

Elsevier has created a <u>Monkeypox Information Center</u> in response to the declared public health emergency of international concern, with free information in English on the monkeypox virus. The Monkeypox Information Center is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its monkeypox related research that is available on the Monkeypox Information Center - including this research content - immediately available in publicly funded repositories, with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the Monkeypox Information Center remains active.

Global Trends of Monkeypox-Related Articles: A Bibliometric Analysis Over the Last Five Decades (1964 – July 14, 2022)

Manar Ahmed Kamal, Ramadan Abdelmoez Farahat, Ahmed K. Awad, Shehroze Tabassum, Fatma Labieb, Cosmin A. Bejan, Jaffar A. Al-Tawfiq, Kuldeep Dhama, Ismail Dergaa

PII: S1876-0341(23)00190-9

DOI: https://doi.org/10.1016/j.jiph.2023.05.035

Reference: JIPH2148

To appear in: Journal of Infection and Public Health

Received date: 24 November 2022 Revised date: 14 May 2023 Accepted date: 28 May 2023

Please cite this article as: Manar Ahmed Kamal, Ramadan Abdelmoez Farahat, Ahmed K. Awad, Shehroze Tabassum, Fatma Labieb, Cosmin A. Bejan, Jaffar A. Al-Tawfiq, Kuldeep Dhama and Ismail Dergaa, Global Trends of Monkeypox-Related Articles: A Bibliometric Analysis Over the Last Five Decades (1964 – July 14, 2022), *Journal of Infection and Public Health*, (2023) doi:https://doi.org/10.1016/j.jiph.2023.05.035

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier.

Global Trends of Monkeypox-Related Articles: A Bibliometric Analysis Over the Last Five Decades (1964 – July 14, 2022)

Author list:

Manar Ahmed Kamal^{a#}, Ramadan Abdelmoez Farahat^{b#}, Ahmed K. Awad^e, Shehroze Tabassum^d, Fatma Labieb^e, Cosmin A. Bejan^f, Jaffar A. Al-Tawfiq^{g,h,I}, Kuldeep Dhama^j, Ismail Dergaa^{k,l,m}

Affiliations:

^aFaculty of Medicine, Benha University, Benha, Egypt

^bFaculty of Medicine, Kafrelsheikh University, Kafrelsheikh, 33511, Egypt

eFaculty of Medicine, Ain-Shams University, Cairo, Egypt

^dKing Edward Medical University, Lahore, Pakistan

eFaculty of Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt

^fDepartment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA

^gInfectious Disease Unit, Specialty Internal Medicine, Johns Hopkins Aramco Healthcare, Dhahran, Saudi Arabia

^hDivision of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA

ⁱDivision of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA

^jDivision of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, Izatnagar, Uttar Pradesh, 243122, India

^k Primary Health Care Corporation (PHCC), Doha, Qatar

¹Research Unit Physical Activity, Sport, and Health, UR18JS01, National Observatory of Sport, Tunis, 1003, Tunisia

^mHigh Institute of Sport and Physical Education, University of Sfax, Sfax, Tunisia

Those authors contributed equally as a first author

*Corresponding author:

Dr. Ismail Dergaa (Ph.D./M.Sc.), Primary Health Care Corporation (PHCC), Doha, PO Box 26555, Qatar. ORCID: 0000-0001-8091-1856. Email: Phd.dergaa@gmail.com; idergaa@phcc.gov.qa; Tel: + 97466633683.

Abstract

Background

The first human monkeypox (MPX) case was identified in the Democratic Republic of Congo (DRC) in 1970 with an outbreak in 2010 and the first human MPX case in the UK in 2022. In this study, we conducted a bibliometric analysis of the literature on monkeypox based on the Web of Science Core Collection (WOSCC) of the Institute for Scientific Information (ISI) to identify relevant topics and trends in monkeypox research.

Methods

We searched the Web of Science from 1964 until July 14, 2022, for all publications using the keywords "*Monkeypox*" and "*Monkeypox virus*." Results were compared using numerous bibliometric methodologies and stratified by journal, author, year, institution, and country-specific metrics.

Results

Out of 1,170 publications initially selected, 1,163 entered our analysis, with 65.26% (n=759) being original research articles and 9.37% (n=109) being review articles. Most MPX publications were in 2010, with 6.02% (n=70), followed by 2009 and 2022 at 5.67% (n=66) each. The USA was the country with the highest number of publications, with n=662 (56.92%) of total publications, followed by Germany with n=82 (7.05%), the UK with n=74 (6.36%), and Congo with n=65 (5.59%). Journal of Virology published the highest number of MPX publications, followed by Virology Journal and Emerging Infectious Diseases with n=52 (9.25%), n=43 (7.65%), and n=32 (5.69%) publications, respectively. The top contributing institutions were the Centers for Disease Control and Prevention (CDC), the US Army Medical Research Institute of Infectious Diseases, and the National Institutes of Health (NIH)National Institute of Allergy and Infectious Diseases (NIAID).

Conclusion

Our analysis provides an objective and robust overview of the current literature on MPX and its global trends; this information could serve as a reference guide for those aiming to conduct further MPX-related research and as a source for those seeking information about MPX.

Keywords:

Africa ,Control, Diagnosis, MPX, Prevention, Transmission, Global Health, Public Health

Introduction

The 2022 multi-country Monkeypox (MPX) outbreak is alarming due to the fast spread across different non-endemic countries worldwide, especially after it was declared a "public health emergency of international concern" by the World Health Organization (WHO) on July 23, 2022 [1]. As of November 10, 2022, MPX has resulted in about 78,278 confirmed cases in locations that have not reported MPX historically [2]. Human monkeypox virus (MPXV) is a double-stranded DNA virus of the Poxviridae family. MPX is a zoonotic viral disease that can transmit primarily between animals and humans and through secondary transmission from person to person through close contact with someone who has an MPX rash. It can also spread vertically from mother to fetus. MPXV infects a wide range of mammalian species, but its natural host reservoir remains unknown [3]. Clinical manifestations of MPX can range from less severe to more serious symptoms, which require care in a health facility. However, symptoms are usually self-limited, requiring supportive care [3]. It is characterized by fever, headache, muscle aches, back pain, and swollen lymph nodes, followed by a rash on the face, palms, soles, groin, genital, anal regions, throat, anus, or vagina, or on the eyes [3]. The asymptomatic infection has been reported, but research is still underway to find out whether asymptomatic people can spread the disease or if it can spread through bodily fluids [3].

First introduced in the late 19th century, bibliometric analysis is a scientific method to study articles and other publications and evaluate the contributions of countries, institutions, authors, and journals in a specific field of research. It can also predict trends and hotspots in a certain research field through information analysis [4]; however, such studies are rare in the MPX research field [5–8]. In the current study, we expanded the timeline from 1964 to July 14, 2022, and we analyzed the top 30 most-cited monkeypox-related articles, journals, countries, institutions, authors, and years of monkeypox-related articles. Thus, in this study, we reviewed the literature on MPX and MPXV based on the Web of Science Core Collection (WOSCC) of the Institute for Scientific Information (ISI). To identify the most relevant topics and trends in monkeypox research, we screened the 30 most-cited MPX-related articles, journals, countries, institutions, authors, and years of monkeypox research, we screened the 30 most-cited MPX-related articles. Based on this

process, we addressed the following research questions: a) What is the distribution of MPX studies by year of publication? b) Which are the most productive authors, institutions, and countries? c) Which are the most contributing studies to the field? Moreover, d) What are the past and upcoming trends in MPX research? We hope this study can add a new reference for future human MPX research and prevention.

Methods

We searched extensively over one electronic database [Web of Science (WOS)] for relevant studies published from 1964 to July 14, 2022. The search keywords and corresponding Medical Subject Headings (MeSH) were as follows: ("*MonkeyPox*" OR "*MonkeyPox Virus*").

The data extraction variables from the included studies are as follows: (1) Summary of total records (document type, publication year, and country); (2) Top 30 most-cited monkeypox-related articles (rank, title, year, study design, total global citation score, journal, and journal impact factor (IF)); (3) Top 30 most-cited journals, countries, institutions, authors, and years of monkeypox-related articles (number of publication records, total local citation score, and total global citation score).

Bibliometric analysis was performed using the HistCite software (Clarivate Analytics, Philadelphia, PA, USA). The impact factor data was extracted from the Journal Citation Report – Clarivate Analytics 2021.

Results

From 1964 to July 14, 2022, the total records identified through WOS database searching were 1170 and decreased to 1163 after removing seven duplications. Only 1163 records entered the bibliometric analysis (**Figure 1**)

Summary of included records

Of the 1,163 included publications, 65.26% (n=759) were original research articles, and 9.37% (n=109) were review articles. The lowest numbers represented reviews, early access (i.e., Preprints) and book chapters, with 0.09% (n=1) and 0.17% (n=2), respectively. The year 2010 was the most prolific in MPX research, with 6.02% (n=70) publications, followed by 2009 and 2022 (multi-state outbreak) at 5.67% (n=66) each. They were followed by 2011 at 5.16% (n=60) with the least number of publications with n=1 per year in 1996, 1995, 1990, 1989, 1975, 1974, 1971, and 1967. The USA was the country with the highest number of MPX publications, n=662 (56.92%), followed by Germany n=82 (7.05%), the UK n=74 (6.36%), and Congo n=65 (5.59%). Further details about the types, years, and countries with MPX publications are listed in **Table 1.**

Top 30 Most-Cited Monkeypox-Related Articles

In our analysis, "*The detection of monkeypox in humans in the Western Hemisphere*" by Reed et al., published in the New England Journal of Medicine in 2004, was the most highly cited paper with 356 citations, followed by "*A preliminary assessment of silver nanoparticle inhibition of MPXV plaque formation*" by Rogers et al. published in Nanoscale Research Letters in 2008 with 262 citations, and "*Immunogenicity of a highly attenuated MVA smallpox vaccine and protection against monkeypox*" by Earl et al. published in nature in 2004 with 261 citations. **Table 2** contains additional information about the top 30 most cited monkeypox-related articles, including their journals and years of publication.

Top 30 Most-Cited Journals, Countries, Institutions, Authors, and Years of Monkeypox-Related Articles

This analysis found that the Journal of Virology had the highest contribution to the monkeypox literature, followed by Virology Journal and Emerging Infectious Diseases journal with 52, 43, and 32 publications, respectively. Following its initial wave in 2010, MPX began to spread widely among world countries, influencing the number of publications produced by each. The United States has produced the most publications: n = 662; total citation score (TLCS) of 6,086; and total global citation score (TGCS) of 18,668. Germany follows with n = 82; TLCS = 717; and TGCS = 2,105 then comes

Canada with n=40, TLCS= 344, and TGCS=2,095. The institution that produced the most publications is the Centers for Disease Control and Prevention, CDC (n= 166, TLCS= 2,295, TGCS =4,917), followed by the US Army Medical Research Institute of Infectious Diseases (n= 66, TLCS=1,307, TGCS= 3,652), and NIH National Institute of Allergy Infectious Diseases, NIAID (n=71, TLCS= 835, TGCS=2,181).

Drs. Damon IK, Jahrling PB, Reynolds MG, Esposito JJ, and Olson VA were the top 5 most prolific authors in this analysis, with 89, 33, 66, 20, and 45 publications, respectively. Although 2010 corresponds to the highest publications number (n=70), 2004 is the highest-ranked year due to the high TLCS of 903 and TGCS of 2,605, followed by 2005 (n=50, TLCS=973, TGCS=2519), 2009 (n=66, TLCS=480, TGCS=2,231), and 2007 (n=56, TLCS=655, TGCS=1,974). More details regarding the top 30 Most-Cited Journals, Countries, Institutions, Authors, and Years of Monkeypox-Related Articles are listed in **Table 3**.

Discussion

The worldwide upsurge in the COVID-19 virus cases has not entirely settled, and there has been new distress about the appearance of numerous cases of human MPXV infection. Due to this situation, WHO declared it a public health emergency of international concern (PHEIC) on July 23, 2022 [1]. As of November 10, 2022, 78,278

confirmed MPX cases had been documented across 103 non-endemic countries worldwide [2].

This analysis showed an increasing trend of MPX-related publications after 2002, which mainly coincides with the 2003 US monkeypox outbreak [9]. Generally, more than 50 papers were published annually after this reference year, reaching a peak of 70 publications in 2010. In contrast, the number of papers published each year before 2001 was less than 10. Notably, given the current 2022 multi-state MPX outbreak and the fact that 66 relevant publications were already identified by July 14, 2022 (i.e., the last date for including publications in this analysis), it is likely that 2022 will become the year with the highest number of MPX-related publications.

The USA published more than 600 MPX-related papers during the recent five decades, corresponding to the most publications across all the countries (**Table 1**). The maximum number of published papers on MPX and the peak number of total citations were contributed by Dr. Damon Inger K (**Table 3**). Moreover, Drs. Jahrling PB, Reynolds MG, Esposito JJ, Olson VA, Meyer H, and Li Y produced many highly cited published papers (**Table 3**). Furthermore, the analysis should be interpreted with caution due to the fast-changing nature of MPX-related paper production, citation parameters, and all rankings, especially in the recent PHEIC. Similarly, Cheng et al. [6] found that the highest number of documents was contributed by Damon IK (CDC), followed by

Reynolds MG and Olson VA. However, the three most cited authors in the same study were Z. Jezek, F. Fenner, and J. G. Breman [6]. Furthermore, Adeiza et al. [8] found that Inger Damon (CDC) was the top author, followed by Reynolds MG and Karem KL. Additionally, they presented the author's collaboration links result, according to which Damon Inger K, McCollum Andrea, Marrennikova SS, and Meyer Hermann were the most prolific researchers who collaborated and contributed extensively to the domain of MPX- research. However, our study lacked a global collaborative network for MPXrelated publications, author's collaboration links result, and co-authorship network analysis by the organization. Moreover, Lin et al.[7] reported that Damon Inger K (n=89) was the top author with the most published records, followed by Reynolds Mary G (n = 58), Carroll Darin S (n = 55), Karem Kevin I (n = 51), and Olson Victoria A (n = 51) 39). However, Damon Inger K (n = 3,327) was the top cited author, followed by Jahrling PB (n = 1,602), Esposito JJ (n = 1,514), Meyer Hermann (n = 1,306), and Reynolds Mary G (n = 1,016). The differences in results between our study and these studies could be attributed to different data collection dates and timelines of included years in each study.

As of July 14, 2022, the USA, Germany, and Canada were the top countries responsible for most MPX-related publications during these five decades, emphasizing their impact on MPX research. CDC was the most productive and cited institution, followed by the US Army Medical Research Institute of Infectious Diseases, NIH National Institute of Allergy Infectious Diseases (NIAID), WHO, and the National Institutes of Health (NIH) as evidenced by **Table 3**; this indicates that almost all the prolific scientific research institutions of the world worked in the domain of MPX research. In line with previous studies, Cheng et al. [6] identified the USA as the leading country in MPX research, followed by Germany and the Democratic Republic of the Congo (DRC). Notably, CDC emerged as the top institution in terms of MPX-related publications.

Similarly, Rodríguez-Morales et al. [5] reported that the USA had the highest number of articles in the field, followed by Switzerland and the DRC. Moreover, their study highlighted that CDC, WHO, and the US Army Medical Research Institute of Infectious Diseases were the top institutions contributing to MPX-related papers. The differences in results between our study and theirs may be attributed to variations in data collection dates, the timeline of included years, and the databases used. Nevertheless, both studies converge on the significance of 2003 as a pivotal year in the era of MPX research, marking a substantial increase in the number of published papers and signaling promising trends for further in-depth investigations. Additionally, Adeiza et al. [8] also observed that the USA occupied the top position in terms of publishing MPX articles, with Germany and the UK following suit. These findings highlight the global attention and collaborative efforts invested in advancing MPX research, with a particular focus

on these prominent countries. The USA was the top country publishing MPX articles, followed by Germany and UK. Likewise, Lin et al.[7] reported that the USA, followed by Germany, and DRC were the three top countries, with CDC being the top-most productive institution. This discrepancy may be due to the different dates of data collection, the timeline of included years in each study, and the included databases between the two studies.

Our study showed that the Journal of Virology, Virology, and Emerging Infectious Diseases were the top three journals, with each journal having a total local citation score (TLCS) almost greater than 500 and a Total Global Citation Score (TGCS) almost greater than 1000 (Table 3). These journals were prominent and vital in disseminating scientific findings related to MPX disease. The journal of virology published the highest number of MPX-related papers and was the most frequently cited journal (Table 3), indicating the significant role of human MPX in virus-related publications. However, Cheng et al. [6] reported that PLOS ONE published the highest MPX-related papers, followed by the Journal of Virology and Virology. Furthermore, Adeiza et al.[8] identified that Virology, Journal of Virology, and PLOS ONE were the top journals. However, Lin et al.[7] reported that the Journal of Virology, Vaccine, and Virology were the top journals. The analysis of our study suggested that scientific efforts existed to learn about and investigate human MPX. Global collaboration will be the trend in the future, giving humanity faith that there is still light at the end of the tunnel in combating

and annihilating this infectious disease. In this regard, Farahat et al. [10] have highlighted the need for global contributions to addressing the gaps in different aspects of monkeypox, especially between Arabs and foreign researchers [10].

Some of our study's most important strength points are: (1) our study's timeline of included years was from 1964 up to July 14, 2022, while Lin et al.[7] study's timeline of included years was from 1975 to June 18, 2022. (2) Top 30 most-cited monkeypoxrelated articles, and (3) Top 30 most-cited journals, countries, institutions, authors, and years of monkeypox-related articles. However, there are some limitations to our study. The total number of citations received by a published paper, which constitutes the basis of citation analysis, is one of the chief limitations of our study. The citation number represents scientific influence. However, many elements affect citation numbers [11]. For instance, older published papers can receive a greater number of citations than recently published ones; hence, older published papers can be favoured by this strategy. Other factors contributing to citation rates include incomplete citing, author selfcitations, journal self-citations, and omission bias [12,13]. Moreover, some significant papers receive fewer citations until their results become well-known. Secondly, the literature database used for the data collection in our study is confined to the Web of Science core database, which may not thoroughly evaluate the development course of MPX. We aim to soon expand data collection from other well-recognized scientific databases such as PubMed and Scopus. Thirdly, our study can only shed light on the

advancement and evolution of MPX in limited research domains to a certain extent, which may not completely depict the real situation due to the limitations of bibliometric analysis methods. Integration of more accurate conclusions with other analysis methods and software is needed. Hence, the results obtained in our study are for reference only. Fourthly, the monkeypox topic is dynamic nowadays, especially in the context of the ongoing 2022 multi-country outbreak, and many papers have been published more quickly since July 14, 2022, and onwards till the current time; thus, citation parameters and all rankings may be changed quickly as the MPX is keeping on moving as a public health emergency of international concern (PHIEC). In this regard, we searched as of November 19, 2022, through WOS and found total publications become 1868 as compared to the included studies in our search strategy (n= 1170), indicating major number of published studies (n=698), especially in the context of the PHIEC.

To summarise, we believe it is crucial to emphasize the significance of our findings in guiding future research endeavors. By analyzing the bibliometric trends and contributions in MPX research, our study has identified common research aims, such as understanding the distribution of MPX studies, recognizing productive authors, institutions, and countries, highlighting influential studies, and identifying past and upcoming trends. These findings serve as a valuable reference for future researchers, allowing them to identify research gaps and areas that require further focus. Additionally, the insights gained from our study enable researchers to explore collaboration opportunities, predict emerging trends, and conduct comparative analyses. By capitalizing on this knowledge, future researchers can make meaningful contributions to the field of MPX research, address important research questions, and contribute to the prevention, control, and management of MPX outbreaks.

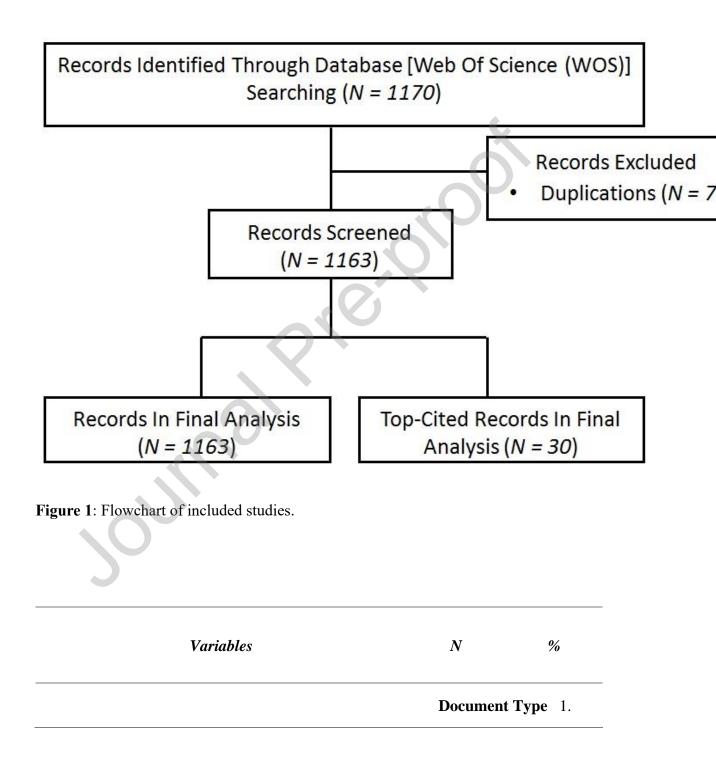
Figures and tables legends

Figure 1: Flowchart of included studies.

 Table 1: Summary of Total Monkeypox-Related Records (N = 1163).

 Table 2: Top 30 Most-Cited Monkeypox-Related Articles.

Table 3: Top 30 Most-Cited Journals, Countries, Institutions, Authors, and Years ofMonkeypox-Related Articles.


References:

 Farahat RA, Khan SH, Memish ZA. Availability of monkeypox vaccinations for low and middle-income countries: Challenges and recommendations. Travel Med Infect Dis 2022;50:102473. https://doi.org/10.1016/j.tmaid.2022.102473.

- [2] CDC. 2022 Monkeypox Outbreak Global Map n.d.
 https://www.cdc.gov/poxvirus/monkeypox/response/2022/world-map.html (accessed November 12, 2022).
- [3] WHO. Monkeypox n.d. https://www.who.int/news-room/questions-andanswers/item/monkeypox (accessed November 12, 2022).
- [4] Kamal MA, Al-Arawi RM. Liraglutide in Treatment of Diabetes Mellitus Type 2: Systematic Review and Bibliometric Analysis Over The Last Two Decades. Metabolism 2022;128:154997. https://doi.org/10.1016/j.metabol.2021.154997.
- [5] Rodríguez-Morales AJ, Ortiz-Martínez Y, Bonilla-Aldana DK. What has been researched about monkeypox? a bibliometric analysis of an old zoonotic virus causing global concern. New Microbes New Infect 2022;47:100993. https://doi.org/10.1016/j.nmni.2022.100993.
- [6] Cheng K, Zhou Y, Wu H. Bibliometric analysis of global research trends on monkeypox: Are we ready to face this challenge? J Med Virol 2022. https://doi.org/10.1002/jmv.27892.
- [7] Lin J, Li G, Zhong P, Zeng Q, Liu L, Chen L. Bibliometric analysis of human monkeypox research from 1975 to 2022 and novel prevention and control strategies. Front Public Heal 2022;10.

https://doi.org/10.3389/fpubh.2022.995965.

- [8] Adeiza S, Shuaibu A. Trends in Monkeypox Research: A Sixty Year Bibliometric Analysis. Microbes Infect Dis 2022:0–0.
 https://doi.org/10.21608/mid.2022.147680.1334.
- [9] Reynolds MG, Davidson WB, Curns AT, Conover CS, Huhn G, Davis JP, et al. Spectrum of Infection and Risk Factors for Human Monkeypox, United States, 2003. Emerg Infect Dis 2007;13:1332–9. https://doi.org/10.3201/eid1309.070175.
- [10] Farahat RA, Elsaid M. Monkeypox and its research trends in Arab countries: A brief bibliometric analysis. Travel Med Infect Dis 2022;49:102413.
 https://doi.org/10.1016/j.tmaid.2022.102413.
- [11] Hirsch JE. An index to quantify an individual's scientific research output. Proc Natl Acad Sci 2005;102:16569–72. https://doi.org/10.1073/pnas.0507655102.
- [12] Mishra S, Fegley BD, Diesner J, Torvik VI. Self-citation is the hallmark of productive authors, of any gender. PLoS One 2018;13:e0195773. https://doi.org/10.1371/journal.pone.0195773.
- [13] The Ups and Downs of Journal Impact Factors. Ann Occup Hyg 2008. https://doi.org/10.1093/annhyg/men002.

Journal Pre-proof		
Original Research Article	759	65.26
Review Article	109	9.37
Editorial Material	72	6.19
Original Research Article; Proceedings Paper	12	1.03
Editorial Material; Book Chapter	1	0.09
Letter	44	3.78
Note	8	0.69
News Item	33	2.84
Proceedings Paper	9	0.77
Original Research Article; Book Chapter	22	1.89
Meeting Abstract	50	4.30
Meeting Abstract	50	4.30

Journal Pre-proof	-	
Reprint	5	0.43
Letter; Early Access	10	0.86
Editorial Material; Early Access	13	1.12
Original Research Article; Early Access	6	0.52
Correction	7	0.60
Review; Early Access	2	0.17
Review; Book Chapter	1	0.09
	Publication Year 2.	
2022	66	5.67
2021	32	2.75
2020	53	4.56
2019	42	3.61

2018	46	3.96
2017	42	3.61
2016	22	1.89
2015	51	4.39
2014	41	3.53
2013	48	4.13
2012	48	4.13
2011	60	5.16
2010	70	6.02
2009	66	5.67
2008	46	3.96

2007	56	4.82
2006	45	3.87
2005	50	4.30
2004	43	3.70
2003	50	4.30
2002	23	1.98
2001	12	1.03
2000	7	0.60
1999	3	0.26
1998	9	0.77
1997	5	0.43

Journal Pre-proof		
1996	1	0.09
1995	1	0.09
1994	7	0.60
1993	2	0.17
1992	2	0.17
1991	4	0.34
1990	1	0.09
1989	1	0.09
1988	8	0.69
1987	6	0.52
1986	4	0.34

Journal Pre-proof		
1985	5	0.43
1984	6	0.52
1983	3	0.26
1981	4	0.34
1980	4	0.34
1979	2	0.17
1978	4	0.34
1977	6	0.52
1976	3	0.26
1975	1	0.09
1974	1	0.09

Journal Pre-proof		
1973	3	0.26
1972	11	0.95
1971	1	0.09
1968	2	0.17
1967	1	0.09
1964	2	0.17
Unknown	31	2.67
	Country 3.	
Afghanistan	1	0.09
Albania	2	0.17
Argentina	3	0.26
Australia	19	1.63

Journal Pre-proof		
Austria	5	0.43
Bangladesh	2	0.17
Belgium	34	2.92
Bolivia	20	0.17
Brazil	27	2.32
Cameroon	5	0.43
Canada	40	3.44
Cent Africa Republic	10	0.86
Colombia	4	0.34
Congo	1	0.09
Cote Ivoire	3	0.26

Journal Pre-proof		
Croatia	1	0.09
Czech Republic	4	0.34
DEM REP CONGO	65	5.59
Denmark	10	0.86
Ecuador	1	0.09
Egypt	5	0.43
Ethiopia	4	0.34
Finland	4	0.34
France	38	3.27
French Guiana	1	0.09
FRG	1	0.09

Journal Pre-proof		
Gabon	4	0.34
Georgia	5	0.43
Germany	82	7.05
Ghana	<u>, 0</u> 0	0.09
Greece	2	0.17
India	19	1.63
Indonesia	5	0.43
Iran	2	0.17
Israel	11	0.95
Italy	15	1.29
Japan	23	1.98

Journal Pre-proof		
Luxembourg	1	0.09
Madagascar	1	0.09
Malaysia	4	0.34
Malta	~ ⁰ C	0.09
Mexico	4	0.34
Montenegro	1	0.09
Nepal	2	0.17
Netherlands	16	1.38
Nigeria	30	2.58
Norway	6	0.52
Oman	3	0.26

Journal Pre-proof		
Pakistan	3	0.26
Panama	1	0.09
Peoples R China	11	0.95
Peru	3	0.26
Poland	4	0.34
Portugal	5	0.43
Rep Congo	13	1.12
Russia	43	3.70
Saudi Arabia	3	0.26
Senegal	3	0.26
Serbia	2	0.17

Journal Pre-proof		
Sierra Leone	4	0.34
Singapore	6	0.52
Slovakia	1	0.09
South Africa	14	1.20
South Korea	2	0.17
Spain	12	1.03
St Kitts & Nevi	1	0.09
Sudan	3	0.26
Sweden	10	0.86
Switzerland	33	2.84
Taiwan	1	0.09

Journal Pre-proof		
Tanzania	2	0.17
Thailand	2	0.17
Trinidad Tobago	1	0.09
TUNISIA	, ⁰	0.09
Turkey	3	0.26
U Arab Emirates	1	0.09
Uganda	1	0.09
UK	74	6.36
Ukraine	1	0.09
USA	662	56.92
USSR	8	0.69

Journal Pre-proof		
Venezuela	1	0.09
Vietnam	3	0.26
ZAIRE	1	0.09
Zambia	2	0.17
Zimbabwe	1	0.09
Unknown	134	11.52

Table 1: Summary of Total Monkeypox-Related Records (N = 1163).

Journal Pre-proof

S	Title	Ye	Study	TG	Journal	IF
С		ar	Design	CS	0,	(202
R					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1)
<u>1s</u>	The detection of	20	Laborator	356	New England Journal	176.
t	monkeypox in humans	04	y Study		of Medicine	079
	in the Western					
	Hemisphere	<i>b</i>				
2n	A preliminary	20	Laborator	262	Nanoscale Research	5.41
d	assessment of silver	08	y Study		Letters	8
	nanoparticle inhibition					
	of monkeypox virus					
	plaque formation					

		Joi	urnal Pre-proo	f		
3r	Immunogenicity of a	20	Animal	261	Nature	69.5
d	highly attenuated MVA	04	Study			04
	smallpox vaccine and					
	protection against					
	monkeypox				X	
4t	Smallpox vaccine-	20	Animal	205	Nature Medicine	87.2
h	induced antibodies are	05	Study)	41
	necessary and sufficient			>		
	for protection against		O			
	monkeypox virus					
5t	Major increase in human	20	Observati	205	Proceedings of The	12.7
h	monkeypox incidence 30	10	onal		National Academy of	79
	years after smallpox		Study		Sciences of The	
	vaccination campaigns				United States of	
	cease in the Democratic				America	
	Republic of Congo					

h monkeypox, Democratic 01 y Study Diseases 2 Republic of Congo, 1996-1996 At Human monkeypox: an 20 Review 178 Lancet Infectious 7 h emerging zoonosis 04 Diseases 2 At A tale of two clades: 20 Laborator 175 Journal of General 5. h monkeypox viruses 05 y Study Virology At Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. h protects nonhuman 04 Study primates against lethal monkeypox 0 Potential antiviral 20 Laborator 132 Antiviral Research 10			JOI	urnal Pre-proof			
Republic of Congo, 1996-1996 It Human monkeypox: an 20 Review 178 Lancet Infectious 7. In emerging zoonosis 04 Diseases 2 Review 178 Lancet Infectious 7. In emerging zoonosis 04 Diseases 2 Review 175 Journal of General 5. In monkeypox viruses 05 y Study Virology It Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. In protects nonhuman 04 Study Image: Study	ōt	Outbreak of human	20	Laborator	184	Emerging Infectious	16.1
1996-1996 It Human monkeypox: an 20 Review 178 Lancet Infectious 7 In emerging zoonosis 04 Diseases 2 It A tale of two clades: 20 Laborator 175 Journal of General 5 In monkeypox viruses 05 y Study Virology 5 It Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6 In protects nonhuman 04 Study Image: Construct of C	1	monkeypox, Democratic	01	y Study		Diseases	26
Tt Human monkeypox: an 20 Review 178 Lancet Infectious 7 n emerging zoonosis 04 Diseases 2 Rt A tale of two clades: 20 Laborator 175 Journal of General 5 Rt A tale of two clades: 20 Laborator 175 Journal of General 5 n monkeypox viruses 05 y Study Virology 4 Pt Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6 n protects nonhuman 04 Study F 7 0 Potential antiviral 20 Laborator 132 Antiviral Research 10		Republic of Congo,					
n emerging zoonosis 04 Diseases 2 at A tale of two clades: 20 Laborator 175 Journal of General 5. at monkeypox viruses 05 y Study Virology 5. bt Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. bt Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. bt protects nonhuman 04 Study 5. 5. bt protects nonhuman 04 Study 5. 5. ct Smallpox 20 Laborator 132 Antiviral Research 10.		1996-1996					
n emerging zoonosis 04 Diseases 2 at A tale of two clades: 20 Laborator 175 Journal of General 5. at monkeypox viruses 05 y Study Virology 5. bt Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. bt Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. bt protects nonhuman 04 Study 5. 5. bt protects nonhuman 04 Study 5. 5. ct Smallpox 20 Laborator 132 Antiviral Research 10.						<u> </u>	
St A tale of two clades: 20 Laborator 175 Journal of General 5. In monkeypox viruses 05 y Study Virology St Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. In protects nonhuman 04 Study Study 9. In protects nonhuman 04 Study 9. In primates against lethal 173 Journal of Virology 6. In Potential antiviral 20 Laborator 132 Antiviral Research 10.	't	Human monkeypox: an	20	Review	178	Lancet Infectious	71.4
n monkeypox viruses 05 y Study Virology n monkeypox DNA vaccine 20 Animal 173 Journal of Virology 6. n protects nonhuman 04 Study primates against lethal monkeypox 10 0 Potential antiviral 20 Laborator 132 Antiviral Research 10	1	emerging zoonosis	04			Diseases	21
n monkeypox viruses 05 y Study Virology n monkeypox DNA vaccine 20 Animal 173 Journal of Virology 6. n protects nonhuman 04 Study primates against lethal monkeypox 10 0 Potential antiviral 20 Laborator 132 Antiviral Research 10)	
 Marka Smallpox DNA vaccine 20 Animal 173 Journal of Virology 6. monkeypox Potential antiviral 20 Laborator 132 Antiviral Research 10 	st	A tale of two clades:	20	Laborator	175	Journal of General	5.14
 n protects nonhuman 04 Study primates against lethal monkeypox 0 Potential antiviral 20 Laborator 132 Antiviral Research 10 	1	monkeypox viruses	05	y Study		Virology	1
 n protects nonhuman 04 Study primates against lethal monkeypox 0 Potential antiviral 20 Laborator 132 Antiviral Research 10 							
primates against lethal monkeypox 0 Potential antiviral 20 Laborator 132 Antiviral Research 10)t	Smallpox DNA vaccine	20	Animal	173	Journal of Virology	6.54
 monkeypox Potential antiviral 20 Laborator 132 Antiviral Research 10 	1	protects nonhuman	04	Study			9
0 Potential antiviral 20 Laborator 132 Antiviral Research 10		primates against lethal					
		monkeypox					
h therapeutics for 03 y Study 0	0	Potential antiviral	20	Laborator	132	Antiviral Research	10.1
	h	therapeutics for	03	y Study			03

		Joi	umal Pre-proof	2		
	and other orthopoxvirus					
	infections					
11	Virulence differences	20	Laborator	131	Virology	3.51
th	between monkeypox	05	y Study			3
	virus isolates from West				Å	
	Africa and the Congo					
	basin				5	
12	Human Infection Caused	19	Laborator	130	Bulletin of The World	13.8
th	By Monkeypox Virus In	72	y Study		Health Organization	31
	Basankusu Territory, Democratic-Republic-of-					
	Congo					
13	Poxvirus dilemmas -	19	Review	127	New England Journal	176.
th	Monkeypox, smallpox,	98			of Medicine	079
	and biologic terrorism					

14	Modified vaccinia virus	20	Animal	125	Journal of Virology	6.54
th	Ankara protects	05	Study			9
	macaques against					
	respiratory challenge					
	with monkeypox virus				Å	
		• •				
15	The pathology of	20	Laborator	124	Laboratory	5.51
th	experimental aerosolized	01	y Study		Investigation	5
	monkeypox virus			5		
	infection in cynomolgus		O			
	monkeys (Macaca		X			
	fascicularis)	5				
16	Human monkeypoy: an	20	Review	121	Future Microbiology	3.55
10	Human monkeypox: an	20	Keview	121	Future Microbiology	5.55
th	emerging zoonotic	07				3
	disease					
17	Human monkeypox,	19	Case	111	Bulletin of The World	13.8
th	1970-79	80	Series		Health Organization	31

		Joi	ımal Pre-proot	ĺ		
18	Antiviral treatment is	20	Laborator	109	Nature	69.5
th	more effective than	06	y Study			04
	smallpox vaccination					
	upon lethal monkeypox					
	virus infection				Å	
19	Human Monkeypox -	19	Observati	108	Journal of Infectious	7.75
th	Clinical-Features of 282	87	onal		Diseases	9
	Patients		Study	2		
20	Extended interhuman	20	Case	103	American Journal of	3.70
th	transmission of	05	Series		Tropical Medicine	7
	monkeypox in a hospital				and Hygiene	
	community in the					
	Republic of the Congo,					
	2003					
21	Re-emergence of	19	Review	98	British Medical	5.84
st	monkeypox in Africa: a	98			Bulletin	1

	review of the past six					
	years					
22	Outbreaks of disease	20	Laborator	94	Journal of Clinical	11.6
n	suspected of being due	02	y Study		Microbiology	77
d	to human monkeypox				Å	
	virus infection in the				.0	
	Democratic Republic of					
	Congo in 2001		. (K	
23	Monkeypox	20	Animal	94	Emerging Infectious	16.1
rd	transmission and	04	Study		Diseases	26
	pathogenesis in prairie dogs	0				
24		10	Laborator	02	Longet	202
24	5	19	Laborator	93	Lancet	202.
th	MONKEYPOX VIRUS	86	y Study			731
	FROM WILD					
	SQUIRREL INFECTED					

25	Human monkeypox and	20	Laborator	93	FEBS Letters	3.86
				20		
th	smallpox viruses:	01	y Study			4
	genomic comparison					
26	The Transmission	19	Observati	85	International Journal	9.68
th	Potential of Monkeypox	88	onal		of Epidemiology	5
	Virus In Human-		Study		. O .	
	Populations					
					X	
27	Monkeypox zoonotic	20	Laborator	85	American Journal of	3.70
th	associations: Insights	07	y Study		Tropical Medicine	7
UII			y stady			
	from laboratory	5			and Hygiene	
	evaluation of animals					
	associated with the					
	multi-state us outbreak					
	5					
28	Human Monkeypox - A	19	Case	83	American Journal of	3.70
th	Newly Emerged	85	Series		Tropical Medicine	7
.11		05	501105			/
	Orthopoxvirus Zoonosis				and Hygiene	

	In The Tropical Rain					
	Forests Of Africa					
29	Subunit recombinant	20	Animal	82	Journal of	5.44
th	vaccine protects against	06	Study		Immunology	6
	monkeypox					
30	Characterization of wild-	20	Laborator	80	Antimicrobial Agents	5.93
th	type and cidofovir-	02	y Study		and Chemotherapy	8
	resistant strains of			3	*	
	Camelpox, cowpox,		2)			
	monkeypox, and					
	vaccinia viruses	5				

Table 2: Top 30 Most-Cited Monkeypox-Related Articles. Abbreviations: SCR:Standard Competition Ranking; TGCS: Total Global Citation Score; IF: Impact Factor;H-Index: Hirsch index.

Journal Pre-proof

	Variables	Reco rds	TLCS	TGC
		<i>rus</i>		
			Journal	1.
1st	Journal Of Virology	52	685	1957
2n	Virology	43	536	1537
d				
3r	Emerging Infectious Diseases	32	645	1229
d				
4t	Vaccine	46	358	1146
h				
5t	Journal of General Virology	20	406	997
h	~			
6t	New England Journal of Medicine	13	416	850

	Journal Pre-proof			
7t	Bulletin of The World Health Organization	22	607	843
h				
8t	Journal of Infectious Diseases	26	410	802
h				
9t	Nature	10	197	784
h				
10	Plos One	42	0	741
th				
11	Antimicrobial Agents And Chemotherapy	18	274	736
th				
12	Journal of Clinical Microbiology	11	309	730
th				
13	Nature Reviews Microbiology	3	40	710
th				

	Journal Pre-proof			
14	Antiviral Research	31	92	705
th				
15	American Journal of Tropical Medicine And Hygiene	38	468	565
th				
16	Proceedings of The National Academy of Sciences of	9	257	519
th	The United States of America			
17	Viruses-Basel	30	101	438
th				
18	Journal of Immunology	11	102	430
th				
19	Clinical Infectious Diseases	14	256	412
th				
20	Nature Medicine	5	60	367
th				

1	Journal Pre-proof			
21	Journal of Virological Methods	15	129	317
st				
22	Plos Pathogens	13	0	306
nd			K	
23	Live Variola Virus: Considerations For Continuing	3	0	304
rd	Research			
24	Lancet Infectious Diseases	11	43	290
th				
25	Clinical Microbiology Reviews	2	1	295
th				
26	Nanoscale Research Letters	1	0	262
th				
27	Veterinary Microbiology	3	69	254
th				

28	Revue Scientifique Et Technique-Office International	4	3	247
th	Des Epizooties			
29	Virology Journal	18	0	226
th			5	
30	Lancet	16	173	223
th				
			Country	2.
1st	USA	662	6086	18668
2n	Germany	82	717	2105
d				
3r	Canada	40	344	2095
d				
4t	UK	74	237	1859

	Journal Pre-proof			
5t	Switzerland	33	1011	1536
h				
6t	Belgium	34	259	1314
h			K	
7t	France	38	103	968
h				
8t	DEM REP CONGO	65	474	807
h				
9t	Australia	19	73	805
h				
10	Russia	43	194	721
th				
11	Netherlands	16	182	519
th				

	Journal Pre-proof			
12	Brazil	27	74	495
th				
13	Japan	23	151	381
th				
14	Rep Congo	13	250	313
th		0		
15	Sweden	10	20	299
th				
16	Nigeria	30	95	297
th				
17	Denmark	10	59	194
th				
18	USSR	8	147	188
th				

	Journal Pre-proof			
19	South Africa	14	60	175
th				
20	India	19	21	159
th				
21	Czech Republic	4	55	153
st		<u>)</u>		
22	Spain	12	24	148
nd				
23	Italy	15	19	135
rd				
24	Israel	11	48	120
th				
25	Norway	6	7	113
th				

1	Journal Pre-proof			1
26	Austria	5	6	102
th				
27	Oman	3	28	102
th			5	
28	Poland	4	39	99
th				
29	Georgia	5	24	71
th				
30	Sudan	3	61	70
th				
	$\sqrt{0}$	In	stitution	3.
1st	Centers For Disease Control and Prevention (CDC)	166	2295	4917
2n	US Army Medical Research Institute of Infectious	66	1307	3652
d	Diseases			

3r	NIH National Institute of Allergy Infectious Diseases	71	835	2181
d	(NIAID)			
4t	World Health Organization (WHO)	27	968	1412
h			K	
5t	National Institutes of Health (NIH)	23	419	1335
h				
6t	Saint Louis University	33	565	1253
h				
7t	Katholieke University Leuven	21	182	1117
h				
8t	University of California Los Angeles	24	352	933
h				
9t	Stanford University	16	36	908
h				

	Journal Pre-proof			
10	Med Coll Wisconsin	10	332	829
th				
11	University of Pennsylvania	20	245	810
th			k	
12	Bundeswehr Inst Microbiology	15	325	779
th				
13	Oregon Health & Science University	19	125	765
th				
14	University of Florida	17	126	699
th				
15	Emory University	17	123	672
th				
16	Robert Koch Institute	25	152	662
th				

Journal Pre-proof

17	US Food Drug Administration (FDA)	23	147	65.
17	05 Tood Drug Administration (TDA)	23	147	05.
th				
18	SIGA Technologies, Inc	21	340	649
th			K	
19	Southern Research Institute	14	165	642
th				
20	1.1.1 State Research Center of Virology and	24	185	60
th	Biotechnology VECTOR			
21	University of Victoria	9	175	59
st				
22	Johns Hopkins University	8	248	58.
nd				
23	Minist Hlth (Congo)	39	439	578
rd				

			Author	Δ
th				
30	Wisconsin Division of Public Health	3	297	441
th	(CDC)			
29	U.S. Centers For Disease Control and Prevention	28	219	447
th				
28	University of Georgia	13	25	450
th				
27	University of Western Ontario	5	76	453
th				
26	National Institute of Biomedical Research	13	366	468
th			K	
25	University of Washington	7	30	550
th				
24	National Cancer Institute (NCI)	12	95	561

Journal Pre-proof Damon IK 1st 89 1969 3165 2n Jahrling PB 33 668 1622 d 1031 3r Reynolds MG 66 1566 d Esposito JJ 20 4t 825 1539 h Olson VA 5t 45 911 1468 h Meyer H 6t 27 589 1354 h 7t Li Y 39 793 1320 h

	Journal Pre-proof			
8t	Carroll DS	48	521	1008
h				
9t	Moss B	21	415	987
h			K	
10	Formenty P	11	609	980
th				
11	Regnery RL	16	663	978
th				
12	Jezek Z	19	799	949
th				
13	Huggins JW	16	259	886
th				
14	Karem KL	39	518	882
th				

1	Journal Pre-proof			
15	Hooper JW	16	241	870
th				
16	Bray M	15	118	756
th			K	
17	McFadden G	12	100	739
th				
18	Jordan R	17	392	731
th				
19	Shchelkunov SN	30	241	724
th				
20	De Clercq E	10	85	707
th				
21	Lloyd-Smith JO	8	183	700
st				

	Journal Pre-proof			
22	Breman JG	7	253	611
nd				
23	Americo JL	14	270	610
rd				
24	Buller RML	9	288	593
th		0		
25	Nalca A	12	156	586
th				
26	Szczeniowski M	12	473	580
th				
27	Earl PL	13	267	579
th				
28	Hruby DE	22	316	573
th				

	Journal Pre-proof			
29	Karem K	20	316	552
th				
30	Arita I	13	357	530
th		\$		
		Publicatio	n Year	: 5.
1st	2004	43	903	2605
2n	2005	50	973	2519
d				
3r	2009	66	480	2231
d				
4t	2007	56	655	1974
h				
5t	2010	70	652	1683
h				

	Journal Pre-proof			
6t	2003	50	240	1580
h				
7t h	2006	45	516	1551
8t	2011	60	389	1348
h		0		
9t	2008	46	313	1342
h				
10 th	2002	23	320	1245
	2001	10	382	010
11 th	2001	12	302	818
12	2013	48	157	751
th				

	Journal Pre-proof			
13	2012	48	196	740
th				
14	2017	42	62	612
th				
15	2014	41	155	579
th)		
16	2018	46	132	503
th				
17	2015	51	165	464
th				
18	1998	9	144	444
th				
19	1972	11	256	384
th				

	Journal Pre-proof			
20	2019	42	131	372
th				
21	2000	7	104	317
st			K	
22	1987	6	266	297
nd				
23	1988	8	271	297
rd				
24	2020	53	71	277
th				
25	2016	22	71	243
th				
26	1986	4	171	215
th				

	Journal Pre-proof			
27	1997	5	104	198
th				
28	1995	1	50	170
28	1995	1	52	170
th			6	
29	1980	4	108	160
th				
30	1985	5	112	150
50	170.3	3	112	159
th				
	· ·			

Table 3: Top 30 Most-Cited Journals, Countries, Institutions, Authors, and Years of

Monkeypox-Related Articles.

Declaration of Competing Interest

The authors declare no conflict of interest