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Abstract

Epithelial–mesenchymal transition (EMT) has been implicated in various aspects of tumor 

development, including tumor invasion and metastasis, cancer stemness, and therapy resistance. 

Diverse stroma cell types along with biochemical and biophysical factors in the tumor 

microenvironment impinge on the EMT program to impact tumor progression. Here we provide 

an in-depth review of various tumor microenvironmental signals that regulate EMT in cancer. We 

discuss the molecular mechanisms underlying the role of EMT in therapy resistance and highlight 

new therapeutic approaches targeting the tumor microenvironment to impact EMT and tumor 

progression.
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1. Introduction

During tumor development, the dynamic interactions between tumor cells and their cellular 

and extracellular tissue microenvironment foster malignant progression and metastasis. 

Epithelial–mesenchymal transition (EMT) is a cellular process in which cells lose their 

epithelial characteristics (E-cadherin) and acquire mesenchymal features (N-cadherin, 

vimentin). EMT has been shown to promote the tumor initiation ability, linking EMT to 

cancer stem cells (CSCs) as well as playing integral roles in tumor invasion and metastasis 

[1–3].
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Studies in mouse tumor models and human circulating tumor cells show that EMT is 

not a binary process during metastasis. In human breast cancer patients, circulating tumor 

cells (CTCs) present diverse EMT statuses and many CTCs express both epithelial and 

mesenchymal markers [4]. The intermediate EMT cells, named as hybrid-EMT or partial-

EMT, exhibit both mesenchymal and epithelial properties. More recent studies described 

multiple intermediate EMT states in mouse and human tumor samples by single cell RNA-

seq [5–8]. Tumor cells in various partial-EMT states contributes to tumor heterogeneity and 

cancer stem cell properties [9]. Using a skin tumor model, Tsai et al. show that induction of 

EMT promotes skin tumor invasion and dissemination; while reversion of EMT is essential 

for the regrowth of distant metastases [10]. Several in vivo lineage tracing studies have 

been performed in mouse breast tumor models to determine the role of EMT plasticity 

in tumor metastasis. Fisher et al. initially performed Fsp1 (fibroblast specific protein 1) 

and Vimentin promoter-driven Cre-mediated lineage tracing in the MMTV-PyMT breast 

tumor model and did not observe a requirement of EMT in generating lung metastasis [11]. 

Later, Li et al. used an elegant dual lineage-tracing system to demonstrate that transient 

activation of N-cadherin, which marks a partial EMT state, but not activation of vimentin, 

is required for tumor metastasis in the MMTV-PyMT breast tumor mouse model[12]. EMT 

marker specificity and lineage tracer sensitivity might contribute to this discrepancy. Bornes 

et al. reported that Fsp1, the same mesenchymal marker used in Fischer et al. study, was 

unable to trace most of the mesenchymal cells during tumor metastasis in the PyMT mouse 

model [13]. More recently, Luond et al. showed that partial EMT, not full EMT, contributes 

to lung metastasis in the MMTV-PyMT breast cancer mouse model. However, full EMT 

exhibited higher resistance to chemotherapy and facilitated tumor survival under stress [14]. 

Activation of partial EMT promoted collective migration and led to higher cell plasticity and 

metastasis capacity; in contrast, full EMT was difficult to reverse at distant organs, leading 

to reduced metastasis[14,15]. Therefore, epithelial-mesenchymal plasticity plays a critical 

role in tumor progression, metastasis, and therapy resistance[9].

The EMT program is orchestrated by a core group of EMT-inducing transcription factors 

(EMT-TFs), including the SNAIL family SNAI1[16, 17] and SNAI2[18], the ZEB family 

ZEB1 [19]and ZEB2[20], and the TWIST family TWIST1/2 [21–23]. The SNAIL and 

ZEB family transcription factors directly repress E-cadherin expression by binding E-boxes 

at its promoter region, thereby leading to EMT. TWIST1 induces invadopodia-mediated 

matrix degradation to facilitate tumor invasion and metastasis[21,24]. EMT-TFs recruit 

epigenetic regulators to regulate their target genes expression. For example, SNAI1 recruits 

HDAC1 and EZH2 to repress E-cadherin expression. ZEB1 recruits HDAC1 or DNMT1 to 

repress target gene expression[25]. Of note, the EMT-TFs regulate the transcription of each 

other and cooperate to orchestrate EMT progression[5,26]. For example, TWIST1 binds 

to the SNAI2 promoter and induces its transcription [27]. Many EMT-TFs are regulated 

by miRNAs. miR-200 family members and miR-205 repress ZEB1/2 expression to reverse 

EMT and suppress migration and invasion in various cancer types[28–30]. Reciprocally, 

ZEB1 was shown to directly repress the miR-200 family members to promote EMT 

and stemness acquisition, suggesting a negative feedback loop between miR-200 and 

ZEB[31,32]. Similarly, the EMT/MET switch could also be toggled by SNAIL/miR-34 

circuit regulation[33].
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The EMT/MET switches are controlled by both biochemical and biophysical factors in 

the tumor microenvironment to impact tumor development, progression, and treatment 

responses. The tumor microenvironment is largely composed of immune cells, stromal cells, 

blood vessels, and extracellular matrix, though the relative proportion of these components 

may vary in individual tumors. This review explores these environmental factors regulating 

EMT to reveal potential therapeutic targets and to predict treatment responses.

2. Regulation of EMT by the tumor microenvironment

2.1. Extracellular matrix in EMT regulation

Extracellular matrix (ECM) is a critical component of the tumor microenvironment that 

contributes to tumorigenesis and progression. Many ECM proteins, such as collagen 

I, hyaluronic acid (HA) and fibronectin, have been implicated in promoting EMT. 

Increasing ECM protein deposition and remodeling drive malignant progression partly 

via EMT. In addition to direct binding of ECM proteins to tumor cells to activate 

the downstream biochemical signaling, matrix stiffening during tumor progression exerts 

increased mechanical forces on tumor cells, which induces EMT and increases the risk of 

cancer development and progression.

2.1.1. ECM molecules in EMT regulation—The extracellular matrix molecules, 

including collagens, fibronectin and hyaluronan, all contribute to EMT activation (Fig. 

1). Type IV collagen, a major component of the basement membranes, is essential for 

the maintenance of the epithelial properties of epithelial cells. Disruption of collagen IV 

deposition could upregulate TGFβ, a major inducer of EMT [34–36]. Collagen I induces 

EMT in lung cancer cells by activating PI3K/ERK signaling, which in turn stimulates the 

autocrine secretion of TGF-β3 to induce EMT[37]. Collagen I also binds to the collagen 

I receptor DDR2 to promote SNAI1 nuclear accumulation and increases SNAI1 protein 

level by inhibiting SNAI1 ubiquitylation. In turn, SNAI1 further upregulates Membrane type 

I-matrix metalloproteinase (MT1-MMP) and collagen I to sustain the EMT phenotype and 

facilitate tumor cell invasion [38]. Fibronectin is a marker of cells that have undergone 

EMT. During EMT, fibronectin assembly is increased, and fibronectin fibril formation is 

induced by TGF- β1. Fibronectin fibrils serve as an integration point for mechanical signals 

and TGF- β1 signaling to induce EMT. High levels of fibronectin have been detected in 

the stroma of breast tumors [39]. Fibronectin activates FAK and leads to recruitment of 

Src through binding to integrins. Cooperation between fibronectin and TGFβ is required to 

activate Src and ERK/MAPK to induce EMT[40]. HA is another important ECM molecule 

that is overproduced in many types of human tumors. HA is a key ligand of CD44, a 

cell surface glycoprotein that plays a critical role in cell migration, invasion, and cancer 

stem cell properties. The binding of HA to CD44 elicits high-affinity interaction between 

CD44 and the TGFβ receptor I, which increases downstream SMAD2/SMAD3 activation to 

induce EMT[41]. HA/CD44 interaction was also reported to cause CD44 to translocate into 

the nucleus and promote de novo transcription of lysyl oxidase (LOX), leading to TWIST1-

dependent induction of EMT[42]. Taken together, ECM proteins, when dysregulated in 

cancer, directly affect EMT.
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2.1.2. ECM remodeling in EMT regulation—Growing evidence suggests that 

increased ECM remodeling and deposition also drive malignant progression (Fig. 1). 

Matrix metalloproteinases (MMPs)-mediated ECM protein remodeling and LOX-mediated 

ECM protein crosslinking both play crucial roles in the EMT process. MMPs in the 

tumor environments are reported to participate in EMT induction. MMP-2 was found to 

degrade a wide variety of ECM proteins including fibronectin, collagen IV and collagen 

V [43–45] . High expression of MMP-3, a stromal enzyme upregulated in many breast 

tumors, induced expression of an alternatively spliced form of Rac1 and caused an increase 

in cellular reactive oxygen species. The reactive oxygen species could stimulate SNAI1 

expression to facilitate cancer progression[46]. Lysyl oxidase (LOX) is an extracellular 

copper-dependent enzyme that promotes crosslinking of collagens or elastin to increase 

ECM tensile strength[47,48]. LOXL2 and LOXL3 are two members of the LOX gene family 

which can interact with and stabilize SNAI1 to downregulate E-cadherin expression, leading 

to an induction of EMT. Knockdown of LOXL2 in SNAI1-expressing metastatic carcinoma 

cells decreased tumor growth and reduced expression of mesenchymal markers and invasion, 

providing a direct link between LOXL2 and SNAI1 in tumor progression[49]. LOX can also 

bind and transactivate the SNAI2 promoter, and LOX/SNAI2 axis mediates TIMP4 (TIMP: 

tissue inhibitors of matrix metalloproteinases that can regulate the proteolytic activity of 

MMPs) secretion, then facilitating EMT progression[50]. Hypoxia induced the expression 

of LOX and LOXL2 via HIF1, which then repress E-cadherin to induce EMT [51]. From 

these studies, it is evident that ECM reorganization directly regulates EMT to impact tumor 

progression.

2.1.3. ECM-exerted mechanical force in EMT regulation—Tumor cells and 

stromal cells also respond to ECM stiffening-induced mechanical signals during tumor 

progression. Matrix rigidities can be sensed and transmitted across the plasma membrane 

by various mechanosensors, several of which are implicated in EMT regulation. Integrins 

are the best studied mechanosensors and play a critical role in driving EMT and 

invasion[52–54]. Blockade of integrin signaling via integrin-blocking antibodies completely 

abolished stiffness-induced EMT in breast cancer cells [55]. Many αV integrins, especially 

αVβ6, αVβ3 and αVβ5, are expressed at low levels in healthy epithelial tissues, but 

are upregulated during EMT [56,57]. Disruption of β1 integrin induced αVβ3 integrin 

switching and promoted TGFβ activation in E-cadherin-positive triple-negative breast cancer 

(TNBC) cells via a TGFβ-miR-200-ZEB signaling network to induce EMT and enhance 

dissemination[58]. DDR2 regulates the activation state of collagen-binding integrins α1β1 

and α2β1, thus strengthening cell-ECM interactions and maintaining the mesenchymal 

phenotype in tumor cells [59,60]. ECM regulates MT1-MMP localization via β1 or 

αVβ3- integrins [61]. Colocalization and cooperation between β1-integrin and MT1-MMP1 

plays an important role in EMT and early cancer dissemination by upregulating the Wnt 

signaling[62]. Integrin-linked kinase (ILK), as a mechanotransducer, is crucial for TGF-β1-

induced EMT via the TWIST1-integrin β1-FAK/ILK pathway[63–65]. ECM stiffening is 

also reported to activate the mechanosensor Piezo1, which activates TGFβ signaling by 

recruiting Rab5c, thus promoting EMT and tumor progression[66,67]. TRPV4, a mechano-

sensitive ion channel regulating calcium influx, promoted EMT and cell migration in breast 

cancer cells [68,69].
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Several EMT transcription factors are regulated by mechanical forces exerted by ECM 

in the tumor microenvironment (Fig. 1). Increasing matrix stiffness in the tumor stroma 

activates TWIST1, a key mechano-responder to drive EMT and invasion at matrix stiffness. 

Mechanistically, high matrix stiffness releases the TWIST1 protein from binding to its 

cytoplasmic anchor protein G3BP2. TWIST1 then translocates into the nucleus to drive 

the transcriptional program of EMT and tumor invasion[55,70,71]. Upstream of TWIST1, 

high matrix stiffness activates ERK/RSK and leads to ligand independent EPHA2 S897 

phosphorylation. EPHA2 then binds to and activates Lyn to phosphorylate TWIST1 and 

prevents its association with G3BP2, thus leading to TWIST1 nuclear translocation to 

promote EMT and invasion[55,72]. SNAI1 protein stability is regulated by matrix stiffness 

via DDR2. DDR2 activation led to activation of ERK, which directly phosphorylates SNAI1 

to promote SNAI1 nuclear accumulation and reduces SNAI1 protein ubiquitylation, thus 

facilitating tumor cells to undergo EMT and invade through collagen I-rich extracellular 

matrices [38]. In summary, critical ECM molecules and mechanical forces exerted by tumor 

ECM can impinge on EMT transcription factors to regulate EMT.

2.2. Stromal and immune cells in EMT regulation

In the tumor microenvironment, stromal and immune cells secrete various cytokines and 

chemokines, which act in a paracrine fashion on nearby carcinoma cells. Some of these 

paracrine signals, often acting in combination, are potent inducers of EMT in carcinoma 

cells to promote tumor progression and metastasis.

2.2.1. Cancer-associated fibroblasts—Cancer-associated fibroblasts (CAFs) are a 

major component of the tumor stroma and play a critical role in facilitating crosstalk 

between cancer cells and the tumor microenvironment. Numerous studies revealed that 

CAFs could secret TGFβ[73], HGF[74], FGF[75], SDF-1 [76], IL-6[77], IL-32[78], 

CCL5[79], CXCL12 [80], MMP-2[81], and MMP-9 [82] to enable the EMT process in 

various cancer cells[83,84] (Fig. 2). In breast cancer and bladder cancer cells, TGFβ1 

secreted by CAFs activated the canonical SMAD-mediated and SMAD-independent 

pathways, both of which play important roles during EMT induction [73,85,86]. For the 

canonical SMAD pathway, activated SMAD3/4 upregulated the expression of EMT-TFs, 

including SNAI1/2, TWIST1/2 and ZEB1/ZEB2 [87–89]. In the SMAD-independent non-

canonical pathway, TGFβ activates MAPK/ERK, PI3K/AKT and Rho GTPase to aid EMT 

initiation[34]. Additionally, IL-6 secreted by CAFs induced EMT via STAT3 in ovarian, 

bladder, gastric and hepatocellular carcinoma cancer cell lines [77,90–92]. Mesenchymal 

stem cell (MSC)-derived CAFs or radiation-activated CAFs were shown to secrete enhanced 

levels of CXCL12, which bound to CXCR4 in tumor cells and stimulated EMT and 

metastasis in pancreatic and prostate cancer cells respectively [93, 94]. Li et al. suggested 

the CXCL12/CXCR4 axis activated the p38 kinase pathway to facilitate CAFs-mediated 

EMT[94]. Moreover, activated CAFs secreted MMP-2 and MMP-9 to remodel ECM, 

thereby facilitating EMT in prostate cancer cells [82]. In hepatocellular carcinoma cells, 

CAFs secreted HGF to stimulate the c-MET/FRA1/HEY1 axis and contributed to tumor 

invasion and metastasis both in vitro and in vivo [74]. More recently, several studies 

reported the existence of different subtypes of CAFs with distinct functions in the TME 

[95,96]. In particular, Öhlund et al. demonstrated two subtypes of CAFs, myofibroblastic 
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CAFs (myCAFs) and inflammatory CAFs (iCAFs), in the PDAC microenvironment [95]. 

myCAFs exhibited high levels of α-SMA and were found in close proximity to tumor 

cells[95]. In contrast, iCAFs showed lower α-SMA levels but highly expressed IL-6 and 

were located farther from tumor regions[95]. Co-culture with iCAFs, but not myCAFs, 

significantly upregulated ZEB1 and Vimentin expression and induced partial EMT in colon 

tumor organoids[97]. Taken together, CAFs in the tumor microenvironment secret various 

molecules to impact EMT and metastasis.

2.2.2. Cancer-associated adipocytes—Obesity, featuring the expansion of white 

adipose tissue. has been associated with malignant cancer progression. Adipose tissue 

consists of adipocytes, adipose mesenchymal stem/stromal cells (ASCs), endothelial 

cells, and immune cells [98]. Coculturing cancer cells with adipocytes or ASCs 

were shown to stimulate EMT in cancer cells by secreting IL-6 and activating IL-6/

STAT3 pathway [99–101]. IL-6[100], Leptin [102–104], ETP[105], FABP4[106], TGF-

β1[107,108], CCL5[109,110] and CXCL12[111] secreted by ASCs or adipocytes were 

reported to promote EMT in various cancer cell lines(Fig. 2). Leptin binds to leptin receptor 

(OB-R) and contributes to the EMT process by activating multiple pathways, including 

PI3K/AKT which phosphorylates GSK3β to increase β-catenin nuclear translocation, 

STAT3 which recruits G9a to regulate the miR-200c/ZEB1 feedback loop, and ERK which 

represses E-cadherin and increases vimentin expression[112–115]. FABP4 is shown to 

activate AKT/G3K3β/SNAI1 pathway, thereby facilitating EMT in cervical squamous cell 

carcinoma (CSCC) cells[116]. In the PyMT breast tumor mouse model, ETP augments EMT 

and metastasis by activating the TGF- β signaling pathway[105].

2.2.3. T Lymphocytes—T lymphocytes, such as CD4+ T cells and CD8+ T cells, play 

an important role in immune responses to tumors [117]. Numerous studies show that CD4+ 

T cell or CD8+ T cell infiltration inhibited tumor growth and correlated with a better 

prognosis [118–122]. However, some reports suggest they also promote tumor metastasis by 

inducing EMT in certain cancer cell lines. In breast cancer, CD8+ T cells were reported to 

induce EMT and confer cancer cells with stemness characteristics, although the underlying 

mechanism is unclear[123]. In pancreatic ductal adenocarcinoma (PDAC) cells, Goebel 

et al. reported that CD4+ T-effector cells stimulated EMT by secreting TNFα and IL-6. 

Co-culture with T-effector cells significantly upregulated ZEB1 in tumor cells, suggesting 

that T-effector cells-induced EMT might depend on ZEB1 [124]. More recently, Salazar et 

al. showed that CD4+ Th9 and CD4+ Th17 cells secreted IL-9 or IL-17, respectively and 

enabled lung cancer cells to undergo EMT both in vitro and in vivo[125]. In a xenograft 

mice model of lung cancer, co-injection of tumor cells with Th9 or Th17 cells significantly 

increased EMT and metastasis, while Th9 and Th17 blocking antibodies inhibited EMT and 

tumor progression[125]. Regulatory T cells (Tregs) are a subset of CD4+ T cells mainly 

responsible for self-tolerance and homeostasis maintenance of T cells. Several studies 

revealed that Tregs could stimulate EMT in lung epithelial cells, hepatocellular carcinoma 

and melanoma cells [126–128]. In the Oh et al. study, melanoma cells co-injected with Tregs 

exhibited increased EMT and metastasis in vivo. TGFβ secreted by Tregs contributed to 

EMT in hepatocellular carcinoma and melanoma cells[128](Fig. 2). Therefore, in addition to 
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their critical roles in tumor immunity, T lymphocytes could impact EMT in tumor cells via 

cytokine production.

2.2.4. Macrophages—Macrophages in the tumor microenvironment are known as 

tumor-associated macrophages (TAMs)[129,130]. TAMs infiltration correlated with higher 

EMT and poor clinical outcomes in various cancers, including breast cancer, hepatocellular 

carcinoma, gastric cancer, colorectal cancer and lung cancer [131–138]. Macrophages in 

tumors are often divided into M1 and M2 macrophages. M1 macrophages secrete numerous 

pro-inflammatory cytokines and are considered to be anti-tumorigenic. In contrast, M2 

macrophages mainly produce anti-inflammatory cytokines and exhibit pro-tumorigenic 

properties. Yeung et al. reports that M2 macrophages predominantly promoted EMT 

and metastasis in an orthotopic liver tumor mouse model[135]. Additionally, high M2 

macrophages infiltration is positively associated with tumor aggressiveness and poor 

prognosis in bladder cancer and clear cell renal cell carcinoma(ccRCC) patients [139,140]. 

TAMs secrete numerous cytokines or chemokines to induce EMT in cancer cells, including 

TGFβ, TNFα, IL-6, IL-8, IL-10, G-SCF, CXCL13, CCL18, CCL22 and other factors [132–

135,140,141–145](Fig. 2). In lung and colon carcinomas, macrophages could secrete TNFα, 

which synergizes with TGFβ to stimulate EMT [142,146]. Similarly, M2 macrophages 

also induced EMT by releasing TGFβ, resulting in β-catenin and SMAD2 activation in 

non-small cell lung cancer(NSCLC) cells and lung epithelial cells[141,147]. Additionally, 

IL-6 secreted by macrophages induced EMT by various mechanisms. In the Che et al. study, 

COX2 was upregulated by IL-6, which induced PEG2 and β-catenin nuclear translocation, 

thereby promoting EMT in lung cancer cells [148].

Reciprocally, tumor cells could secrete cytokines to recruit macrophages and induce M2 

polarization of macrophages, reinforcing tumor progression and metastasis. Several studies 

uncovered the feedback loop between macrophages infiltration and tumor cells. In colon 

cancer cells, TAMs secreted IL-6 to stimulate EMT. Meanwhile, IL-6 activated the JAK2/

STAT3/FoxA1 signaling in colon cancer cells, which led to high levels of CCL12 secretion 

in cancer cells to recruit more macrophages [149]. Similarly, Su et al. revealed that 

macrophages secreted CCL18 to activate NF-κB, thus enabling breast cancer cells to 

undergo EMT [132].

2.2.5. Myeloid-derived suppressor cells (MDSCs)—MDSCs are a population of 

heterogeneous immature myeloid cells that accumulate in the tumor microenvironment and 

have been shown to facilitate tumor progression by repressing anti-tumor immune responses 

and promoting angiogenesis [150,151]. MDSCs are generally divided into two subsets, 

polymorphonuclear/granulocytic MDSCs (PMN-MDSCs/G-MDSCs), which account for 

70%–80% of MDSCs, and monocytic MDSCs (MO-MDSCs) [150,151]. MDSCs are shown 

to stimulate EMT in various cancer cell types [152–156](Fig. 2). MDSCs stimulated EMT 

by secreting TGFβ, VEGF, IL-6, IL-10 and IL-28 in melanoma, breast cancer and lung 

cancer [154,156–160]. Peng et al. reports that IL-6 and Nitric Oxide (NO) produced by 

MDSCs led to STAT3 and NOTCH activation, respectively, conveying stemness and EMT 

properties to breast cancer cells[157]. Li et al. reported that co-culture of nasopharyngeal 

carcinoma cells with MDSCs activated the COX2/β-catenin/TCF4 pathway via TGFβ 
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and NO secretion to provoke EMT[154]. In human NSCLC xenograft models, MDSCs 

stimulated EMT and metastasis via CCL11/CCR3[161]. Interestingly, primary melanoma 

cells recruited MDSCs via CXCL5. Consequently, recruited MDSCs promoted EMT and 

cancer cell dissemination via TGFβ, EGF and HGF[152]. Similarly, breast cancer cells were 

reported to attract MDSCs via CCL3 production. Reciprocally, infiltrated MDSCs promoted 

EMT and metastasis by activating the PI3K-Akt-mTOR pathway in cancer cells, suggesting 

a positive feedback loop between MDSCs recruitment and tumor progression[162]. In 

summary, tumor cells could secrete GM-SF, IL-6, CXCL5 or CCL3 to promote MDSCs 

recruitment and maturation. Reciprocally, infiltrated MDSCs stimulate EMT by secreting 

TGF-β, EGF, HGF, IL-6(target STAT3), IL-10, IL-28(target IFN-λ), NO (target NOTCH), 

NOS2 or CCL11(target AKT and ERK) (Fig. 2). The crosstalk between cancer cells and 

their surrounding stromal cells plays a critical role in EMT regulation, thereby impacting 

tumor progression and metastasis.

2.3. Hypoxia in EMT regulation

Tumor hypoxia is strongly associated with tumor progression, metastasis, and poor clinical 

outcomes. Hypoxia inducible factors (HIF), including HIF-1α and HIF-2α, are the main 

mediators of hypoxia responses. HIF target genes are involved in glycolysis, apoptosis, cell 

proliferation, angiogenesis and metastasis[163,164]. Hypoxia plays a major role in EMT 

regulation during tumor progression (Fig. 3).

2.3.1. Hypoxia promotes EMT via upregulating EMT transcription factors—
Hypoxia is shown to upregulate SNAI1/SNAI2 directly or indirectly in various cell 

types [165] via multiple mechanisms. Several studies revealed that HIF-1α or HIF-2α 
could directly regulate SNAI1 and SNAI2 transcriptionally[166–169] [179–182. In human 

hepatocellular carcinoma and pancreatic cancer cells, HIF-1α binds to SNAI1 at the – 

541 hypoxia-response element (HRE) site and promotes SNAI1 transcription to induce 

EMT[167–169]. Zhang et al. also reported that HIF-1α could directly induce SNAI2 

transcription to promote EMT through direct binding to the HRE sequence located in its 

proximal promoter in HNSCC cells [170]. Hypoxia is also shown to indirectly regulate 

SNAI1 expression via uPAR or USP47[171,172] to mediate hypoxia-induced EMT in 

breast cancer cells. Upregulation of uPAR during hypoxia activates the downstream PI3K-

AKT signaling, thereby stimulating SNAI1 expression and EMT [171]. Ubiquitin-specific 

protease 47 (USP47), a deubiquitinating enzyme, promotes SNAI1 protein stabilization 

through deubiquitylation. Choi et al. reported that HIF-1α indirectly enhances USP47 

expression via SOX9 during hypoxia-induced EMT in colorectal cancer cells[172]. Hypoxia 

is also found to stimulates SNAI1 expression via the Notch pathway. Inhibition of Notch 

signaling abrogated hypoxia-induced SNAI1 upregulation and EMT in breast cancer cells 

and ovarian cancer cells [173,174]. ROS produced during hypoxia was shown to promote 

SNAI1 nuclear translocation via GSK-3β inactivation and stimulated EMT in various cancer 

cell lines [175]. Regulation of SNAI2 by hypoxia was reported via HIF-1α repressing 

miR-30c, leading to increased SNAI2 expression and EMT[176] in human renal cell 

carcinomas.
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Hypoxia is also shown to stimulate TWIST1/TWIST2 expression in various cancer cells. 

HIF-1α directly upregulated TWIST1 expression by binding to the HRE sequence in 

the proximal TWIST1 promoter in hypopharyngeal cancer, breast cancer and lung cancer 

cell lines [177]. Similarly, HIF-2α directly induced TWIST1 transcription in cervix 

carcinoma, prostate cancer and colon cancer cell lines [178]. Prognostic analysis show that 

co-expression of either two factors among HIF-1α/TWIST1/SNAI1 correlates with poor 

recurrence-free survival in NSCLC patients[179].

Both ZEB1 and ZEB2 are also frequently upregulated by hypoxia in different cancer 

cell lines. In colorectal cancer cells, Zhang et al. reported that HIF-1α could directly 

induce ZEB1 expression by binding to the HRE sequence in the ZEB1 proximal promoter 

[180]. ZEB1 inhibition could significantly abrogate hypoxia-induced EMT and metastasis 

[180]. Similarly, hypoxia-induced ZEB1 upregulation led to cell migration and invasion in 

glioblastoma multiforme (GBM) cells [181, 182]. Indirect regulation of ZEB1 by hypoxia 

are also observed in multiple studies. In breast cancer cells, hypoxia repressed DICER 

expression epigenetically to reduce the miR- 16 − 200 level, promoting ZEB1 expression 

and subsequent EMT [183]. Su et al. reported that increased MEF2D expression in response 

to hypoxia directly regulated ZEB1 transcription through acetylation of ZEB1 promoter, 

leading to EMT in colorectal cancer cells[184]. LncRNA was also shown to regulate ZEB1 

expression during hypoxia. LncRNA-BX111887 was highly upregulated during hypoxia and 

recruited YB1 to the ZEB1 promoter, enabling cells to undergo EMT in pancreatic cancer 

cells[185]. Zhang et al. found that LncRNA-HOTTIP acted as a sponge of miR-101 to 

stimulate ZEB1 mediated EMT in glioma cells[186]. Interestingly, hypoxia also promoted 

ZEB2–natural antisense transcript expression to increase ZEB2 translation efficiency[187].

These studies provide strong evidence that hypoxia regulates key EMT transcription factors, 

such as SNAI1/2, TWIST1/2 and ZEB1/2, to induce EMT in human cancer.

2.3.2. Hypoxia induces EMT via several signaling pathways including TGFβ, 
EGFR, Notch and Hedgehog pathway—The TGFβ pathway can be activated by 

hypoxia in various cancer cell lines. In gastric cancer cells, Matsuoka et al. showed that 

hypoxia upregulated TGFβ1 and TGFβR to stimulate the autocrine TGFβ/TGFβR signaling, 

resulting in EMT in diffuse-type gastric cancer cells[188]. Similarly, in lung epithelial 

cells, hypoxia was shown to stimulate EMT via TGF-β1 production, which is dependent 

on ROS production and HIF-α accumulation[189]. Additionally, HIF-1α directly regulates 

transcription of TGFβ1 and TGFβ3 through binding to the HREs in their promoters, thereby 

leading to TGFβ-induced EMT[190,191]. Several papers also suggest indirect regulation 

of the TGFβ signaling by hypoxia, as the hypoxia-stimulated unfolded-protein response 

boosted TGFβ expression in gastric cancer cells[192]. Similarly, Nagpal et al. found that 

miR-191 upregulation by HIF-1α/HIF-2α could increase TGFβ2 levels directly or indirectly 

through repressing HuR in breast cancer cells [193].

Hypoxia stimulates Notch signaling by increasing both Notch receptor and ligand levels 

in various cancer cell lines. Upon ligand binding, the active Notch intracellular domain 

(NICD) could directly upregulate SNAI1/2 transcription to promote EMT [173,194,195]. In 

ovarian cancer cells, Sahlgren et al. found that hypoxia increased the expression levels of 
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the Notch ligand DLL1 and NICD, thereby leading to SNAI1-mediated EMT[173]. NICD 

directly activates SNAI1 transcription through binding to the CSL motif in proximal to its 

promoter[173]. Notch receptor Notch3 and ligand DLL1, JAG1 and JAG2 levels were shown 

to be upregulated by hypoxia to facilitate EMT in breast cancer cells[174,196,197]. Du et 

al. found that hypoxia could indirectly increase expression of the Notch receptor Notch1 and 

the Notch ligand Jagged1 through suppressing miR-34a to promote EMT[198].

The Hedgehog (Hh) signaling also plays important roles in hypoxia-mediated EMT 

[199–201]. Activated GLI1 was shown to be responsible for upregulation of EMT-TFs, 

such as SNAI1/2 and TWIST1[202]. In particular, SNAI1 and TWIST1 were shown 

to be direct targets of GLI1 in hepatocellular carcinoma cells[203,204]. A study in 

mice shows that hypoxia could activate Hh signaling through HIF-1α mediated Shh 

upregulation[205]. Similarly, increased transcription of Shh, SMO and GLI1 level or GLI1 

nuclear translocation by HIF-1α are also reported to facilitate EMT in various cancer cell 

lines[200,206]. Interestingly, in cholangiocarcinoma cells, HIF-1α-mediated Shh activation 

not only provoked EMT, but also increased cancer stemness[206]. Treatment with an 

Shh inhibitor, cyclopamine, attenuated Shh activation with substantial abrogation of EMT 

and stemness[206]. HIF-1α also triggered ligand-independent Hh signaling in pancreatic 

cancer cells, where hypoxia activated GLI1 directly and GLI1 depletion was sufficient to 

abrogate hypoxia-mediated EMT [201]. Moreover, Liu et al. found that HIF-1α regulated 

non-canonical Hh through ROS production, which facilitated GLI1-dependent EMT and 

invasion in hepatocellular carcinomas[207].

Hypoxia also activates EGFR signaling to facilitate EMT. Hypoxia promotes EMT by 

upregulating EGFR expression in many cancer types, including HNSCC, glioma, gastric 

cancer, breast cancer and lung cancer [206–210]. Recent studies suggest that HIF-1α 
directly regulates EGFR transcription through binding to the HRE sequence in EGFR intron 

18 in breast cancer cells[211]. Moreover, EGFR translation efficiency was upregulated 

by hypoxia, whereby HIF-2α boosted EGFR protein synthesis and drove autonomous 

proliferation in glioma cells[209]. Additionally, EGF is shown to be upregulated by hypoxia 

to facilitate malignant progression in various cancer types[210,212]. In hepatocellular 

carcinoma cells, HIF-2α induced TGF-α and promoted EGFR activation under hypoxia 

[213,214].

In summary, hypoxia in the tumor microenvironment could impinge on a number of EMT-

inducing signaling pathways to promote tumor invasion and metastasis.

3. EMT in cancer therapy resistance

3.1. EMT in chemoresistance

Increasing evidence shows that EMT plays a key role in chemoresistance in various 

human cancer types. Residual breast cancers often displayed a mesenchymal phenotype 

after chemotherapy in various human cancers[215]. The mesenchymal state induced by 

EMT confers drug resistance to many types of therapeutic agents. In Cyclophosphamide 

(CTX)-treated tumor-bearing mice, more than 60% of the surviving tumor cells presented 

a mesenchymal phenotype, indicating that mesenchymal tumor cells are more resistant 
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to chemotherapy[216]. Doxorubicin could activate the TGF-β signaling and EMT to 

promote breast cancer stem-like properties and drug resistance[217]. Chemotherapy 

in combination with TGF-β signaling inhibitors increased therapeutic efficacy and 

reduced chemoresistance[218]. Inhibition of ZEB1 has been shown to reverse EMT and 

chemoresistance in docetaxel-resistant human lung adenocarcinoma cell lines[219].

The EMT program confers therapy resistance via several mechanisms. Overexpression of 

EMT transcription factors is reported to increase the expression of ABC transporters, as 

expression of ABC transporters in breast cancer cells showed 10-fold more resistance 

to doxorubicin treatment compared with the control cells[220]. Activation of EMT also 

strongly induced expression of the AXL receptor tyrosine kinase in breast cancer cells[221]. 

Expression of the AXL receptor tyrosine kinase in carcinoma cells confers resistance to 

EGFR inhibitors on EGFR-mutant non-small-cell lung carcinoma (NSCLC) cells[222], thus 

Axl inhibition restored sensitivity to the EGFR inhibitor Erlotinib [223].

The EMT program has been shown to inhibit apoptosis to promote therapy resistance. EMT 

activation diminishes E‑cadherin-mediated clustering of the TRAIL receptors DR4 and 

DR5, thereby making carcinoma cells resistant to TRAIL-induced apoptosis[224]. SNAI1 

confers resistance against multiple apoptosis-inducing stimuli, in part by promoting AKT 

activation, upregulating the expression of the pro-survival protein Bcl-XL and delaying 

cell-cycle progression[225]. SNAI1 was also shown to confer chemoresistance by reducing 

the expression of p53 in carcinoma cells through interactions between SNAI1 and p53, 

thus allowing SNAG domain-associated HDAC1 to deacetylate p53[226]. SNAI2 blocks 

p53-mediated transcriptional induction of Encoding Bcl-2-binding Component 3 (BBC3) 

expression by directly repressing the BBC3 promoter region. Multiple lung adenocarcinoma 

cell lines acquire cisplatin resistance through AKT/NF-κB/Slug-mediated BBC3 reduction 

[227,228].

Cancer stem cells (CSCs) are a subpopulation of neoplastic cells with stem-cell properties. 

EMT has been shown to be a critical regulator for the induction and maintenance of 

CSC properties[229]. CSCs are less sensitive to various chemotherapeutic drugs, including 

doxorubicin, cisplatin, paclitaxel, temozolomide, and methotrexate[59–64] and contribute 

to tumor recurrence after drug treatment. Given the critical role of EMT in cancer therapy 

resistance, understanding the signaling pathways induced by EMT will provide additional 

drug targets to sensitize cancer cells to chemotherapy.

3.2. EMT in immunotherapy resistance

Numerous studies suggest that EMT is highly associated with an immunosuppressive 

microenvironment. For example, EMT is correlated with high expression levels of 

immune checkpoint proteins, including PD-L1, PD-L2, PD-1, TIM-3, B7-H3, BTLA, and 

CTLA-4, in NSCLC cells [230]. Similarly, the expression levels of CTLA-4/PD-1/PD-L1/

TIM-3/LAG-3 were highly associated with MMP-13/TWIST1 in ESCC patients[231]. 

Additionally, higher Tregs infiltration, M2 macrophage polarization and lower CD8 + 

T cells were reported to correlate with EMT in ovarian cancer, prostate cancer and 

NSCLCs[230,232,233]. Interestingly, Hugo et al. found that upregulation of EMT-related 

gene sets correlated with resistance to anti-PD-1 therapy in melanoma patients[234].
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EMT transcription factors contribute to immunotherapy resistance via multiple mechanisms. 

In melanoma cells, SNAI1-induced EMT was shown to promote Tregs infiltration and 

impair dendritic cells by secreting TSP1[235]. Akalay et al. found that SNAI1-induced 

mesenchymal breast cancer cells exhibited resistance to CTL-mediated lysis via autophagy 

activation[236]. In an aPKCι-induced EMT model, SNAI1 was upregulated by aPKCι/Sp1 

to drive EMT, resulting in the induction of immunosuppressive Tregs partially via IL-2 and 

TGFβ production [237]. Additionally, Taki et al. demonstrated that high SNAI1 expressing 

tumors secreted high level of CXCL1 and CXCL2 chemokines via NF-κB activation, 

leading to MDSCs recruitment and CD8+ infiltrating lymphocytes repression[238]. In breast 

cancer cells, cell surface expression of PD-L1 was shown to be stimulated by SNAI1 

via post-translational upregulation of CMTM6 and CMTM7, leading to immune evasion 

[239]. CD47 is a macrophage immune checkpoint protein that suppresses macrophage 

phagocytic activity[240]. Overexpression of SNAI1 or ZEB1 increased CD47 expression in 

breast cancer cells, which significantly protected tumor cells from macrophage attack[241]. 

SNAI1 and ZEB1 were shown to directly bind to two E-boxes in the CD47 promoter[241]. 

In the transgenic MMTV-PyMT mouse model of breast adenocarcinoma, SNAI1-high 

mesenchymal tumor cells exhibited increased Tregs infiltration and M2 macrophage 

polarization compared to SNAI1-low epithelial tumors. Interestingly, mesenchymal tumor 

cells that showed high resistance to anti-CTLA4 treatment also conferred epithelial tumor 

cells resistance to immune attack[242]. Furthermore, SNAI1-high quasi-mesenchymal cells 

secreted high levels of CD73, CSF1 and SPP1, resulting in M2 polarization of TAMs and 

T cell suppression. Mechanistically, SNAI1 ChIP-seq data showed that SNAI1 was able to 

bind to 89 immunomodulatory genes[243].

Similarly, ZEB1 also plays an important role in immunosuppression by regulating PD-L1. 

In breast cancer cells and NSCLC cells, ZEB1 upregulated PD-L1 expression via repressing 

miR-200[244,245]. Chen et al. showed that miR-200 directly repressed PD-L1 transcription 

by binding to miR-200 family seed sequences on its 3’UTR. Therefore, ZEB1/miR-200 axis 

promotes PD-L1 upregulation to facilitate CD8+ T cell exhaustion [244]. Recently, Guo et 

al. showed that ZEB1 directly induced PD-L1 and CD47 expression, both of which contain 

the ZEB1 binding E-box[246]. Thus, EMT in cancer cells leads to an immunosuppressive 

tumor microenvironment through various mechanisms, including T cell exhaustion and 

immune cell repression, that decreases the effectiveness of tumor immunotherapies.

4. Targeting EMT-inducing signals in the tumor microenvironment for 

cancer therapy

4.1. Targeting the extracellular matrix

Most of the currently available therapies targeting EMT are aimed at blocking upstream 

inducers of EMT. Several studies demonstrated that the extracellular matrix, many regulators 

of ECM stiffness, various mechanosensors, and mechanotransducers are all targetable. 

Numerous inhibitors against CD44, DDR, LOX/LOX2, integrins, and FAK have been 

developed and some have shown anticancer activities in preclinical studies (Table 1).
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Increased collagen crosslinking increases matrix stiffness and promotes EMT. Using 

recombinant collagenases to remove collagen from tumor ECM has emerged as a 

potential therapeutic approach, as depleting extracellular collagen could normalize the 

tumor microenvironment and increase the drug delivery efficiency[272,273]. LOX-mediated 

collagen crosslinking is a major contributor to ECM stiffening that promotes EMT and 

breast tumor progression. CCT365623, a LOX inhibitor with great therapeutic promise[262], 

suppressed breast cancer growth and metastasis in mice[274]. LOXL2 is correlated 

with ECM formation and induction of EMT. Treatment with a small molecule inhibitor 

of LOXL2((2-Chloropyridin-4-yl) methanamine hydrochloride) reversed LOXL2-induced 

EMT and significantly decreased the invasive ability of cervical cancer cells[261].

Several types of collagen molecules bind to and activate the discoidin domain receptors 

(DDRs). DDR1 and DDR2 are overexpressed in many cancer types. Inhibition of 

DDR1 with an ATP-competitive small-molecule kinase inhibitor (7rh) inhibited peritoneal 

metastasis in gastric carcinoma. Inhibition of DDR1 by 7rh also hindered tumor 

development in pancreatic ductal adenocarcinoma[251,253]. The small molecule allosteric 

inhibitor of DDR2 WRG-28 is shown to efficiently disrupt DDR2 receptor–collagen 

ligand interaction and DDR-mediated tumor progression in preclinical tumor models[252]. 

Dasatinib, another DDR2 inhibitor, shows promising results in preclinical models of DDR2-

positive head and neck squamous cell carcinoma[275]. The extracellular domain of CD44 

contains binding sites for various ECM molecules such as hyaluronan, collagen, and 

fibronectin. Activation of CD44 downstream signaling is involved in EMT-induced tumor 

progression. Several CD44 blocking antibodies and peptides have been developed to target 

CD44[276,277]. RO5429083, one of the CD44 antibodies, just entered a Phase 1 clinical 

trial (Clinicaltrials.gov identifier: NCT01358903).

Inhibition of the integrin function has been shown to lead to reduced metastatic burden 

in various animal tumor models. αVβ3 and αVβ5 expression is significantly upregulated 

during EMT. Cilengitide is an integrin αvβ3 and αvβ5 inhibitor that is well tolerated 

and demonstrated modest antitumor activity among recurrent GBM patients in a phase I 

study [263]. However, several recent clinical trials showed that selective integrin inhibitors 

did not reach expected efficacy[278]. Emerging studies therefore focused on targeting the 

integrin downstream signaling, especially focal adhesion kinase (FAK), an important cell 

signaling hub that is highly activated upon integrin activation. FAK inhibition is identified 

as a potential strategy to overcome chemotherapy resistance. FAK activation coupled with 

the WNT-β-catenin signaling sustained tumor growth by promoting cancer stem cell survival 

and platinum resistance[279]. Combing a small molecule inhibitor of FAK with carboplatin 

and paclitaxel for the treatment of platinum-resistant high-grade serous ovarian cancer is 

now entering a clinical trial [280, 281]. Defactinib (VS-6063) is a FAK inhibitor currently 

tested in patients with advanced solid tumors in multiple clinical trials (Clinicaltrials.gov 

identifier: NCT04620330; NCT02546531; NCT03287271)[278,282]. Integrin-linked kinase 

is another mechanotransducer and a critical regulator of intracellular integrin signaling. 

Preclinical studies show that QLT-0267, an ILK inhibitor, presented anticancer activities in 

colon cancer [63,283].
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4.2. Targeting stromal and immune cells

4.2.1. Targeting cancer-associated fibroblasts—Therapeutically targeting CAF-

stimulated EMT has shown promises in cancer treatment. Multiple drugs are shown to 

impair CAFs-stimulated EMT by interfering with the IL-6/IL-6R signaling, including 

siltuximab, tocilizumab, retinoic acid (RA), somatostatin analog SOM230 (pasireotide), 

nab-paclitaxel (nab-PTX), and cucurbitacin I (JSI-124)[284–289]. Siltuximab, an IL-6 

neutralizing antibody, is shown to inhibit IL-6-mediated EMT in cholangiocarcinoma cells 

and exhibited anti-tumor efficacy in a xenograft model with co-injection of CAFs and 

lung cancer cells [284,290]. Clinically, Siltuximab treatment contributed to stable disease 

in more than 50% of patients with metastatic renal cell carcinoma[291]. Tocilizumab, 

an IL-6R inhibitor, blocked paracrine pro-EMT effects of CAFs on breast cancer cells 

in vitro and in vivo[285]. Interestingly, Billah et al. found that SOM230 specifically 

impaired IL-6 expression in CAFs through repressing eiF4E-Binding Protein-1 (4E-BP1)-

mediated protein synthesis in pancreatic cancer[287]. Bae et al. demonstrates that an AXL 

inhibitor BGB324 could significantly suppress CAFs-induced EMT in gastric cancer cells, 

where AXL was activated by CAFs-secreted GAS6[292]. Targeting SDF-1 or the CXCL12/

CXCR4 axis is also a promising therapeutic strategy. AMD3100, a CXCR4 antagonist, 

was shown to prevent CAFs-induced EMT in pancreatic and prostate cancer cells[93,94]. 

Specifically, AMD3100 treatment blocked the CXCL12/CXCR4 axis and suppressed p38 

kinase, leading to reduced EMT, invasion and lung metastasis in pancreatic cancer cells[94]. 

Another CXCR4 antagonist BL-804, combined with pembrolizumab, showed benefit in 

metastatic PDAC patients [293]. Inhibitors targeting TGFβ signaling, such as SB431542 or 

pirfenidone, are also shown to abrogate CAFs-induced EMT in breast cancer cells [294]. 

PHA-665752, a c-Met kinase inhibitor, attenuated CAFs-stimulated migration, invasion and 

tumorigenesis in hepatocellular carcinoma [74](Table 2).

4.2.2. Targeting cancer-associated adipocytes—Several targeting strategies have 

also been developed to target cancer-associated adipocytes to inhibit EMT. Adiponectin, 

secreted from normal adipocytes and downregulated in cancer-associated adipocytes 

(CAAs), was shown to reverse EMT and impair migration and invasion in NSCLC 

cells[330]. Adiponectin analogue ADP335 was developed to mimic its function on tumor 

progression. In breast cancer or prostate cancer xenograft models, ADP335 treatment 

significantly repressed tumor progression by modulating AMPK, Akt, STAT3 and ERK1/2 

signaling [295,296]. Targeting leptin is also showing promise in halting tumor progression. 

PEG-LPrA2, acting as a leptin receptor antagonist, significantly reduced tumor growth 

in breast cancer xenografts in mice by repressing ERK, AKT or VEGF upregulation 

[297,298]. Additionally, a FABP4 inhibitor BMS309403 was reported to efficiently 

inhibit adipocyte-mediated EMT and metastasis in cholangiocarcinoma[106]. Niclosamide 

treatment repressed adipocyte-induced EMT by inhibiting IL-6/STAT3 axis in breast cancer 

cells[299]. Depletion of ASCs by D-CAN, also effectively repressed obesity-mediated EMT 

and prostate tumor progression[111,300](Table 2).

4.2.3. Targeting lymphocytes—Targeting EMT induction in combinations with anti-

PD-1/PD-L1 immunotherapies has shown improvement in the response to immuno-therapies 

in cancer patients. Multiple studies suggest that anti-TGFβ treatment could inhibit EMT 
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and synergize with immunotherapy to boost immune response and attenuate tumor 

progression[301,302]. In chemically induced squamous cell carcinomas, α-PD-1 therapy 

not only inhibited tumor growth, but also provoked immunosuppressive Tregs and activated 

TGFβ/pSMAD3 signaling in tumors, leading to EMT, while addition of anti-TGFβ 
treatment attenuated EMT and alleviated α-PD-1 resistance[301]. Thus, the anti-TGFβ/anti-

PD-1 combination therapy significantly inhibited CCK168 tumors growth and promoted 

survival in mice[301]. Indeed, bifunctional molecules targeting both TGFβ and PD-L1 

exhibited higher anti-tumor efficiency than anti-TGFβ or anti-PD1-L1 monotherapy. M7824, 

an anti-PD-L1/ TGFβ Trap fusion protein, was shown to revert EMT in vivo and in vitro 

in lung cancer models and to boost CD8+ T cell and NK cell responses in various cancers, 

thereby leading to tumor regression and longer survival in mice [303–306]. The M7824 

phase I trial showed promising antitumor efficacy in advanced solid tumor patients[307]. 

More recently, YM101, a new bifunctional antibody against TGFβ and PD-L1 was shown to 

inhibit EMT and revert immunosuppression in tumor-bearing mice [308]. In KRAS mutant 

lung cancer models, combination of a MEK inhibitor and anti-PD-L1 therapy inhibited 

tumor growth, but also led to therapy resistance by increasing CD4+ Th17 infiltration[309]. 

CD4+ Th17 is implicated in inducing EMT in tumor cells by secreting IL-17. Peng et 

al. demonstrated that anti-IL-17 in combination with a MEK inhibitor and an anti-PD-L1 

antibody significantly reduced tumor metastasis and therapy resistance in tumor-bearing 

mice[309](Table 2).

4.2.4. Targeting macrophages—TAMs play critical roles in promoting EMT, 

invasion and metastasis. Numerous macrophages targeting therapies significantly impede 

tumor progression, including blocking macrophages recruitment, TAMs depletion and 

reprogramming macrophages polarization[130,331]. Several studies show that blocking 

the CCL2/CCR2 axis could repress macrophage recruitment. A CCL2 neutralization 

antibody significantly inhibited macrophage infiltration and tumor metastasis in tumor-

bearing mice[131]. RDC018, a CCR2 antagonist, significantly inhibited hepatocellular 

carcinoma tumor growth and metastasis[310]. Depletion of TAMs could also be achieved 

through interfering with CSF-1/CSF-1R axis. RG7155, a monoclonal antibody targeting 

CSF-1 receptor (CSF-1R), could deplete M2 macrophages both in vitro and in vivo, 

reducing tumor burden in diffuse-type giant cell tumor (Dt-GCT) patients[313]. CSF-1R 

inhibitors BLZ945 and PLX3397 not only eliminated immunosuppressive M2-like cells, 

but also boosted T cell response, leading to tumor regression in glioma and pancreatic 

cancer models[311,312]. Reprogramming TAMs to anti-tumor macrophages has also been 

tested to induce tumor regression. Hagemann et al. demonstrated that NF- κB inhibition 

reprogramed M2 macrophages to M1 macrophages and repressed tumor growth by 

increasing IL-12-dependent NK activity[332]. BAY11–7082, a NF-κB inhibitor, was shown 

to repress TAMs-mediated EMT and stemness in bladder cancer cells by suppressing 

M2 polarization[139]. IPI-549, a specific PI3Kγ inhibitor, switched immunosuppressive 

TAMs to immunostimulatory macrophages by activating NF-κB and inhibiting PI3Kγ/

mTOR-S6Kα-C/EBPβ, facilitating spontaneous breast carcinoma regression and reduced 

lung metastasis[315]. Additionally, the cannabinoid receptor-2 agonist, JWH-015 was shown 

to repress M2 macrophage-stimulated EMT in NSCLC cells and inhibit tumor growth in 

mice[316](Table 2).
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4.2.5. Targeting MDSCs—Similarly to TAMs, MDSCs were implicated to stimulate 

EMT and facilitate metastasis. Several approaches were developed to repress MDSC 

functions, including depleting MDSCs, inhibiting MDSC recruitment, repressing MDSC 

function and promoting MDSC differentiation [333,334]. CSF-1R, CCR5 and CXCR2 

could be targeted to block MDSCs recruitment and revert the immunosuppressive tumor 

environment [323,322,324]. Blattner et al. demonstrated that the CCR5-Ig fusion protein 

treatment reduced MDSCs and Tregs infiltration, thereby impeding melanoma tumor 

progression[323]. Similarly, CSF-1R inhibitors, PLX647 and PLX5622, and CXCR2 

inhibitor SX682 were also reported to block MDSCs recruitment, enhancing the response 

to T cell checkpoint immunotherapy[322,324]. Several compounds including the PDE5 

inhibitor, the COX-2 inhibitor and triterpenoid CDDO-Me were reported to impair the 

immunosuppressive function of MDSCs [325–327]. For example, Sildenafil, a PDE5 

inhibitor neutralized MDSC function, thereby facilitating CD8+ T cell activation and 

inhibiting tumor growth[325]. Song et al. show that Ginsenoside Rg3 blocked MDSC-

mediated EMT and stemness acquisition in breast cancer cells by repressing Notch and 

STAT3 activation, resulting in tumor suppression [335](Table 2). Given these studies, 

targeting both TAMs and MDSCs in the tumor microenvironment could be a feasible 

approach to block tumor cell EMT and metastasis.

4.3. Targeting hypoxia

Hypoxia-mediated tumor malignant transformation is mainly orchestrated by HIF-1α/

HIF-2α proteins. Numerous inhibitors targeting HIF-1α/ HIF-2α were developed for 

potential cancer therapies, including 1) PX-478[336,337] that inhibits HIF-1α transcription, 

translation and de-ubiquitination; 2) digoxin[338,339] and topotecan[340,341] that inhibit 

HIF-1α/2α protein synthesis; 3) acriflavine[342] that blocks HIF-1α/2α dimerization with 

HIF-1β; 4) 2-methoxyestradiol (2ME2) that inhibits HIF-1α/2α nuclear accumulation[343]; 

5) echinomycin (NSC-13502) [344–346] that inhibits HIF-1α binding to the HRE; 6) 

chetomin[347], bortezomib[348], YC-1[349], all of which inhibit HIF-1α/2α binding to 

its transactivator p300 (Table 3). PX-478 treatment efficiently suppressed tumor metastasis 

in HIF-1α-expressing lung cancer cells[350]. Clinically, PX-478 treatment contributed 

to improved radiotherapy or chemotherapy efficacy in combination with anti-cancer 

drugs[351]. Digoxin is shown to prevent hypoxia-mediated EMT by blocking the HIF-1α-

ZEB1 axis, further repressing the migration and invasion capacity of GBM cells[182]. 

Moreover, Carmen et al. demonstrated that either digoxin or acriflavine significantly reduced 

lung metastasis in breast cancer xenografts in mice [352]. In glioma cells, echinomycin 

prevented hypoxia-induced EMT and invasion by repressing the HIF-1α/miR-210/TGF-β 
and HIF-1α/miR-210/NF-κB axis, respectively[353]. Similarly, YC-1 treatment reduced 

hypoxia-induced migration and invasion, leading to metastasis suppression in hepatocellular 

carcinoma and breast cancer xenografts in mice[354,355].

HIF-2α is a key oncogene in ccRCC, especially in VHL-deficient tumors, where stabilized 

HIF-2α drives tumor invasion and metastasis [366]. Thus, multiple inhibitors specifically 

targeting HIF-2α were designed to impair its oncogenic activity, such as THS-044[366], 

PT2385 (MK-3795)[362,363], PT2399[360,361] and belzutifan (MK-6482 or PT2977)

[364](Table 3). These inhibitors significantly reduce HIF-2α target gene expression 
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by interrupting its heterodimerization with HIF-1β. PT2385 treatment was shown to 

inhibit HIF-2α-induced expression of VEGF-A, PAI-1 and cyclin D1, thereby leading 

to tumor regression of the VHL-deficient ccRCC xenograft model [362]. Furthermore, 

tumor regression in 34% VHL-deficient ccRCC patients was reported in a phase I 

clinical study of patients with locally advanced or metastatic ccRCC[363]. Rui et al. 

developed the second generation HIF-2α inhibitor, belzutifan, which significantly repressed 

HIF-2α target erythropoietin (EPO) expression and promoted tumor regression in ccRCC 

bearing mice[364]. Belzutifan showed promising anti-tumor activity in metastatic ccRCC 

patients[365]. Additionally, belzutifan, in combination with cabozantinib, demonstrated to 

be an effective treatment for patients with metastatic ccRCC (NCT03634540 ) and has 

recently been approved by FDA for VHL-related diseases, including ccRCC tumors[367]. 

Although the action of HIF inhibition on tumor cells is pleiotropic, EMT is likely to be one 

of the key effects that can be targeted to inhibit metastasis and chemoresistance.

5. Conclusion

In this review, we summarized various important microenviron-mental cues that impinge 

on the EMT program to impact tumor development, progression, and therapy response 

in human tumors, including ECM, hypoxia, stroma cells, and immune cells. Much has 

been learned from the past two decades of intensive research on EMT and the tumor 

microenvironment. First, the communication between the tumor microenvironment and the 

EMT program is not unidirectional. Instead, tumor cells that have undergone EMT can 

also modulate stromal cells, immune cells, and the ECM to generate a more tumor-prone 

tumor microenvironment to further facilitate tumor development and progression. Dissecting 

the bidirectional interactions between tumor cells and their microenvironment and their 

effects on EMT requires more innovative in vitro culture systems to better mimic the 

complex three-dimensional biochemical and biophysical tumor microenvironment. Second, 

the interaction between the tumor microenvironment and EMT is highly dynamic in time 

and space. As discussed above, the EMT program is a dynamic and transient program 

during tumor progression. While activation of the transient EMT program promotes tumor 

cell dissemination into distant organs, tumor cells undergo MET to regain growth at distant 

organs. Therefore, the same microenvironmental cues in primary tumors and distant organs 

may impact tumor progression differentially, which should be carefully considered in 

selecting targeted therapies. Third, extensive clinical and experimental data show a tight 

association between the mesenchymal state and resistance to various cancer therapeutics. 

Given many such therapies target cell proliferation, it is conceivable why the mesenchymal 

state with reduced proliferation is resistant to such therapeutics. However, EMT is also 

reported to provide resistance to numerous therapeutics, such as immunotherapies, that 

do not directly target cell proliferation. Elucidating how EMT provides resistance to 

various cancer therapeutics is critical for developing new approaches to overcome therapy 

resistance. Lastly, many therapeutic approaches that target tumor microenvironmental cues 

impact EMT and tumor progression, some of which showed promising clinical benefits 

in cancer patients. While EMT plays an important role in tumor metastasis, very few 

cancer therapeutics are designed for metastasis prevention. As our knowledge of EMT and 

metastasis continues to grow, it becomes evident that metastasis prevention will become 
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an effective approach for high-risk cancer survivors that are prone to developing metastatic 

recurrence. The EMT research could contribute significantly to the next generation of cancer 

therapeutics on metastasis prevention.
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Fig. 1. 
A summary of various extracellular matrix signals implicated in EMT regulation in the 

tumor microenvironment. Various ECM molecules, ECM remodeling proteins and physical 

forces exerted from ECM in the tumor microenvironment activate various biochemical and 

mechanical signaling pathways to regulate the EMT inducers and EMT transcription factors 

to drive EMT and tumor progression.
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Fig. 2. 
A summary of various secreted factors implicated in EMT induction by stromal cells and 

immune cells. CAFs, CAAs and immune cells including T lymphocytes, TAMs and MDSCs 

could promote EMT in cancer cells through the secretion of cytokines, chemokines and 

growth factors, such as TGFβ, IL-6, CXCL12, CCL18, FGF and HGF. Meanwhile, cancer 

cells secrete various factors to stimulate CAFs or CAAs formation and recruit more Tregs, 

TAMs or MDSCs. CAFs: cancer associated fibroblasts; CAAs: cancer associated adipocytes; 

TAMs: tumor associated macrophages; MDSCs: myeloid-derived suppressor cells.
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Fig. 3. 
A schematic diagram summarizing mechanisms underlying hypoxia-mediated EMT. 

Hypoxia activates EMT by directly increasing EMT-TFs expression or stimulating various 

signaling pathways, including TGFβ, Notch, Hedgehog pathway and EGFR pathway. 

Direct transcription targets, like SNAI1, TGFβ, NOTCH1–1, SHH and EGFR are listed in 

diagram. Except for HIF-1/2α, ROS could also stimulate EMT by promoting SNAI1 nuclear 

translocation under hypoxia condition.

Zhang et al. Page 46

Semin Cancer Biol. Author manuscript; available in PMC 2023 June 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 47

Table 1

Targeting extracellular matrix.

Drug/inhibitor Target Effectiveness Reference

Bivatuzumab CD44 Bivatuzumab can direct against CD44v6, blocking CD44-HA interaction [247,248]

RO5429083 CD44 A monoclonal CD44 antibody, block the interaction between CD44 and HA, which 
have been entered phase 1 clinical trial conducted among patients with CD44-
expressing malignant tumors

[249]

Verbascoside CD44 Verbascoside suppressed growth of glioblastoma cells by inhibiting CD44 
dimerization, as well as suppress tumor stem cell formation

[250]

7rh DDR1 Inhibition of DDR1 by 7rh reduces collagen-mediated tumorigenicity in pancreatic 
ductal adenocarcinoma

[251]

WRG-28 DDR2 By targeting DDR2, WRG-28 can efficiently prevent disrupt DDR2 receptor-collagen 
ligand interaction and DDR- mediated tumor progression in preclinical models

[252]

Imatinib, nilotinib and 
dasatinib

DDR1 and 
DDR2

These 3 compounds are potent inhibitors of both DDR1 and DDR2 by inhibiting 
collagen- induced discoidin domain receptor 1 and 2 activation

[253–255]

Fresolimumab Collagen An anti-TGF-β antibody, suppress TGF-β-regulated gene expression, decreases 
collagen synthesis, it is currently tested in a phase 1 clinical trial

[256,257]

Losartan Collagen Losartan inhibits collagen I production via TGF-β pathways and improves the 
distribution and efficacy of nanotherapeuticsin tumors

[258]

Simtuzumab LOXL2 Simtuzumab (GS-6624) is a selective inhibitor of LOXL2, which suppress LOXL2 
enzymatic activity and inhibits collagen crosslinking, it is currently tested in a phase 
II clinical trial to test the efficacy and safety of GS-6624 combined with gemcitabine 
as first-line treatment for metastatic pancreatic adenocarcinoma

[259,260]

(2-Chloropyridin-4- 
yl) methanamine 
hydrochloride

LOXL2 (2-Chloropyridin-4-yl) methanamine hydrochloride is a small molecule inhibitor of 
LOXL2, it suppresses transformation abilities by repressing LOX2 induced EMT in 
cervical cancer

[261]

CCT365623 LOX CCT365623 is a pharmacological inhibitor of LOX, it disrupts TGFβ1/ HTRA1/ 
MATN2/EGFR signaling axis and reduces tumor progression.

[262]

Cilengitide αvβ3 and 
αvβ5 
integrin

Cilengitide is an inhibitor of αvβ3 and αvβ5 integrin, demonstrated modest antitumor 
activity among recurrent glioblastoma multiforme patients in a prior phase I study

[263]

Curcumin αvβ3 
integrin

Curcumin is a natural derivative of turmeric, it influences αvβ3 integrin expression 
and up-regulation of PDK4 in Erlotinib resistant SW480 colon cancer cells

[264]

Defactinib(VS-6063) FAK Defactinib is a FAK inhibitor which targets FAK catalytic activity, FAK is a key 
mediator of therapeutic resistance, it is a potential inhibitor to overcome adaptive 
resistance to chemotherapy, combinations with the other therapy drugs (such as 
Pembrolizumab; Paclitaxel and carboplatin; VS-6766) have been tested in the clinical 
trial phase I or II

[265–267]

IN10018 FAK IN10018 is a highly selective oral inhibitor of FAK, it is currently tested in a 
phase Ib clinical trial to study of IN10018 in combination with pegylated liposomal 
doxorubicin in patients with platinum-resistant ovarian cancer

[268]

GSK2256098 FAK GSK2256098 is an ATPcompetitive inhibitor that binds to the ATP-binding pocket 
of FAK, it is currently tested in a phase 1 clinical trial to study of GSK2256098 in 
patients with advanced solid tumors in the United Kingdom

[269,270]

BI853520 FAK BI853520 is a highly selective ATP-competitive inhibitor of FAK, it is currently 
tested in a phase I clinical trial to study of BI853520 in patients with advanced or 
metastatic nonhematologic malignancies

[271]
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