 0.181 1.089 0.239 0.521

Ziprasidone 0.865 0.235 1.291 0.299 0.414

Sex Male 0.875 0.196 1.316 0.256 0.536

Female 0.880 0.221 1.347 0.287 0.418

Validation cohort (CAPEC, n = 1379)

APD All 0.851 0.154 1.470 0.205 0.507

Aripiprazole 0.882 0.151 1.114 0.195 0.564

Olanzapine 0.840 0.155 1.628 0.208 0.468

Risperidone 0.831 0.155 1.671 0.212 0.484

Sex Male 0.843 0.151 1.926 0.205 0.500

Female 0.860 0.156 1.043 0.205 0.513
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classification (respond/not respond) and regression 
(response quality) to guide APDs choices and improve 
adherence. The RES-prediction model, which was 
externally validated and showed good performance in 
classification (AUC = 0.851, 95% CI 0.841–0.861) and 
regression (R2 = 0.507) as well as the net clinical benefit, 
performed equally well in different treatment options 
and sexes, demonstrating its potential clinical utility for 
evaluating treatment response and guiding treatment 
choices as a promising precision medicine implementa-
tion. In comparison with other studies, a search of Pub-
Med for articles on “treatment response”, “antipsychotic 
drugs”, and “schizophrenia” between 2012 and 2022 
found 346 articles, including 42 clinical trials, and only 
one study established an externally validated prediction 
model (n = 21, R2 = 0.515) [44].

The third benefit of our study is its larger sample 
size in comparison to other studies. Our study, with 
a sample size of 3,686 patients with SCZ and robust 
prediction model through external validation, is the 
largest multiomics study of treatment response to date 
(the second and the third largest studies had 2586 [45] 
and 1100 patients [46], respectively). The sample sizes 
of the trials we reviewed ranged from 21 to 764, with 
a median of 117. Larger sample sizes are important in 
clinical research, as they increase statistical power and 
improve the generalizability of results.

The fourth advantage of our investigation is the 
examination of various types of APDs. Our review 
of published research revealed that a majority of the 
studies investigated the efficacy of single APD treat-
ment using olanzapine, risperidone, or aripiprazole. 
This narrow focus, however, restricts the generaliz-
ability of the findings from such studies.

Studies have indicated that SCZ is influenced by a 
combination of genetics and environmental factors 
such as life events and maternal exposures [47]. This 
highlights the role of both genetic and epigenetic fac-
tors, as well as their interaction in the pathogenesis 
of SCZ [48, 49]. Previous studies have also reported 
a genetic overlap between SCZ pathogenesis and the 
mechanism of action of APDs [50, 51], which sup-
ported our observation. Changes in DNA methyla-
tion have been linked to treatment response in SCZ, 
particularly in cases of TRS [12, 52]. However, to 
date, no study has explored the relationship between 
interaction of genetics and epigenetics and treatment 
response. The genes identified in our study have also 
been linked to other mental health disorders, includ-
ing Alzheimer’s disease [23] and opioid dependence 
[31]. This suggests that therapeutic targets for these 
disorders may have potential for use in the treatment 
of SCZ.

Limitations
The current study has several limitations that need to be 
addressed in future research. First, the time frame for 
measuring treatment response was restricted, and the 
study was conducted in a controlled setting. Second, the 
study did not include an investigation of patients with 
TRS. Last, the study only investigated a limited selection 
of machine learning algorithms.

To address these limitations, future research needs to 
include a broader range of clinical measurements and 
settings, a comprehensive evaluation of genetic and epi-
genetic factors by including patients with TRS, and the 
development of models incorporating a wider range of 
machine learning algorithms. Additionally, it should be 
noted that the findings of this study are specific to the 
Chinese Han population and need to be replicated in 
other ethnic groups to determine their generalizability.

Conclusions
This study found correlations between genetic and epi-
genetic risks and treatment response and identified 
novel genetic-epigenetic interactions that impact treat-
ment response and cortical morphology. The study also 
investigated various types of APDs, which broadens the 
generalizability of the results. A prediction model was 
developed to estimate treatment response to APDs, and 
its robustness, generalizability, and clinical utility were 
demonstrated. The model is more accessible than neu-
roimaging biomarkers, outperformed other genetic bio-
markers to date, and provides highly accurate treatment 
response estimation equivalent to the PANSS reduction 
rate, which is well received by psychiatrists. It can also 
utilize existing genetic resources to predict treatment 
response without methylation profiling. Overall, this 
study provides a valuable tool for precision medicine 
and clinical decision-making in SCZ treatment. Further 
research in diverse populations is necessary to enhance 
the model’s effectiveness in future studies.
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SVMPoly		�  Support vector machines with polynomial kernel
TRS		�  Treatment-resistant schizophrenia
TSS		�  Transcription start site
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