Skip to main content
. 2023 Jun 2;47(3):100068. doi: 10.1016/j.anzjph.2023.100068

Table 1.

Generalised linear model (Poisson distribution) for any risk-reduction behaviour before events, N=556, Optimise participants, Victoria, Australia, February 2022.

Variable Total N=556 n (%) Any risk reduction n=339 (61%) No risk reduction n=217 (39%) Unadjusted relative risk N=556 Unadjusted p-value Adjusted relative risk N=556 Adjusted p-value
Age (years)
 18–34 167 (30) 116 (69) 51 (31) 1.19 (1.02, 1.39) 0.0263 1.20 (1.01, 1.41) 0.0348
 35–54 190 (34) 107 (56) 83 (44) 0.97 (0.81, 1.15) 0.6939 0.97 (0.81, 1.15) 0.7109
 55+ 199 (36) 116 (58) 83 (42) ref - ref -
Gender
 Women 419 (75) 265 (63) 154 (37) 1.17 (0.99, 1.39) 0.0703 1.16 (0.97, 1.38) 0.1006
 Men 137 (25) 74 (54) 63 (46) ref - ref -
Region in Victoria
 Regional Victoria 101 (18) 49 (49) 52 (51) 0.76 (0.62, 0.94) 0.0117 0.78 (0.62, 0.97) 0.0233
 Metropolitan Melbourne 450 (82) 287 (64) 163 (36) ref - ref -
Country of birth
 Overseas 188 (34) 113 (60) 75 (40) 0.98 (0.85, 1.13) 0.7663 0.99 (0.85, 1.14) 0.8531
 Australia 368 (66) 226 (61) 142 (39) ref - ref -
Healthcare worker
 Yes 128 (23) 79 (62) 49 (38) 1.02 (0.87, 1.19) 0.8423 1.00 (0.85, 1.17) 0.9843
 No 428 (77) 260 (61) 168 (39) ref - ref -
Chronic health condition
 Yes 210 (38) 136 (65) 74 (35) 1.10 (0.97, 1.26) 0.1465 1.15 (1.00, 1.33) 0.0482
 No 346 (62) 203 (59) 143 (41) ref - ref -
Recruitment method
 Seed 305 (55) 186 (61) 119 (39) 1.00 (0.88, 1.14) 0.9947 0.98 (0.85, 1.12) 0.7437
 Other 251 (45) 153 (61) 98 (39) ref ref
Months in Optimise study (median, (IQR)) 11 (6, 14) 10 (6, 14) 11 (6, 14) 1.00 (0.99, 1.01) 0.9623 1.00 (0.98, 1.01) 0.8138

Covariates: Gender, country of birth, time in study, recruitment method.

Months in Optimise study: Number of months since recruitment into the Optimise Study.

Recruitment method: Whether participants were recruit via responding to advertising (“seed”) or referral from their social networks (“other”).

∗Bolded p-values represent <0.05.

Ref—reference category.