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Abstract

Nirmatrelvir is an orally available inhibitor of SARS-CoV-2 main protease (Mpro) and the 

main ingredient of PAXLOVID, a drug approved by FDA for high-risk COVID-19 patients. 

Recently, a rare natural mutation, H172Y, was found to significantly reduce nirmatrelvir’s 

inhibitory activity. As the COVID-19 cases skyrocket in China and the selective pressure of 

antiviral therapy builds up in the US, there is an urgent need to characterize and understand 

how the H172Y mutation confers drug resistance. Here we investigated the H172Y Mpro’s 

conformational dynamics, folding stability, catalytic efficiency, and inhibitory activity using all-

atom constant pH and fixed-charge molecular dynamics simulations, alchemical and empirical free 

energy calculations, artificial neural networks, and biochemical experiments. Our data suggests 

that the mutation significantly weakens the S1 pocket interactions with the N-terminus and 

perturbs the conformation of the oxyanion loop, leading to a decrease in the thermal stability 

and catalytic efficiency. Importantly, the perturbed S1 pocket dynamics weakens the nirmatrelvir 

binding in the P1 position, which explains the decreased inhibitory activity of nirmatrelvir. Our 

work demonstrates the predictive power of the combined simulation and artificial intelligence 

approaches, and together with biochemical experiments they can be used to actively surveil 

continually emerging mutations of SARS-CoV-2 Mpro and assist the optimization of antiviral 
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drugs. The presented approach is general can be applied to characterize mutation effects on any 

protein drug targets.

Graphical Abstract

Introduction

The COVID-19 pandemic is still ongoing and remains a major global health threat. At the 

end of 2021, the U.S. Food and Drug Administration (FDA) issued an Emergency Use 

Authorization for Pfizer’s PAXLOVID to treat mild-to-moderate COVID-19 cases1,2. In 

a recent clinical trial for high-risk non-hospitalized adults with COVID-193, PAXLOVID 

reduced the risk of progression to severe disease by 89% as compared to placebo. This 

antiviral drug is a ritonavir-boosted formulation of nirmatrelvir (PF-07321332), an orally 

available inhibitor of the SARS-CoV-2 main protease (Mpro). Mpro, which is also known 

as 3CLpro or Nsp5, is a cysteine protease essential to the viral replication process as 

it cleaves the majority of the polyproteins pp1a and pp1ab into nonstructural proteins 

which form a part of the viral replication complex4. Nirmatrelvir is a reversible covalent 

peptidomimetic inhibitor, which binds to the active site of Mpro and inhibits its proteolytic 

activity5. Although Mpro is one of the most conserved proteins among coronaviruses4, the 

rapid and constant evolution of the viral genome raises great concern of potential emergence 

of antiviral resistance. Several biochemical studies, however, showed that the prevalent Mpro 

mutants in the Variants of Concern or Variants of Interest declared by the World Health 

Organization (WHO), such as G15S (Lambda), K90R (Beta), and P132H (Omicron), are 

still susceptible to nirmatrelvir, with IC50 values and catalytic efficiencies similar to the 

wild type (WT) Mpro6-8. Nevertheless, biochemical assays of several infrequent natural 

substitutions, e.g., H164N, H172Y, and Q189K, are associated with reduced activities of 

nirmatrelvir, among which H172Y caused the largest reduction in the inhibitory activity, 

with a 233-fold increase in the Ki value of nirmatrelvir according to a disclosure by Pfizer1. 

Although H172Y is a rare mutation (found in only a few entries of the database GISAID9), it 

may become favored in the future under the selection pressure of nirmatrelvir therapy. Thus, 

understanding the antiviral resistance mechanism is important and urgently needed.
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Motivated by the aforementioned need, we investigated the effect of the H172Y mutation on 

Mpro’s structure, stability, and binding with nirmatrelvir using a battery of state-of-the-art 

computational approaches, including the all-atom constant pH and fixed-charge molecular 

dynamics (MD), alchemical free energy simulations, empirical folding and binding free 

energy calculations, and artificial neural networks. As an experimental structure of the 

H172Y Mpro was unavailable at the start of the study, the computational work was solely 

based on an in silico mutated structure model. The simulations of dimeric Mpro revealed 

that the H172Y substitution disrupts the S1 pocket interactions, which are supported by the 

N-terminus of the opposite protomer, and perturbs the conformation of the oxyanion loop. 

The empirical calculations predicted a decreased structural stability for the H172Y Mpro. 

The empirical and alchemical free energy simulations predicted a decreased binding affinity 

with nirmatrelvir. These results were verified experimentally via the thermal stability, 

enzyme kinetics, and inhibitory activity measurements. The MD data also corroborate with 

the newly reported X-ray structure models of H172Y Mpro10.

Results and Discussion

Molecular dynamics simulations of the free and nirmatrelvir-bound H172Y Mpro.

We first built a structure model of H172Y Mpro based on the X-ray crystal structure of 

WT Mpro in complex with nirmatrelvir (PDB id 7vh8, resolution 1.58 Å, Fig. 1)5 using 

Modeller11. The modeled H172Y Mpro structure is nearly superimposable with the WT, 

except for a slight displacement of the backbone of Phe140, resulting in a 0.3 Å larger 

distance between the backbone carbonyl oxygen of Phe140 and the amino nitrogen of 

Ser1* (asterisk indicates the opposite protomer). The S1 pocket–Ser1* remain intact as 

in the WT-Mpro (Fig. 1). The protonation states of H172Y Mpro were determined using 

the generalized Born (GBNeck2) continuous constant pH molecular dynamics (CpHMD) 

titration simulations12,13 with the asynchronous pH replica-exchange protocol for enhanced 

sampling14. The estimated pKa’s are similar to those of the WT Mpro15 and the protonation 

states at pH 7.5 remain the same (Table S1). Note, consistent with other MD studies16 

our previous work showed that His172 in the WT Mpro is predominantly neutral at 

physiological pH, and a switch to the charged state at low pH results in a partial collapse of 

the S1 pocket15; such pH-dependent behavior is removed by the Tyr172 substitution in the 

mutant.

Starting from the computationally mutated structure and with the CpHMD determined 

protonation states, we carried out fixed-charge MD simulations of the free as well as 

the nirmatrelvir-bound H172Y Mpros using the Amber20 program17. As a control, the 

free and ligand-bound WT Mpros were also simulated starting from the same template 

structure (PDB id 7vh8)5 and with the same settings. A total of 10 simulations runs were 

conducted, including 3 trajectories for the free WT/H172Y Mpros and 2 trajectories for the 

ligand-bound WT/H172Y Mpros, with each trajectory lasting 2 μs (Table S2). In all these 

trajectories, the overall structure of the Mpro was stable and the inhibitor remained bound 

(Fig. S1-S2). At the end of our study, one free H172Y Mpro trajectory was also obtained 

starting from our unpublished X-ray structure of H172Y Mpro (see later discussion).
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S1 pocket interactions with N-terminus* are destabilized in the simulations of free H172Y 
Mpro.

A unique feature of the SARS-CoV/SARS-CoV-2 Mpros is the interactions between the 

S1 pocket residues and the N-finger (residues 1–9) of the opposite protomer (Fig. 1); 

these interactions are believed to support the stability of the active site and the Mpro 

dimerization4,18. In particular, three absolutely conserved residues in the S1 pocket, Phe140, 

Glu166, and His172 form either hydrogen bond (H-bond) or salt bridge with the N-terminus 

of the opposite protomer (i.e., the backbone of Ser1*, asterisk denotes the opposite 

protomer), according to the X-ray structures4,18 and the previous15 as well as the current 

WT Mpro simulations (Fig. 2a and Fig. S3). We first consider the H-bond between the 

backbone carbonyl group of Phe140 and Ser1*. This H-bond remained stable in all the WT 

Mpro simulations; in contrast, it became disrupted for both protomers after 1 μs in run 1 

and almost immediately disrupted in run 2 and run 3 of the H172Y Mpro (Fig. 2b and 

Fig. S4-S6). The WT Mpro simulations showed that the charged Glu166 and the terminal 

amine of Ser1* form either a H-bond/salt bridge or electrostatic interaction; in contrast, 

the Glu166–Ser1* interaction became disrupted for both protomers after 1 μs in run 1 and 

almost immediately disrupted run 2 and run 3 of the H172Y Mpro (Fig. 2d and Fig. S4-S6).

We next consider the H-bond between the imidazole of His172 and the N-terminal amine, 

which remained stable in the WT Mpro simulations (Fig. 2c and Fig. S3). An analogous 

H-bond for the H172Y mutant would be between the hydroxyl group of Tyr172 and the 

N-terminal amine. Indeed, this H-bond was occasionally sampled in all three runs at the 

beginning and it was completely abolished after 1 μs in run 1 and remained infrequently 

sampled in run 2 and rarely sampled in run 3 (Fig. 2c and Fig. S4-S6).

A conserved aromatic stacking in the S1 pocket is destabilized in the simulations of free 
H172Y Mpro.

The aromatic stacking between the absolutely conserved Phe140 and His163 is a key 

interaction that stabilizes the Mpro’s S1 pocket (Fig. 2a). This interaction was stable in 

the WT simulations, with the center-of-mass (COM) distance just below 4 Å between the 

aromatic rings of Phe140 and His163 (Fig. 2e and Fig. S3). However, in simulation run 

1 the aromatic stacking became lost after about 1 μs, with the stacking distance increased 

above 7 Å (Fig. S4 and Fig. S7). The sudden breakage of the Phe140–His163 stacking was 

concurrent with a ~2-Å decrease in the COM distance between the oxyanion loop (residues 

138–145)4,18,19 and Glu166 sidechain (Fig. S4) and a ~1-Å increase in the heavy-atom 

root-mean-square deviation (RMSD) of the oxyanion loop (Fig. S8). The latter is related 

to the decrease in the center of the mass distance between Glu166 and the oxyanion loop 

(Fig. S4), reminiscent of the oxyanion loop collapse observed in the simulations of the 

H172-protonated WT Mpro15 as well as an X-ray structure of SARS-CoV Mpro determined 

at pH 6 (PDB id 1uj1)18. In simulation run 2, the stacking interaction was stable until ~1.8 

μs when the stacking distance increased by ~0.4 Å in protomer A; however in protomer 

B, the aromatic stacking was occasionally abolished, with the distance increasing beyond 

15 Å (Fig. S5). In simulation run 3, the Phe140–His163 stacking was stable in protomer 

A; however, it was abolished in protomer B for ~500 ns (stacking distance above 7 Å) in 

the first 1 μs before the interaction was reestablished in the second 1 μs; nonetheless, the 
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COM distance occasionally increased to 9 Å (Fig. S6). Furthermore, in times when the 

stacking interaction was intact, the most probable COM distance between the two aromatic 

rings is increased by nearly 0.5 Å (Fig. 2e and Fig. S7). Thus, the simulations suggest that 

the H172Y mutation destabilizes the conserved Phe140–His163 interaction crucial for the 

stability of the S1 pocket.

Destabilization of the aromatic stacking might be related to a nonnative H-bond between 
Phe140 and Tyr172.

In comparing the H172Y and WT trajectories, we noticed that the hydroxyl group of Tyr172 

can occasionally accept a H-bond from the backbone amide nitrogen of Phe140, whereas 

the analogous H-bond between the imidazole of His172 and the carbonyl of Phe140 is not 

possible. Interestingly, around the same time as the aromatic stacking between Phe140 and 

His163 became disrupted in the simulation run 1 of H172Y Mpro, the distance between 

the hydroxyl oxygen of Tyr172 and the amide nitrogen of Phe140 suddenly decreased (Fig. 

S4), which resulted in a significant increase of the H-bond occupancy from about 10% to 

about 45% (Fig. S9). A representative structure obtained from clustering analysis confirms a 

perturbed S1 pocket, whereby the Phe140–His163 stacking is abolished and Ser1* is moved 

away from the S1 pocket; however, Tyr172 is in a tight H-bond with the backbone of Phe140 

(Fig. S10).

We hypothesized that a strong Phe140–Tyr172 H-bond would disrupt the aromatic stacking 

between Phe140 and His163. To test this hypothesis, we calculated the two-dimensional 

probability densities of the Phe140–His163 and Phe140–Tyr172 distances. The density 

map shows a maximum located around the Phe140–His163 and Phe140–Tyr172 distances 

of 7.5 Å and 3.0 Å, respectively (Fig. S10), representing a perturbed state in which 

the Phe140-His163 stacking is disrupted but a stable H-bond between Phe140–Tyr172 is 

formed. The density map also shows a local density maximum located at the Phe140–His163 

and Phe140–Tyr172 distances of 4 Å and 3.1–3.6, respectively (Fig. S10), representing a 

state in which the aromatic stacking is intact and an occasional H-bond is formed between 

Tyr172 and Phe140. This analysis supports the hypothesis that the backbone interaction of 

Phe140 with Tyr172 destabilizes the sidechain interaction of Phe140 with His163, which 

may be responsible for the partial collapse of the oxyanion loop in run 1 (Fig. S4 and S8). 

However, since the complete disruption of the aromatic stacking was only observed in one of 

the three trajectories, this hypothesis requires further testing.

Empirical energy calculations predicted decreased stability upon the H172Y mutation.

Given the destabilization of the dimer interface and possibly the S1 pocket interactions, 

we wondered if the H172Y mutation destabilizes the Mpro. We addressed this question 

by calculating the folding free energy change upon mutation (ΔΔGfold) using the 

ddG_monomer application20 in the Rosetta software suite. Calculations (Fig. 3) for the 

Mpro dimers showed that the folding free energy of the mutant is about 9.9 ± 0.9 kcal/mol 

higher than the WT, mainly due to the destabilizing electrostatic (7.2 ± 1.0 kcal/mol) and 

H-bonding energies (4.8 ± 0.8 kcal/mol), and to a smaller extent the unfavorable van der 

Waals energies (2.2 ± 1.1 kcal/mol). Calculations for the Mpro monomers gave a similar 

ΔΔGfold as for the dimer; the difference of 1.3 kcal/mol is within the error bar (Fig. 3). The 
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contributions to the destabilization also come from the electrostatic, H-bonding, and van der 

Waals energies. This analysis suggests that the Mpro dimer destabilization upon mutation 

can be attributed to the destabilization of the monomers.

Next we asked if the stability of the dimer interface is also affected by the mutation. If 

the mutation effect was restricted to the monomers, then the total ΔΔGfold as well as the 

individual contributions would be the sum of the monomer energies. If however, ΔΔGfold 

of the dimer is significantly higher (more positive) than that of the monomers, one could 

conclude that the dimer interface is destabilized. The similar total stability change for the 

dimer and sum of monomers does not suggest this is the case; however, the individual terms 

are different (Fig. 3). Most notably, the solvation energy of the dimer is less favorable than 

the monomers by 5.8 ± 2.0 kcal/mol, which balances out the less unfavorable van der Waals 

energy (5.9 ± 1.8 kcal/mol). Other terms are different as well, e.g., the electrostatic energy of 

the dimer is more unfavorable than the monomers (see later discussion). Thus, the energetics 

of the dimer interface is affected by the mutation although the net effect may be negligible.

To rationalize the above calculations, we examined the Rosetta generated structural models 

for the H172Y mutant and compared them with those for the WT Mpro dimer. The largest 

change is in Glu166, which upon losing the H-bond partner His172 is rotated away from 

Tyr172 (χ3 angle changed from −40° to −80 or 80° in the top three scored structures). This 

may explain the increased distance between Glu166 and the N-terminus of the opposite 

protomer (up to 0.5 Å for the top three scored structures), which is consistent with the MD 

trajectories (Fig. 2c) and the more unfavorable electrostatic energy of the dimer as compared 

to the monomers upon mutation (Fig. 3). Replacing His172 with the larger Tyr172 also 

moved the Phe140 backbone amide nitrogen closer to the hydroxyl oxygen of Tyr172 (in 

comparison to the imidazole nitrogens of His172), with the distance of 3.35–3.65 Å between 

Phe140:N and Tyr172:OH in the top three scored structures. Although these distances do 

not indicate H-bonding, they do not exclude the possibility of transient (or strong) H-bond 

formation observed in the MD trajectories. As to the aromatic stacking between Phe140 and 

His162, the Rosetta generated structures showed an increase of 0.15 Å between the COM 

of the two rings in the mutant, which, albeit small, is consistent with the destabilization 

observed in the MD trajectories.

S1 pocket interactions with N-terminus* are also destabilized in the simulations of the 
nirmatrelvir bound Mpro.

To probe the effect of H172Y mutation on the Mpro’s affinity for nirmatrelvir, we first 

performed 2-μs simulations of the WT and H172Y Mpros in complex with nirmatrelvir 

(Table S1). In these simulations, nirmatrelvir remained stably bound with the Mpro (Fig. 

S1) and the aromatic stacking between Phe140 and His163 was intact; however, similar 

to the free Mpro, the N-terminus interaction with Phe140 was completely lost and those 

with Glu166 and Tyr172 were significantly weakened in both protomers (Fig. S11 and 

S12). Surprisingly, the RMSD of the oxyanion loop was unstable (Fig. S8). These data are 

consistent with the simulations of the free H172Y Mpro, and suggest that the S1 pocket in 

the inhibitor-bound form is also destabilized by the mutation.
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Perturbation of the P1 site and formation of the Phe140-Tyr172 nonnative hydrogen bond 
in the simulations of the nirmatrelvir-bound Mpro.

To further probe the stability of nirmatrelvir binding, we compared the distributions of 

nirmatrelvir’s RMSD with respect to the X-ray structure (PDB id 7vh8)5 calculated from the 

trajectories of the WT and H172Y Mpros. The peak is slightly right shifted for the H172Y 

relative to the WT simulations (Fig. S13), which indicates that nirmatrelvir has a small 

conformational change when complexed with the mutant Mpro. Calculations of the atom-

based protein-ligand contact distances showed that the change mainly affects the γ-lactam 

ring in the P1 position, whereby the amide nitrogen forms a H-bond with the carboxylate 

oxygen of Glu166 in the X-ray structure (PDB id 7vh8)5. This H-bond was stable in the WT 

simulations, with an occupancy over 60%, but it was significantly weakened in the H172Y 

simulations, with an occupancy about 20% (Fig. S13). On the other hand, the H-bond 

between the lactam nitrogen and the backbone carbonyl oxygen of Phe140 was stabilized 

in the mutant simulations, with an occupancy increase of about 30% as compared to the 

WT simulations (Fig. S13). This analysis is consistent with the representative structure from 

the clustering analysis of the H172Y simulations, which showed that the H-bond between 

the lactam nitrogen and Glu166 is absent (Fig. S13). Importantly, similar to the ligand-free 

simulation run 1, the nonnative H-bond between Tyr172 and Phe140 is formed (Fig. S13). 

This consistency suggests that the perturbation of the S1 pocket by the H172Y mutation is 

responsible for the change in the P1 site binding, which we speculate may contribute to the 

decreased affinity for nirmatrelvir.

Free energy simulations and empirical calculations predict decreased nirmatrelvir affinity 
for the H172Y Mpro.

To further examine the mutation effect on the affinity of nirmatrelvir-Mpro noncovalent 

binding, we calculated the binding free energy change upon mutation, which according 

to the thermodynamic cycle is the same as the difference in the mutation free energies 

of the free and ligand-bound forms (Fig. 4, top). We applied two methods to calculate 

the mutation free energies. First, we conducted the alchemical free energy perturbation 

(FEP)21 simulations using the implementation22,23 in the NAMD2 package24. Both the 

WT-to-mutant and mutant-to-WT transformations were performed, although the latter may 

be less accurate due to the use of the computationally mutated structure. Both transformation 

predicted the mutant to have a significantly decreased binding affinity (Fig. 4, bottom). 

The more reliable WT-to-mutant transformation gave the values of 2.7±0.19 kcal/mol for 

protomer A and 2.2±0.17 kcal/mol for protomer B. We also applied an empirical approach to 

calculate the mutation free energies using Rosetta’s flex ddG protocol25. These calculations 

also predicted a lower binding affinity for the mutant, although to a smaller extent (about 0.3 

kcal/mol) as compared to the more accurate FEP calculations.

Artificial neutral network identified conformational changes of the oxyanion loop region 
upon mutation.

To further analyze the MD trajectories to discern the mutation effect on the conformational 

dynamics of the Mpro, we utilized a newly developed artificial neural network called 

DiffNets26, which makes use of autoencoder and classifier to detect structural differences 
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of protein variants based on MD trajectories (Fig. 5a). We created two DiffNets to discern 

the effect of H172Y mutation on the free and ligand-bound Mpros. Positions of C, CA, 

CB, and N atoms of the WT and H172Y Mpros were fed as input into two encoders, 

with atoms near the mutation site fed into a separate encoder. These positions were then 

encoded to a latent (reduced dimensional) space followed by reconstruction to reproduce 

the input positions (Fig. 5a and Fig. S14). A classifier was applied to the latent space to 

determine if the frame comes from a WT or H172Y trajectory (Fig. 5b). clustering was then 

applied in the latent space to identify pairwise distances that are most correlated (largest 

R2 values) with the predicted labels (WT vs. H172Y). Interestingly, for both the free and 

ligand-bound forms, the Cα distances most correlated with the labels involve Gly138, which 

is the first residue of the oxyanion loop (residues 138–145, Fig. 5c and Table S4). The 

distance from Gly138 to Ser144 is 1 Å greater in the H172Y relative to WT trajectories 

of the ligand-bound form (Fig. 5d). This distance change is consistent for both protomers 

in both trajectories (Fig. S15). In the free Mpro, the shift in the Gly138–Ser144 distance 

based on the aggregated trajectories and protomers is subtle (Fig 5d); however, the shift is 

very pronounced for protomer B in two (out of three) trajectories (Fig. S15). The distance 

from Gly138 to Thr135, which is in the unstructured region preceding the oxyanion loop, is 

also greater by about 1 Å for the H172Y vs. WT trajectories in both free and ligand-bound 

enzyme forms (Fig. 5d and Fig. S16). These data suggest that the oxyanion loop region is 

more extended upon the H172Y mutation.

Experiments confirm that the H172Y mutation reduces Mpro’s stability, catalytic activity, 
and susceptibility to nirmatrelvir.

Following the simulation study, we measured the thermal stability and enzyme kinetics of 

WT and H172Y Mpros as well as the IC50 values of nirmatrelvir (Fig. 6). Thermal-shift 

assays were used to determine the unfolding temperatures (Tm) of the WT and mutant 

Mpros (Fig. 6a). The Tm for the WT was found to be 58.11 °C, whereas that of the H172Y 

Mpro was lower by 4.16°C (Fig. 6d), indicating a destabilization of the enzyme. According 

to an empirical formula27 ΔG = 0.029N
Tm

(Tm − 282.6)2 kJ ∕ mol, where N is the number of 

residues and Tm is in Kelvin, the decrease of Tm corresponds to roughly 2.3 kcal/mol 

decrease of unfolding free energy, which is in qualitative agreement with the prediction by 

the Rosetta calculation (Fig. 3).

The reaction rate measurement using the FRET assay revealed a significant decline in the 

catalytic efficiency for the H172Y relative to the WT Mpro (Fig. 6b and d). The kcat/Km 

value obtained for the WT enzyme is 5355.3 M−1s−1, while that for H172Y is 863.3 M−1s−1, 

i.e. only 16% enzyme activity remains in the FRET assay, compared to the WT. The kcat 

value (enzyme turnover number) for H172Y is 0.69 s−1, which is only 27% of the WT value. 

The Michaelis constant Km value obtained for H172Y is 802.7 μM, which is 69% larger 

than the value for the WT, indicating that the mutation significantly reduces the affinity for 

substrate binding. The experimental errors are given in Fig. 6.

The significant decrease in the enzyme efficiency (decreased turnover number and substrate 

binding) may be explained by the extension of the oxyanion loop (increase of the distance 

between Gly138 and Ser144) (Fig. 5d). The latter may be attributed to the loss of the 
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N-terminus interaction with Phe140 (Fig. 2b). Since the oxyanion loop forms the wall of 

the S1 pocket, a subtle conformational change may reduce the substrate binding affinity. 

Since the oxyanion hole residues Gly143 and Cys145 directly interact and stabilize the 

reaction intermediate18, this conformational change may also perturb the transition state and 

consequently the kinetics of enzyme catalysis.

The inhibitory activity of nirmatrelvir was followed using the FRET assay (Fig. 6c and d). 

The IC50 against the H172Y mutant is 344.2±89.0 nM, which is 24.2 times higher than 

that for the WT protein. Converting the IC50 values to Ki values using the web server 

IC50-toKi converter28 (https://bioinfo-abcc.ncifcrf.gov/IC50_Ki_Converter/index.php) gave 

a similar ratio of 24.5 times for the Ki values of H172Y vs. WT, which corresponds to a free 

energy change of about 1.9 kcal/mol. This reduction of binding affinity by 1.9 kcal/mol is 

in good agreement with the FEP estimated values of 2.3–2.7 kcal/mol and consistent with 

the empirical calculations although the magnitude of ΔΔGbind is much smaller (about 0.3 

kcal/mol, Fig. 4 bottom).

Additional simulations based on a X-ray structure model of H172Y Mpro.

Inthe final stage of the manuscript preparation, we performed an additional fixed-charge MD 

simulation based on an unpublished X-ray structure model of H172Y Mpro determined by 

the Hilgenfeld group (Table S2). During the 2-μs simulation, the N-terminus h-bond/salt 

bridge interactions with Phe140 and Glu166 were significantly destabilized in protomer 

A and completely disrupted in protomer B (Fig. S16). In protomer B, the disruption of 

the S1 pocket–N-terminus interactions is concomitant with a small (about 0.3 Å) increase 

in the Phe140–His163 aromatic stacking distance (Fig. S16) and a nearly 1-Å increase in 

the RMSD of the oxyanion loop (Fig. S17). Consistently, the distances between Gly138 

and Ser144/Thr135 in both protomers are increased (by about 1 Å) compared to the 

WT, consistent with the simulations based on the computationally mutated H172Y Mpro 

structure (Fig. S18). In fact, for protomer B, the distributions of the two distances are very 

similar between this new simulation and those based on the modeled structure of the H172Y 

Mpro. Thus, the additional simulation based on a different starting structure confirmed the 

disruption of the S1 pocket–N-terminus* interactions, the conformational change of the 

oxyanion loop, and the destabilization of the Phe140–His163 stacking.

Our MD data are consistent with the new X-ray structures of H172Y Mpro.

As we were preparing the manuscript, a bioRxiv paper by Hu et al.10 was published that 

reports the X-ray structures of the free and inhibitor GC-376-bound H172Y Mpros. In 

the ligand-free X-ray structure (PDB id: 8d4j)10, the salt bridge between Glu166 and the 

N-terminus* is lost in one protomer, and the H-bond between Phe140 and the N-terminus* 

is lost in both protomers (Table S3). These data corroborate the simulation finding of the 

abolished interactions between Phe140/Glu166 and the N-terminus* (Fig. 2). Note, in the 

GC376-bound structure (PDB id: 8d4k)10, the position of Ser1 is not resolved. Another 

agreement between simulation and the reported X-ray structures of H172Y Mpro is with 

regards to the increased Ca distances of Gly138–Ser144 and Gly138–Thr135. They are 

respectively 0.2/0.2 and 0.2/0.5 Å greater in the free/GC376-bound H172Y (PDB 8d4j/
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8d4k)10 as compared to the WT Mpro (PDB 7vh8)5 structure. Thus, the X-ray structure 

models are in support of a mutation-induced conformational change of the oxyanion loop.

The present biochemical data are consistent with the reported data.

Hu et. al10 reported that the kcat/KM value of the H172Y Mpro is 13.9-fold lower than 

the WT, compared to the 6.2-fold decrease determined in this work, thus confirming a 

significant reduction in the catalytic efficiency upon mutation. We note that the impact of 

mutation on Mpro’s cleavage activity likely varies depending on the substrate. Thus, the 

difference in the kcat/KM value reduction may be due to the different FRET substrate used 

in the experiments. Hu et. al10 also reported that the Ki value of nirmatrelvir is >113.7 

fold higher for the H172Y than the WT Mpro, compared to the roughly 24.5-fold increase 

in the Ki value estimated28 from the 24-fold increase in the IC50 value determined in this 

work. Thus, both experiments confirmed a significantly reduced affinity and activity of 

nirmatrelvir against H172Y relative to the WT Mpro.

Concluding Discussion

Employing an in silico structure model and a battery of state-of-the-art computational 

techniques, including constant pH and fixed-charged MD, alchemical free energy 

simulations, empirical energy calculations as well as artificial neural networks, we made 

prospective predictions regarding how structure, dynamics, folding stability, and inhibitor 

binding of SARS-CoV-2 Mpro change upon the H172Y mutation. The MD simulations of 

the free and nirmatrelvir-bound Mpros showed that the mutation disrupts or significantly 

destabilizes the interactions between the S1 pocket residues Phe140, Glu166, and His172 

and the N-terminus of the opposite protomer. The conserved aromatic stacking between 

Phe140 and His163 in the S1 pocket was also destabilized upon mutation. The analysis 

using artificial neural network found that the oxyanion loop is extended for both free and 

ligand-bound H172Y Mpros. Remarkably, these results are in agreement or consistent with 

the newly reported X-ray structures of the free and GC376-bound H172Y Mpro (PDB ids: 

8d4j and 8d4k)10 as well as our preliminary structure model of the H172Y Mpro (Hilgenfeld 

and coworkers, unpublished). The simulation data may explain the significant (84%) 

reduction in the kcat/Km value due to the H172Y mutation. In particular, the conformational 

change of the oxyanion loop that stabilizes the reaction intermediate may explain the 

significant (73%) decrease in the kcat value (decreased enzyme turnover number), although 

quantum mechanical/molecular mechanics (QM/MM) calculations may offer more detailed 

clue regarding the perturbation of kinetics. The destabilization of the S1 substrate pocket as 

well as the change of the oxyanion loop may explain the significant (69%) increase in the 

Km value which represents the decreased substrate binding affinity.

The Rosetta20 predicted folding stability decrease upon mutation is consistent with the 

reduced Tm value determined using the thermal-shift assays. The energy analysis suggested 

that the stability decrease is largely due to the unfavorable change of the electrostatic and 

H-bond energies of the monomers, consistent with the MD data. Both the Rosetta energy 

calculations25 and the more accurate FEP simulations predicted that the H172Y Mpro has a 

reduced binding affinity for nirmatrelvir, which is consistent with the significant increase in 
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the IC50 value determined by us or the Ki value determined by Wang and coworkers10 

and by Pfizer’s disclosure1. The simulation data suggested that the decreased binding 

affinity between nirmatrelvir and the H172Y Mpro may be attributed to the dynamical 

perturbation of the S1 pocket, which weakens the H-bond between Glu166 and the γ-lactam 

nitrogen in the P1 position. The MD data suggests that Phe140 plays a critical role here, 

as its interaction with the N-terminus* is completely abolished, which may drive the 

conformational change of the oxyanion loop. The perturbation to Phe140 may also explain 

the weakened stacking interaction with His163 and the nonnative H-bond formation with 

Tyr172. The destabilization of the interaction between Glu166 and the N-terminus* may be 

a major contributor to the weakened interaction with the γ-lactam nitrogen of nirmatrelvir 

at the P1 position. This finding also suggests that optimization of the γ-lactam moiety may 

offer a route to improve the antiviral potency.

The recent explosion of COVID-19 cases in China and wide-spread use of nirmatrelvir 

therapy in the US raise the odds of resistance mutations. Our work demonstrates an 

integrative approach which is generally applicable to characterizing mutation effects on 

protein dynamics and ligand binding. The MD simulations with the AI-assisted analysis can 

detect subtle changes in the conformational dynamics, while Rosetta empirical calculations 

and FEP simulations can predict the binding affinity changes. Together with biochemical 

experiments they provide an important tool for the active surveillance of continually 

emerging SARS-CoV-2 Mpro mutations. The computational predictions and experimental 

verification may be iteratively applied to optimize antiviral inhibitors. Therefore, the current 

work has implications in both surveillance and drug discovery, adding another robust tool for 

the future pandemic response.

Computational methods and protocols

Structure preparation for CpHMD and fixed-charge MD simulations.

The Modeller software11 was used to generate an initial structural model of the H172Y 

mutant of SARS-CoV-2 Mpro, with the X-ray crystal structure of the wild-type (WT) Mpro 

in complex with nirmatrelvir (PDB id 7vh8)5 as a template. Note, this structure (PDB id 

7vh8)5 captured both the covalent and the reversible, noncovalent binding modes, and the 

latter was used. Next, the WT and H172Y Mpro were prepared for MD simulations using 

the LEAP utility of Amber17, with the termini left free. The protein was represented by the 

Amber ff14SB force field29 and water molecules by the TIP3P model30.

Implicit-solvent continuous constant pH molecular dynamics (CpHMD) titration 
simulations.

The protonation states of the mutant H172Y Mpro were determined using the GPU-

accelerated GBNeck2-CpHMD method13 implemented as a patch to the Amber20 

package17. The asynchronous pH replica exchange sampling protocol14 was used to 

accelerate convergence of both protonation and conformational sampling. The preparation of 

dummy hydrogen, equilibration, and production steps are identical to the previous CpHMD 

simulations of the WT Mpro15 and are also explained in a recent tutorial31. In the production 

stage, 9 replicas were used over pH range 5 to 9 with an interval of 0.5 pH unit. Each replica 
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was simulated at 300 K with an ionic strength of 0.15 M and an effectively infinite cutoff 

(999 Å) for nonbonded interactions. The SHAKE algorithm32 was used to constrain bonds 

involving hydrogens to allow for a 2-fs time step. Each replica was run for 30 ns, resulting 

in an aggregate sampling time of 270 ns. All sidechains of Asp, Glu, His, Cys, and Lys were 

allowed to titrate, and the respective model pKa’s are 3.8, 4.2, 6.5, 8.5, and 10.4. For pKa 

calculations, data from the first 20 ns per replica was discarded.

Fixed-charge molecular dynamics simulations.

The truncated octahedron water box was used to solvate the protein, with a distance 

of at least 11 Å between the protein heavy atoms and the water oxygen atoms at the 

edges of the box. Sodium and chloride ions were added to neutralize the system and 

create an ionic strength of 150 mM. For the nirmatrelvir-bound Mpro simulations, the 

reversible noncovalent binding mode in the X-ray structure (PDB id 7vh8)5 was used. 

The ligand parameters were generated using the general Amber force field (GAFF2) with 

partial charged derived using the AM1 BCC method33.34 All simulations were carried out 

using the Amber20 package17. First, energy minimization with a harmonic restraint of 100 

kcal/mol/Å2 on the protein heavy atoms was performed for 10000 steps using the steepest 

descent algorithm followed by 10000 steps using the conjugate gradient algorithm. Next, 

the system was heated from 100 K to 300 K using the same harmonic restraint in the 

canonical ensemble by 1 ns. Five equilibration stages using harmonic forces of 10, 5, 2, 

1, and 0.1 kcal/mol/Å2 were then performed for 50 ns in the NPT ensemble. The pressure 

was maintained at 1 atm using the Berendsen barostat with a relaxation time of 0.1 ps, and 

the temperature was maintained at 300 K using the Langevin thermostat with a collision 

frequency of 1.0 ps−1.17 The particle-mesh Ewald35 method was used to treat the long-range 

electrostatics with a grid spacing of 1 Å. A cutoff of 8 Å was used for van der Waals 

interactions as recommended in the Amber20 manual17. SHAKE was used to increase the 

time step to 2 fs. Finally, the production simulations were performed for 2 μs for both the 

ligand-free and nirmatrelvir-bound WT and H172Y Mpros. A summary of the simulations is 

given in Table S2.

Trajectory analysis using artificial neural network.

We applied DiffNets26, an artificial neural network with a split-autoencoder architecture for 

detecting structural differences between the MD trajectories of protein variants. DiffNets26 

follows the autoencoder architecture: an encoder collapses the high dimensional input into 

a (low dimensional) latent space, then a decoder reconstructs the points in latent space back 

to the original input (Fig. 5). Two additional functions are added. First, the user labels 

trajectories either 0 or 1, based on a binary quantity (activity, mutation, etc.); the latent 

space is then used by a classifier in order to predict the input label. This classifier is trained 

alongside the encoding and decoding layers and the predicted label is utilized in the loss 

function in order to separate the labels on the latent space. Second, the atomic coordinates 

are separated based on their proximity to the mutation site and fed into separate encoding 

layers. The resulting latent variables are then concatenated to form the full latent space used 

by the decoder.
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Two separate DiffNets were built on either the free or the ligand-bound WT and H172Y 

fixed-charge trajectories (Table S2). First, the trajectories of WT (two) and H172Y (three) 

were strided every 1 ns to generate frames for each protein (2,000 ×3 for the free, 2,000×2 

for the ligand-bound state) followed by the extraction and alignment of the coordinates of 

the N, C, CA, and CB atoms (2398 total). After the mean was subtracted from each frame 

and the trajectory was whitened, the frames were used to train a split-autoencoder, where the 

atoms within 10 Å of any atom of H/Y172 (approx. 700 atoms) were fed to a supervised 

encoder while the rest of the protein was fed to a second unsupervised encoder. For the 

supervised autoencoder, a classification task (label 0 for WT and 1 for H172Y mutation) was 

added to the latent space. 90% of frames were used for training, while 10% were reserved 

for testing. Both encoders encode the positions of the input frame into a latent space that 

is joined to from a vector of 50 components. This latent space is then clustered into 200 

clusters using a k-centers/k-mediods hybrid algorithm, and the centroid of each cluster is 

decoded to produce a reconstructed representative frame. These frames are then used to 

calculate pairwise distances between CA atoms within 15 Å of either mutation site. The 

correlation between each distance and the predicted label of the frame was calculated, and 

the top 10 most correlated distances (with R2 values ranging 0.93-0.85) were designated 

significant distances (Table S3) and visualized using PyMOL36. The significance of these 

distances was verified by plotting and comparing the distributions of the real distances from 

the trajectory frames of the WT and H172Y Mpros. Further details of the protocol are given 

in Ref26. The expectation maximization algorithm which adjusts target labels during training 

was turned off, as it is not relevant for our task of interest which is to use latent space to 

recognize structural features related to the classification labels (WT vs. mutant).

Empirical calculations of protein stability changes.

The changes of the folding free energies ΔGfold = −ΔGstability) of the apo Mpro dimer and 

monomers upon mutation was calculated using the ddg_monomer application20 within the 

Rosetta software suite. In this method, an ensemble of structure models of the mutant was 

generated from the input WT structure (PDB id 7vh8, with nirmatrelvir removed)5. The 

change in the folding free energy due to mutation (ΔΔGfold) was calculated as the difference 

in the Rosetta energies between the WT and mutant structures. A positive value indicates 

a decreased stability from the mutation. The high-resolution protocol (with both backbone 

and sidechain relaxation) was followed20. First, Rosetta’s standard side-chain optimization 

module was used to optimize the input WT structure (PDB 7vh85); then three sequential 

minimization calculations were performed where the Lenard-Jones potential was scaled by 

0.1, 0.33, and 1.0 respectively. Distance restraints on Calpha atoms were applied to prevent 

the backbone from deviating from the initial structure. This process was repeated 50 times 

for both the WT and (generated) H172Y Mpro dimer structures, then the average score for 

each system was calculated using the REF2015 energy function37. This calculation was also 

performed using monomeric Mpro, where the second chain of 7vh8 was removed.

Calculation of ligand binding free energy changes using free energy perturbation (FEP).

The alchemical FEP method21,38 was used to calculate change in the noncovalent binding 

free energy going from the WT to the H172Y mutant Mpro: ΔΔGbind = ΔGbind(Mutant) − 

ΔGbind(WT), which according to the thermodynamic cycle (Fig. 4) can be calculated from 
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the difference in the mutation free energies: ΔΔGbind = ΔGmutation(holo) − ΔGmutation(apo). 

The last two terms can be calculated via FEP as the free energies of transforming His172 to 

Tyr172 in the ligand-bound and ligand-free forms. Note, the binding free energy difference 

is related to the ratio of the Kd values, ΔΔGbind = −RTln(Kd,Mut/Kd,WT).

The FEP simulations were performed using NAMD222-24. The X-ray structure of WT Mpro 

in a noncovalent complex with nirmatrelvir (PDB id 7vh8, the noncovalent binding mode)5 

was used to create a model H172Y mutant as in the fixed-charge simulations. The proteins 

were represented by the CHARMM36m force field39,40, and the noncovalently bound 

nirmatrelvir was represented by the CGenFF force field obtained through the Paramchem 

server41,42. These force fields were adopted as they were used in the validation studies of 

the FEP implementation22-24 in NAMD2. To allow an integration timestep of 2 fs, all bonds 

and angles involving hydrogen atoms were constrained using the SHAKE algorithm32. The 

temperature was maintained at 310 K by Langevin dynamics with a damping coefficient γ 
of 1 ps−1, and the pressure was controlled at 1 atm by the Nosé-Hoover Langevin piston 

method43,44. The van der Waals interactions were smoothly switched off from 10 to 12 Å 

using a switching function. The particle mesh Ewald (PME) method35 was used to calculate 

long-range electrostatic energies with a sixth-order interpolation and a grid spacing of 1 Å. 

Each starting structure (WT or mutant Mpro in complex with nirmatrelvir) was equilibrated 

for a total of 52 ns whereby the protein and ligand were restrained in the initial 2 ns 

simulation (0.25 ns with heavy atom restraint at 2.5 kcal/mol Å2, 0.25 ns with heavy atoms 

of the protein and ligand restrained at 1.25 kcal/mol Å2, 0.5 ns with backbone atoms of 

protein and heavy atoms of the ligand restrained at 1.25 kcal/mol Å2, and 1 ns with Cα 
atoms of the protein and heavy atoms of the ligand restrained at 1.25 kcal/mol Å2). The 

equilibrated structure was used for the FEP simulations. The starting structures for the apo 

FEP simulations were generated by deleting the ligand from the 50-ns equilibrated holo 

structures. In total, there were 8 simulation sets: 2 holo wild type, 2 holo mutant, 2 apo wild 

type, and 2 apo mutant. The hybrid H/Y172 complexes, in which the mutated residue 172 

comprising the imidazole and phenol rings representing as the appearing or disappearing 

particles, were modeled using VMD45. The progress of the alchemical transformation was 

described by the coupling parameter λ, which was gradually scaled from 0 to 1 for the 

forward (e.g., His to Tyr or Tyr to His) and from 1 to 0 for the backward transformation 

(e.g., Tyr to His or His to Tyr). In each simulation set, the backward transformation was 

performed consecutively from the forward transformation. A transformation simulation 

lasted 12 ns, comprising 20 intermediate λ states/windows. The sampling of each window 

lasted 0.6 ns, with the last 0.5 ns used for ensemble averaging. The aggregate simulation 

time was 192 ns. The electrostatics interactions of the disappearing particles were linearly 

decoupled from the system from λ = 0 to λ = 0.5, while those of the appearing particles 

were linearly coupled from λ = 0.5 to λ = 1. For the van der Waals interactions, a soft-core 

potential was also applied to ensure a gradual transformation. The disappearing particles 

were fully coupled at λ = 0 and fully decoupled at λ = 1, while the appearing particles were 

fully decoupled at λ = 0 and fully coupled at λ = 1. The ParseFEP toolkit46, implemented in 

VMD was used to test convergence and calculate the transformation free energies. The latter 

was estimated using the Bennett acceptance ratio (BAR) method47,48.
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Empirical calculation of ligand binding free energy changes with Rosetta.

The change in the nirmatrelvir binding free energy due to the H172Y mutation was 

also studied using the flex ddG protocol25 in the Rosetta modeling software (version 

2017.52.59948). Although designed for the prediction of changes in protein-protein binding 

affinities upon mutations, a recent benchmark study49 found that the flex ddG protocol is 

able to quantitatively predict changes in protein-ligand binding affinities upon mutations. 

The flex ddG protocol calculates the binding energies using the Rosetta energy function37 

and the “backrub” protocol50, which performs Monte-Carlo trials to sample local sidechain 

and backbone conformational changes near the mutation site. The calculations for the 

forward mutations, ΔGWT→Mut(apo) and ΔGWT→Mut(holo), were based on the X-ray 

structure of the WT Mpro dimer (PDB id 7vh8)5, while the calculations for the backward 

mutations, ΔΔGMut→WT(apo) and ΔΔGMut→WT(holo), were based on the computationally 

mutated structures (using Modeller11 and the PDB 7vh85). Parameters for nirmatrelvir were 

obtained using the molfile_to_params.py script in Rosetta25. The protocol was repeated 40 

times, with 35,000 backrub trials for each run. The final trial of each run was scored using 

the Rosetta Energy function 2015 (REF2015)37. The average energy score for each model 

(WT or mutant, apo or holo) was calculated and the change in binding free energy upon 

mutation was estimated using the thermodynamic cycle (Fig. 4) as ΔΔGbind = [EMut(holo) − 

EWT(holo)] − [EMut(apo) − EWT(apo)], where E represents the energy score.

Protein production and characterization

Cloning of SARS-CoV-2 Mpro H172Y.

The H172Y mutation was inserted by overlap extension-PCR reaction. A pair 

of special primers, H172Y_forward (ACTGGTGTATATGCCGGGACGGACT; the 

underlined sequence corresponds to the mutated H172Y codon) and H172Y_reverse 

(AGTCCGTCCCGGCATATACACCAGT) were designed. The first PCR reaction was 

performed to generate two splice fragments containing a 5′ overhang. The WT Mpro coding 

gene with BamHI and XhoI sites was amplified from the Mpro construct as described 

previously51, and was used as template. The second PCR joined these two spliced fragments 

to generate the PCR product encoding the H172Y mutated Mpro including the cleavage 

sites of the restriction enzymes for cloning into the vector PGEX-6p-1 (GE Healthcare). 

The amplified PCR product was digested with BamHI and XhoI and ligated into the vector 

PGEX-6p-1 digested with the same restriction enzymes. The gene sequence of the Mpro was 

verified by sequencing (MWG Eurofins).

The sequence-verified SARS-CoV-2 Mpro construct was transformed into E. coli strain BL2 

(DE3) (Novagen). Transformed clones were pre-cultured at 37°C in 50 mL 1 x YT medium 

with ampicillin (100 μg/mL) for 3 h, and the incubated culture was inoculated into 4 L 

1 x YT medium supplied with 100 μg/mL ampicillin. 0.5 mM isopropyl-D-thiogalactoside 

(IPTG) was added for induction of the overexpression of the Mpro gene at 37°C when the 

OD600 reached 0.8. After 5 h, cells were harvested by centrifugation at 9954 x g, 4°C, for 

15 min. The pellets were resuspended in 30 mL buffer A (20 mM Tris, 150 mM NaCl, 

pH 7.8; pH of all buffers was adjusted at room temperature) and then lysed by sonication 

on ice. The lysate was clarified by ultracentrifugation at 146,682 x g at 4°C for 1 h. The 
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supernatant was loaded onto a HisTrap FF column (GE Healthcare) equilibrated with buffer 

A. The HisTrap FF column was washed with 150 mL buffer A to remove unspecifically 

bound proteins, followed by elution using buffer B (20 mM Tris, 150 mM NaCl, 500 mM 

imidazole, pH 7.8) with a linear gradient of imidazole ranging from 0 mM to 500 mM, 

20 column volumes. The fractions containing target protein were pooled and mixed with 

PreScission protease at a molar ratio of 5:1 and dialyzed into buffer C (20 mM Tris, 150 mM 

NaCl, 1 mM DTT, pH 7.8) at 4°C overnight, resulting in the target protein with authentic 

N- and C-termini. The PreScission-treated Mpro was applied to connected GSTtrap FF 

(GE Healthcare) and nickel columns to remove the GST-tagged PreScission protease, the 

His-tag, and protein with uncleaved His-tag. The His-tag-free Mpro in the flow-through was 

concentrated by using Amicon Ultra 15 centrifugal filters (10 kD, Merck Millipore) at 2773 

x g, and 4°C. The protein was loaded onto a HiLoadTM 16/600 SuperdexTM 200pg column 

(GE Healthcare) equilibrated with buffer A. Fractions eluted from the Superdex200 column 

containing the target protein with high purity were pooled and subjected to buffer exchange 

(20 mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM DTT, pH 7.4).

Determination of protein stability of SARS-CoV-2 MproWT and H172Y by nano differential 
scanning fluorimetry (nanoDSF).

Thermal-shift assays of SARS-CoV-2 Mpro and its H172Y mutant were carried out 

using the nanoDSF method as implemented in the Prometheus NT.48 (NanoTemper 

Technologies). The nanoDSF method is based on the autofluorescence of tryptophan 

(and tyrosine) residues to monitor protein unfolding. As the temperature increases, the 

protein will unfold and the hydrophobic residues of the protein get exposed, the ratio of 

autofluorescence at wavelengths 350 nm and 330 nm will change. The first derivative of 

350/330 nm can be used to determine the melting temperature (Trmm). 30 μM of WT 

or mutant protein were diluted in a final volume of 15μL reaction buffer containing 20 

mM HEPES, 120 mM NaCl, 0.4 mM EDTA, 4 mM DTT, 20% glycerol, pH 7.0. Then 

the proteins were loaded onto Prometheus NT.48 nanoDSF Grade Standard Capillaries 

(PR-C002, NanoTemper Technologies), the fluorescence signal was recorded under a 

temperature gradient ranging from 25 to 90°C (incremental steps of 0.5°C min−1). The 

melting curve was drawn using GraphPad Prism 7.0 software; the values of the first 

derivative of 350/330 nm were displayed on the Y axis. The melting temperature (Tm) 

was calculated as the mid-point temperature of the melting curve using the ThermControl 

software (NanoTemper Technologies).

Enzyme Assays.

A fluorescent substrate harboring the cleavage site (indicated by ↓) of SARS CoV-2 Mpro 

(Dabcyl-KTSAVLQ↓SGFRKM-E(Edans)-NH2; GL Biochem) and buffer composed of 20 

mM HEPES, 120 mM NaCl, 0.4 mM EDTA, 4 mM DTT, 20% glycerol, 0.5% DMSO, pH 

7.0 was used for the inhibition assay. In the fluorescence resonance energy transfer (FRET)-

based cleavage assay, the fluorescence signal of the Edans generated due to the cleavage 

of the substrate by the Mpro was monitored at an emission wavelength of 460 nm with 

excitation at 360 nm, using a Flx800 fluorescence spectrophotometer (BioTek). Initially, 

10 μL of SARS-CoV-2 Mpro WT at the final concentration of 50 nM, or SARS-CoV-2 

Mpro H172Y at 400 nM, was pipetted into a 96-well plate containing pre-pipetted 60 μL of 
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reaction buffer. Subsequently, the reaction was initiated by addition of 30 μL of the substrate 

dissolved in the reaction buffer to 100 μL final volume, at different final concentrations 

varied from 10 to 320 μM (10, 20, 40, 80, 120, 160, 240, 320 μM). A calibration curve was 

generated by measurement of varied concentrations (from 0.04 to 6250 nM) of free Edans, 

with gain 80 in a final volume of 100 μL reaction buffer. Initial velocities were determined 

from the linear section of the curve, and the corresponding relative fluorescence units per 

unit of time (ΔRFU/s) was converted to the amount of the cleaved substrate per unit of time 

(μM/s) by fitting to the calibration curve of free Edans.

Inner-filter effect corrections were applied for the kinetic measurements according to Liu 

et al.51. The fluorescence of the substrate (in RFU) dissolved in 100 μL final volume of 

reaction buffer at the corresponding concentrations used for the kinetic assay was measured 

and defined as f(substrate). Afterwards, 1 μL free Edans was added (final concentration: 

1 μM) to each well, and the fluorescence reading was taken as f(substrate + Edans). 

Simultaneously, a reference value (in RFU) was measured with the same concentration 

of free Edans in 100 μL of reaction buffer, giving f(reference). The inner-filter correction at 

each substrate concentration was calculated according to the function: corr% = (f (substrate 

+ Edans) − f (substrate)) / f (reference) x 100%. The corrected initial velocity of the reaction 

was calculated as V = V0 / (corr%), where V0 represents the initial velocity of each reaction. 

As saturation could be achieved, kinetic constants (Vmax and Km) were derived by fitting 

the corrected initial velocity to the Michaelis-Menten equation, V = Vmax × [S]/(Km + 

[S]), using GraphPad Prism 7.0 software. kcat/Km was calculated according to the equation, 

kcat/Km = Vmax/([E] × Km). Triplicate experiments were performed for each data point, and 

the value was presented as mean ± standard deviation (SD).

Determination of the IC50 of nirmatrelvir.

The same substrate was employed as for the determination of the enzyme kinetics. The 

SPARK Multimode Microplate Reader (TECAN) was used to monitor the signal at same 

emission wavelength and excitation wavelength. The reaction buffer was 20 mM HEPES, 

120 mM NaCl, 0.4 mM EDTA, 4 mM DTT, 20% glycerol, pH 7.0, to achieve a final 

concentration of 2% DMSO which is same as in the enzyme kinetics measurement. Stock 

solutions of the compounds were prepared with 100% DMSO. For the determination of the 

IC50, 50 nM of SARS-CoV-2 Mpro or 400 nM of SARS-CoV-2 Mpro H172Y was incubated 

with nirmatrelvir at various concentrations from 0 to 100 μM in reaction buffer at 37°C for 

10 min. Afterwards, the FRET substrate at a final concentration of 10 μM was added to 

each well, at a final total volume of 100 μL, to initiate the reaction. The GraphPad Prism 

7.0 software (GraphPad) was used for the calculation of the IC50 values. Measurements 

of inhibitory activity of nirmatrelvir were performed in triplicate and are presented as the 

mean±SD.
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Figure 1: Structure of the WT SARS-CoV-2 Mpro dimer.
Cartoon representation of the Mpro dimer bound to nirmatrelvir (PDB ID 7vh85) with 

protomer A in tan and B (front of the image) in grey. The three domains (I, II, and III) are 

labeled for each protomer. The S1 pocket residues (Phe140, His163, Glu166, and His172) 

of protomer A (highlighted in red and shown as sticks) interacts with Ser1* from protomer 

B (shown in the van der Waals sphere representation). Ser1* forms either a hydrogen bond 

or salt bridge with Phe140, Glu166, and His173, while His163 forms aromatic stacking with 

Phe140. The inhibitor nirmatrelvir is shown in green.
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Figure 2: N-terminus interactions with the S1 pocket are destabilized in the simulations of the 
free H172Y Mpro.
a. Visualization of the interactions between the S1 pocket and N-terminus* (Ser1*) of the 

opposite protomer in the WT Mpro. Phe140, His163, Glu166, His172, and Ser1* are shown 

as sticks. b,c,d. Probability distributions of distances between Phe140 (b), Glu166 (c), or 

His/Tyr172 (d) and Ser1* from the WT and H172Y Mpro simulations. For each Mpro, 

all three trajectories were used with the first 1μs of each trajectory discarded. In b and c, 

distance was calculated from the N-terminal nitrogen of Ser1* to the backbone carbonyl 

oxygen of Phe140 (b) or the nearest carboxylate oxygen of Glu166 (c). In d, distance was 

calculated from the backbone carbonyl oxygen of Ser1* to the nearest imidazole nitrogen of 

His172 (WT) or from the N-terminal nitrogen of Ser1* to the hydroxyl oxygen of Tyr172 

(H172Y). Interactions of S1 pocket(A) with N-terminus(B) are shown as solid lines and 

those of S1 pocket(B) with N-terminus(A) are shown as dashed lines. Similar disruption/

destabilization was observed in the simulations of the nirmatrelvir-bound Mpro (Fig. S10 

and S11).
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Figure 3: 
Changes in the folding free energy ΔΔGfold(WT → H172Y) calculated using the Rosetta 

ddG_monomer application20. The total ΔΔGfold for the dimer (solid) and sum of monomers 

(striped) as well as the individual contributions are shown. Positive values indicate 

destabilization upon mutation.
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Figure 4: 
Top. Thermodynamic cycle used to calculate the difference in the noncovalent binding 

free energy between the mutant and WT Mpros: ΔGbind(Mutant) − ΔGbind(WT) = 

ΔGmutation(holo) − ΔGmutation(apo). Bottom. FEP and empirical calculations of the change 

in nirmatrelvir binding free energy of Mpro upon the H172Y mutation. For FEP 

calculations, transformations were performed on each protomer separately, whereas Rosetta 

calculations transformed H172 in both protomers simultaneously. ΔΔGbind calculated from 

the transformation from mutant to WT is less accurate, as it was initiated from the modeled 

mutant structure. Each calculation was repeated a number of times (see Table S2), the mean 

and standard errors are reported.
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Figure 5: 
Artificial neural network detects mutation-induced conformational changes to the oxyanion 

loop. a. Schematic architecture of the autoencoder DiffNets26. which was used to detect 

differences between protein structures from two trajectories. b. Classification (WT vs. 

H172Y) of the free (dotted) and ligand-bound (solid) trajectories. The three free and two 

ligand-bound WT (blue) or H172Y (brown) trajectories were aggregated. c. Zoomed-in view 

of the oxyanion loop (red, residues 138–145; among them 143–145 form the oxyanion 

hole) and the three residues (licorice) involved in the important distances (Gly138-Ser144 

and Gly138-Thr135) that distinguish between the WT and H172Y trajectories (i.e., highly 

correlated with the predicted labels). The oxyanion hole is comprised of Gly143, Ser144, 

and Cys145. d. Probability distributions of the Cα distances from Gly138 to Ser144 (left) 

and Thr135 (right) from the free (dotted) or ligand-bound (solid) WT (blue) and H172Y 

(brown) Mpro trajectories. The aggregate trajectories including both protomers were used. 

Data for individual trajectories and protomers as well as other distances involving Gly138 

are given in Figures S14 and S15.
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Figure 6: H172Y Mpro has reduced thermal stability, enzyme activity, and susceptibility to 
nirmatrelvir as compared to the WT.
a. Melting curves of the WT (red) and H172Y (blue) Mpros based on the temperature profile 

of the first derivative of the ratio of the autofluorescence at 350 and 330 nm. b. Reaction rate 

vs. substrate concentration for the WT (red) and H172Y (blue) Mpros using the FRET assay. 

c. Inhibition rate of nirmatrelvir vs. its concentration (μM) for the WT (red) and H172Y 

(blue) Mpros. d. Summary of the kinetic constants, melting temperatures of the Mpros, and 

the IC50 values of nirmatrelvir.
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