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Abstract

To prioritize circulating metabolites that likely play causal roles in the pathogenesis of multiple 

sclerosis (MS). Two-sample Mendelian randomization analysis was performed to estimate the 

causal effects of 571 circulating metabolites on the risk of MS. Genetic instruments for circulating 

metabolites were obtained from three previous genome-wide association studies (GWAS) of the 

blood metabolome (N = 7,824; 24,925; and 115,078; respectively), while genetic associations with 

MS were from a large GWAS by the International Multiple Sclerosis Genetics Consortium (14,802 

cases and 26,703 control). The primary analysis was performed with the multiplicative random-

effect inverse variance-weighted method, while multiple sensitivity analyses were conducted with 

the weighted median, weighted mode, MR-Egger, and MRPRESSO. A total of 29 metabolites had 

suggestive evidence of causal associations with MS. Genetically instrumented levels of serine (OR 

= 1.56, 95% CI = 1.25 – 1.95), lysine (OR = 1.18, 95% CI = 1.01 – 1.38), acetone (OR = 2.45, 

95% CI = 1.02 – 5.90), and acetoacetate (OR = 2.47, 95% CI = 1.14 – 5.34) were associated with 

a higher MS risk. Total cholesterol and phospholipids in large very-low-density lipoprotein were 

associated with a lower MS risk (OR = 0.83, 95% CI = 0.69 – 1.00; OR = 0.80, 95% CI = 0.68 

– 0.95), but risk-increasing associations (OR = 1.20, 95% CI = 1.04 – 1.40; OR = 1.13, 95% CI 

= 1.00 – 1.28) were observed for the same two lipids in very large high-density lipoprotein. Our 
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metabolome-wide Mendelian randomization study prioritized a list of circulating metabolites, such 

as serine, lysine, acetone, acetoacetate, and lipids, that likely have causal associations with MS.
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1. Introduction

Multiple sclerosis (MS) is an autoimmune disease in the central nervous system, 

characterized by neuroinflammation, demyelination, and neurodegeneration. While the 

exact causes of MS are still unknown, some lifestyle and environmental risk factors have 

been relatively well-established, such as female sex, smoking, Epstein–Barr virus (EBV) 

infection, low vitamin levels, and obesity (Olsson et al. , 2017). Metabolomics is a powerful 

approach to identifying metabolites that differentiate MS patients from healthy controls, 

revealing diagnostic or prognostic biomarkers, potential therapeutic targets, and insights 

into the pathogenesis (Bhargava and Anthony, 2020, Zahoor et al. , 2021). Metabolites in 

various metabolic pathways have been implicated in MS, such as higher plasma levels 

of acetoacetate, acetone, and 3-hydroxybutyrate in energy metabolism (Cocco et al. , 

2016), higher circulating levels of gamma-glutamyl amino acids and lysine in amino acid 

metabolism (Bhargava et al. , 2017, Moussallieh et al. , 2014), elevated serum levels of 

uridine in nucleotide metabolism (Lazzarino et al. , 2017), and altered circulating profiles 

of lipids and lipoproteins in lipid metabolism (Lorincz et al. , 2022). Of note, lipoproteins 

are soluble complexes of proteins and lipids, with a hydrophilic membrane of phospholipids, 

free cholesterol, and apolipoproteins surrounding a hydrophobic core of cholesteryl esters 

and triglycerides. Based on their size, constituent lipids and apolipoproteins, lipoproteins 

can be divided into seven classes, chylomicrons, chylomicron remnants, very low-density 

lipoproteins (VLDL), VLDL remnants, low-density lipoproteins (LDL), high-density 

lipoproteins (HDL), and lipoprotein (a). These lipoprotein classes could be further divided 

into subclasses based on their size and density (Feingold, 2022). A metabolomics study, 

comparing relapsing-remitting MS patients (RRMS) to age- and sex-matched healthy 

volunteers, found that cholesterol, phospholipids, and triglycerides are elevated in the larger 

subclasses of VLDL and HDL (Gafson et al. , 2018). However, the causality of these 

lifestyle, environmental, or metabolomic risk factors is hard to establish due to the inherent 

limitations of observational associations, especially in case-control studies, such as reverse 

causation and residual confounding (Olsson, Barcellos, 2017).

Mendelian randomization (MR) is a genetic epidemiology method that leverages genetic 

effects to enable the inference of causality between an exposure and an outcome. It selects 

genetic variants with known effects on the exposure of interest. The random allocation of the 

two alleles at a genetic variant across generations mimics the random assignment of placebo 

or treatment to participants in a randomized controlled trial (Davies et al. , 2018). MR has 

been applied to MS, providing evidence for causal roles of high BMI (Harroud et al. , 2021a, 

Harroud et al. , 2021c, Jacobs et al. , 2020, Vandebergh et al. , 2022), increased interleukin-6 

signaling (Vandebergh, Becelaere, 2022), and low vitamin D (Harroud, Manousaki, 2021a, 
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Jacobs, Noyce, 2020). On the other hand, MR did not support the causal roles of uric acid 

(Niu et al. , 2020), leptin (Harroud, Manousaki, 2021a), adiponectin (Harroud, Manousaki, 

2021a), and depression (Binzer et al. , 2021, Harroud et al. , 2021b). A systemic MR study 

of 65 possible risk factors for MS revealed robust evidence of causality for four of them, 

high childhood and adult BMI, low vitamin D, and low physical activity. It also found 

suggestive evidence for type 2 diabetes, waist circumference, body fat percentage, age of 

puberty, and high-density lipoprotein cholesterol (HDL-C) (Yuan et al. , 2021). Although 

large-scale MR analysis is a powerful approach to prioritizing causal risk factors for MS, 

no such study has been applied to all metabolites in a metabolome. Taking advantage of 

the recent large genome-wide association studies (GWAS) of human blood metabolites 

measured by metabolomics platforms (Kettunen et al. , 2016, Richardson et al. , 2022, Shin 

et al. , 2014), we performed a metabolome-wide MR study to prioritize causal circulating 

metabolites for MS.

2. Methods

2.1. Data sources

Genetic associations with circulating metabolites were obtained from three GWAS of human 

blood metabolome. Their summary statistics were compiled and made available through the 

MRC IEU OpenGWAS project (Elsworth et al. , 2020, Hemani et al. , 2018), and the three 

GWAS were labeled as met-a (Shin, Fauman, 2014), met-c (Kettunen, Demirkan, 2016), 

and met-d (Richardson, Leyden, 2022). All three GWAS were performed in participants of 

European ancestry. The met-a study covers 452 metabolites and 7,824 participants, the met-c 

study 123 metabolites and up to 24,925 participants, and the met-d study 249 metabolites 

and 115,078 individuals. For met-a, which performed GWAS on raw phenotypes, we 

rescaled SNP effect sizes to one standard deviation (SD) of the circulating metabolite level 

(Shin, Fauman, 2014). The effect sizes in met-c and met-d were already standardized to SD 

because of the inverse rank-based normal transformation of phenotypic values before GWAS 

(Kettunen, Demirkan, 2016, Richardson, Leyden, 2022). Genetic associations with MS in 

Europeans were obtained from the discovery GWAS by the International Multiple Sclerosis 

Genetics Consortium (14,802 cases and 26,703 control). We obtained access to the summary 

statistics on the designated website (https://nettskjema.no/a/imsgc-data-access#/). We further 

confirmed that the same summary statistics were available on the OpenGWAS project with a 

dataset ID of ieu-b-18.

2.2. Selection of instrumental variables

Two significance thresholds (P < 5 × 10−8 and P < 1 × 10−6) were used to select 

single nucleotide polymorphisms (SNPs) as instrumental variables (IVs). The genome-wide 

significance threshold of P < 5 × 10−8 is commonly used for the selection of genetic 

instruments to fulfill the relevance assumption of MR. We additionally used the suggestive 

significance threshold of P < 1 × 10−6 to include more metabolites in the analysis, which 

would otherwise be excluded due to the lack of genetic instruments under the stringent 

genome-wide significance cutoff. For other metabolites, the usage of the less stringent 

significance threshold increases the number of genetic instruments and offers an opportunity 

to assess the robustness of the MR estimates using different sets of genetic instruments. 
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However, we would like to emphasize that these two sets of genetic instruments do not 

represent independent replications due to their overlaps. We used linkage disequilibrium 

(LD) clumping (r2 < 0.001 within a 10 Mb window) to identify independent SNPs. 

For exposure-associated SNPs not present in the MS GWAS dataset, we searched for 

proxy SNPs in high LD (r2 ≥ 0.8). A threshold of F-statistics greater than 10 indicates 

strong instruments (Pierce et al. , 2011). The effects of IVs on exposure and outcome 

were harmonized to rule out strand mismatches and ensure alignment of effect sizes. 

All IV selection, clumping, and harmonization were implemented in R v4.2.1 using the 

TwoSampleMR package (v0.5.6) (Hemani, Zheng, 2018).

2.3. Statistical analyses

We performed two-sample MR analysis only for metabolites that have at least three 

independent genetic instruments in order to apply statistical testing of and correction for 

potential pleiotropy. The primary analysis utilized the multiplicative random-effect inverse 

variance-weighted (IVW) method, which used a meta-analysis approach to combine Wald 

estimates for each SNP and obtain an overall estimate of the effect of each metabolite on 

MS (Burgess et al. , 2013). The Cochran’s Q test was used to determine the homogeneity 

within the causal estimates of different SNPs (Greco et al. , 2015). Sensitivity analyses were 

performed with MR-Egger (Bowden et al. , 2015), weighted median (WME) (Bowden et al. , 

2016), and weighted mode (WMO) methods (Hartwig et al. , 2017). The MR-Egger provides 

robust effect estimates in the presence of balanced pleiotropy. The WME method provides 

reliable estimates when at least 50% of the weight comes from valid IVs. The WMO 

method reports the effect estimate supported by the largest number of genetic instruments. 

The MR-Egger intercept test was applied to evaluate the presence of unbalanced horizontal 

pleiotropy (Bowden, Davey Smith, 2015, Burgess and Thompson, 2017). Moreover, we 

applied the MR-PRESSO method for detecting overall horizontal pleiotropy (i.e., the global 

test), identifying specific outliers (i.e., the outlier test), and re-calculating effect estimates 

after outlier removal (Verbanck et al. , 2018). Scatter plots, forest plots, and leave-oneout 

plots were generated to visualize the relationships and the impacts of individual genetic 

instruments. These sensitivity analyses aimed to ensure robustness and validity of the 

findings while accounting for potential biases due to pleiotropy. In addition, we applied 

the MR Steiger method to infer the direction of causality (Hemani et al. , 2017). Candidate 

metabolites were defined into two groups, consistent and suggestive. The consistent group 

includes metabolites that have nominally significant (P < 0.05) and directionally consistent 

MR IVW estimates under both p-value cutoffs (P < 5 × 10−8 and P < 1 × 10−6) for genetic 

instruments. The suggestive group includes metabolites that have nominally significant MR 

IVW estimates under either p-value cutoff. Note that some metabolites only have genetic 

instruments under the less stringent cutoff of P < 1 × 10−6. All analyses were conducted 

in R v4.2.1 using MendelianRandomization (v0.6.0, IVW, MR-Egger, WME, and WMO 

analyses) (Broadbent et al. , 2020), TwoSampleMR (v0.5.6, MR Steiger analysis, scatter 

plots, forest plots, and leave-one-out plots) (Hemani, Zheng, 2018), and MRPRESSO (v1.0, 

MR-PRESSO analysis) (Verbanck, Chen, 2018).
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2.4. Standard protocol approvals, registrations, and patient consent

This study was conducted with previously published summary-level data. No individual-

level data were used.

2.5. Data availability

All GWAS summary statistics can be accessed through the OpenGWAS project 

(Elsworth, Lyon, 2020, Hemani, Zheng, 2018). The MR analysis scripts can be found 

at https://github.com/yitangsun/metabolome-wide-MR-for-MS. The key MR results have 

been replicated by another author, and the scripts can be found here https://github.com/

angelage678/Mendelian-Randomization---multiple-sclerosis-and-metabolites.

3. Results

Our workflow is summarized in Fig. 1. Three GWAS of human blood metabolome 

were included in our analysis, each with 452, 123, and 249 metabolites, respectively. 

Metabolites with less than three genetic instruments were excluded from our analysis. 

With a significance cutoff of P < 5 × 10−8 for the selection of genetic instruments, we 

obtained MR results for a total of 404 metabolites (Supplementary Table 1). When we 

relaxed the significance cutoff to P < 1 × 10−6, an additional 167 metabolites were included 

for MR analysis, reaching a total of 571 metabolites (Supplementary Table 2). For all the 

404 metabolites included in analyses with both significance cutoffs, the effect estimates 

are highly concordant (Supplementary Fig. 1). A total of 29 metabolites were identified 

as potential causal for MS. Six metabolites have nominally significant and directionally 

consistent effect estimates with both significance cutoffs. Another 23 metabolites have 

nominally significant signals with one cutoff. Fourteen of these 23 only have genetic 

instruments under the significance threshold of P < 1 × 10−6. For the other nine that 

have genetic instruments under both significance thresholds, the MR effect estimates are 

directionally consistent and close to each other (Fig. 2). Sensitivity analyses with MR-Egger, 

WME, WMO, and MR-PRESSO revealed directionally consistent effect estimates, although 

not always reaching nominal significance. The MR Steiger test further supports the causal 

direction from the metabolite to MS, instead of the reverse (Supplementary Tables 1 and 2).

Among 29 potential causal metabolites, ten are lipids in specific lipoprotein subclasses. 

The genetically predicted circulating levels of total cholesterol (OR = 0.83, 95% CI = 0.69 

– 1.00, P = 0.045), phospholipids (OR = 0.80, 95% CI = 0.68 – 0.95, P = 0.012), and 

triglycerides (OR = 0.81, 95% CI = 0.66 – 0.99, P = 0.039) in large VLDL are associated 

with a lower risk of MS. Phospholipids in small VLDL (OR = 0.80, 95% CI = 0.60 – 0.95, P 
= 0.017) and in chylomicrons and the largest VLDL particles (OR = 0.75, 95% CI = 0.65 – 

0.98, P = 0.033) are both negatively associated with the MS risk. In contrast, the genetically 

predicted circulating levels of total cholesterol (OR = 1.20, 95% CI = 1.04 – 1.40, P = 

0.015), phospholipids (OR = 1.13, 95% CI = 1.00 – 1.28, P = 0.048), and cholesterol esters 

(OR = 1.14, 95% CI = 1.01 – 1.28, P = 0.030) in very large HDL are positively associated 

with the risk of MS.
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Five of the 29 metabolites are amino acids. The genetically predicted circulating levels 

of serine (Fig. 3A and 3D, OR = 1.56, 95% CI = 1.25 – 1.95, P = 9.32 × 10−5), lysine 

(OR = 1.18, 95% CI = 1.01 – 1.38, P = 0.041) and O-sulfo-L-tyrosine (OR = 1.15, 95% 

CI = 1.01 – 1.31, P = 0.042) are all associated with a higher risk of MS. The additional 

leave-one-out analysis for serine demonstrated that the causal estimate was not driven by 

any single SNP (Fig. 3G). The other two are gamma-glutamyl amino acids, and they have 

opposite associations. Gamma-glutamyl leucine is negatively (OR = 0.80, 95% CI = 0.67 – 

0.96, P = 0.017), while gamma-glutamylphenylalanine is positively (OR = 1.22, 95% CI = 

1.04 – 1.43, P = 0.016) associated with the MS risk.

Two of the six consistently significant metabolites are acetoacetate (OR = 2.47, 95% CI = 

1.14 – 5.34, P = 0.021) and acetone (OR = 2.45, 95% CI = 1.02 – 5.90, P = 0.046), both of 

which are associated with a higher MS risk (Fig. 3). Visual inspection of the leave-one-out 

plots suggested the potential presence of outliers of IVs for acetoacetate and acetone (Fig. 

3H and 3I). However, further MR-PRESSO analysis did not find any significant outliers for 

acetoacetate (global test P > 0.05), while the causal estimate of acetone remained significant 

after removing the outlier SNPs (OR = 3.60, 95% CI = 1.86 – 6.97, P = 0.007). Another 

notable metabolite is uridine, which is positively associated with the MS risk (OR = 1.45, 

95% CI = 1.10 – 1.91, P = 0.008).

4. Discussion

Our metabolome-wide MR study, the first of its kind for MS, prioritized a list of 29 

circulating metabolites that likely have causal associations with the risk of MS. Our results 

highlighted metabolites in lipid metabolism (e.g., cholesterol and phospholipids in large 

VLDL and very large HDL), amino acid metabolism (e.g., serine and lysine), and energy 

metabolism (e.g., acetoacetate and acetone).

Altered lipid metabolism is well-known in MS patients (Lorincz, Jury, 2022). When 

comparing RRMS patients to age- and sex-matched controls, a metabolomics study found 

that cholesterol, phospholipids, and triglycerides are elevated in the larger subclasses of 

VLDL and HDL (Gafson, Thorne, 2018). Two previous MR studies examined the causal 

roles of HDL-C, low-density lipoprotein cholesterol (LDL-C), and triglycerides in MS. 

Using GWAS of blood lipids that are independent of our GWAS of metabolomics, they 

found that HDL-C is positively associated with the MS risk, while no significant effects 

were found for LDL-C and triglycerides (Almramhi et al. , 2022, Yuan, Xiong, 2021). Our 

results consistently revealed that total cholesterol, cholesterol esters, and phospholipids in 

very large HDL are associated with a higher MS risk. Also, we did not find significant 

effects of lipids in LDL. Our study showed that lipids in large VLDL are associated with a 

lower MS risk. It is important to note that the previously observed elevated levels of lipids in 

the larger subclasses of VLDL in RRMS patients may be confounded by reserve causation, 

as lipid levels may respond to the progression of MS. Our study highlighted the importance 

of examining the role of lipoprotein subclasses in MS.

Altered circulating levels of amino acids and gamma-glutamyl amino acids have been 

observed in MS patients (Bhargava and Anthony, 2020, Zahoor, Rui, 2021). A higher 
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serum level of lysine was observed in MS patients when compared to healthy controls 

(Moussallieh, Elbayed, 2014), and also in MS patients who are in relapse in comparison 

to those that are a few months after the last relapse (Yeo et al. , 2021). The pattern for 

serine is more complex. A lower plasma concentration of serine was observed in RRMS 

patients (Sylvestre et al. , 2020), but a higher serum serine level was found in secondary 

progressive MS patients (Rzepinski et al. , 2022). On the other hand, in the experimental 

allergic encephalomyelitis rat model of MS, elevated levels of both lysine and serine were 

observed in the spinal cord and the brain (Battini et al. , 2018). Our MR analysis indicates 

that individuals with genetic capacities for higher lysine and serine are more likely to 

develop MS. Interestingly, it has been shown that EBV infection, a known risk factor 

for MS (Olsson, Barcellos, 2017), upregulates the import and biosynthesis of serine in 

B cells (Wang et al. , 2019). Moreover, serine is a precursor for phosphatidylserine and 

sphingomyelin, both of which are key lipids in myelin and implicated in the demyelination 

process of MS (Beyer et al. , 2018, Ho et al. , 2012). Therefore, our observations of 

serine and lipids may be related. As for the two gamma-glutamyl amino acids, both 

gamma-glutamylleucine and gamma-glutamylphenylalanine were observed to be higher 

in MS patients than in healthy controls, although only gamma-glutamylleucine reached 

statistical significance. But both of them were significantly elevated in MS patients receiving 

vitamin D supplementation (Bhargava, Fitzgerald, 2017). Our MR analysis suggests that 

gamma-glutamylleucine increases, while gamma-glutamylphenylalanine decreases, the risk 

of MS. Our results call for future studies into the effects of these amino acids before the 

onset of MS.

Disrupted nucleotide metabolism and energy metabolism are commonly observed in MS 

(Bhargava and Anthony, 2020, Zahoor, Rui, 2021). Consistent with our MR result that 

individuals with a higher genetic capacity for uridine have a higher MS risk, it has been 

observed that the serum uridine level is higher in MS patients (Lazzarino, Amorini, 2017). 

Similarly, previous case-control studies observed that MS patients have elevated levels of 

acetoacetate and acetone in the plasma and the cerebrospinal fluid (Cocco, Murgia, 2016, 

Kim et al. , 2017). Our MR analysis supports the causal roles of these metabolites in the 

development of MS. Notably, the higher circulating levels of ketone bodies (i.e., acetoacetate 

and acetone) may reflect a protective shift in energy metabolism in MS patients, and 

ketogenic diets have shown suggestive benefits for MS patients (Lin et al. , 2022). It is of 

great interest to investigate the roles of ketone bodies in the development of MS, in addition 

to its treatment.

The present study has multiple strengths. First, the two-sample MR study design mitigates 

biases from residual confounding and reverse causation in observational association studies. 

Second, we examined an extensive list of metabolites to systematically investigate their 

causal roles in MR risk. Third, two thresholds (P < 5 × 10−8 and P < 1 × 10−6) were 

applied to select genetic instruments, and results are consistent across the two analyses. 

All metabolites examined have strong genetic instruments (all F-statistics >10), mitigating 

possible biases from weak instruments. Fourth, we applied six MR methods to assess the 

robustness of causal associations and effect directions, including IVW with a multiplicative 

random-effects model, MR-Egger, WME, WMO, MR-PRESSO, and MR Steiger. Fifth, 

most of our identified metabolites have been previously associated with MS status or 
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severity in traditional epidemiological studies. One (i.e., HDL-C) has been found in previous 

MR studies, while the other metabolites are novel findings from our study.

Nonetheless, several limitations should be considered when interpreting our results. 

First, our study could not completely rule out the possible presence of horizontal 

pleiotropy, although we performed comprehensive MR analyses to confirm consistent causal 

estimations. Second, some metabolites in the original metabolomics data were excluded 

from our analysis due to their lack of three or more genetic instruments. Third, some 

metabolites were present in two metabolomics GWAS, mainly met-c and met-d, but they 

were only significant in one MR analysis. The different cohort characteristics, study designs, 

and sample sizes may be underlying these differences. However, we did find that the MR 

estimates between the two metabolomics GWAS are highly correlated (Supplementary Fig. 

1). Fourth, our study could not differentiate between MS subtypes. It is of great interest 

to perform a similar analysis for MS subtypes in the future when large GWAS of these 

subtypes become available. Fifth, the current MR methods assume a linear relationship 

between the exposure and the outcome, which may not be the case for some metabolite 

and MS. Sixth, the MR estimates reflect the lifelong effects of an exposure and provide no 

information about the critical window of the exposure action. Last, our study was restricted 

to individuals of European descent to reduce possible bias from population stratification, but 

it limits the generalizability of our results to other populations.

Our metabolome-wide MR study prioritized metabolites, such as lysine, serine, acetone, 

acetoacetate, and various lipids, in the lipid, amino acids and energy metabolism that likely 

play causal roles in the development of MS. They may serve as diagnostic biomarkers to 

identify individuals at high risk for early prevention. Future studies on these metabolites 

will further our understanding of the MS pathogenesis and evaluate the efficacy of these 

metabolites as therapeutic targets.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Mendelian randomization analysis leverages genetic variants associated with 

a biomarker to infer possible causal effects of the biomarker on a disease.

• We performed the first metabolome-wide Mendelian randomization analysis 

to prioritize potential causal circulating metabolites for multiple sclerosis.

• Twenty-nine metabolites, including serine, lysine, acetone, acetoacetate, and 

lipids, likely have causal roles in multiple sclerosis.

Ge et al. Page 12

J Neuroimmunol. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Flowchart of the MR study.

MR: Mendelian randomization; GWAS: genome-wide association studies; SNPs: single 

nucleotide polymorphisms; IMSGC: International Multiple Sclerosis Genetics Consortium; 

IVW: inverse variance-weighted; WME: weighted median; WMO: weighted mode.
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Fig. 2. 
Metabolites with significant MR estimated effects on the risk of MS.

Odds ratios and 95% confidence intervals are scaled to per genetically predicted 1 SD 

increase in circulating metabolite levels. MR: Mendelian randomization; MS: multiple 

sclerosis; OR: odds ratios; 95% CI: 95% confidence intervals; SD: standard deviation; SNP: 

single nucleotide polymorphism.
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Fig. 3. 
MR estimated effects of three metabolites on MS. Scatter plots for serine (A), acetoacetate 

(B), and acetone (C) illustrate the individual SNP effects on the metabolite and MS and 

the estimated linear causal relationship between the metabolite and MS by applying four 

MR methods. Forest plots for serine (D), acetoacetate (E), and acetone (F) show the causal 

effect estimates based on individual SNPs and based on all SNPs using four MR methods. 

Leave-one-out plots for serine (G), acetoacetate (H), and acetone (I) evaluate whether any 

SNP is driving the causal effect. MR: Mendelian randomization; MS: multiple sclerosis; 

IVW: inverse variance-weighted; WME: weighted median; WMO: weighted mode; SNP: 

single nucleotide polymorphism.

Ge et al. Page 15

J Neuroimmunol. Author manuscript; available in PMC 2024 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Methods
	Data sources
	Selection of instrumental variables
	Statistical analyses
	Standard protocol approvals, registrations, and patient consent
	Data availability

	Results
	Discussion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.

