Skip to main content
. 2023 May 23;8(22):19587–19602. doi: 10.1021/acsomega.3c01085

Table 2. Selected Geometric Bond Lengths, Bond Angles, and Dihedral Angles of the Optimized 9a–h Using B3LYP/6-311G**.

compound bond lengths (Å) bond angles dihedral angles
9a C18–O19 1.407 C17–O19–C18 124.412 C13–C14–C18–O20 0.000
C18–O20 1.192 O19–C18–O20 116.604 N11–C13–C14–C15 0.000
C18–C14 1.484 O19–C18–C14 115.255 N11–C13–C14–C18 0.000
C13–C14 1.465 C13–C14–C18 119.026 S12–C13–C14–C18 180.000
C4–S12 1.748 S12–C13–C14 119.697 S12–C13–C14–C15 0.000
C13–N11 1.290 N11–C13–C14 125.967 C4–S12–C13–C14 180.000
C3–C4 1.414 N11–C13–S12 38.982 C6–C4–S12–C13 180.000
C2–C3 1.401 C3–N11–C13 112.385 C2–C3–N11–C13 180.000
9b C18–O19 1.408 C17–O19–C18 124.351 C13–C14–C18–O20 0.000
C18–O20 1.191 O19–C18–O20 121.330 N11–C13–C14–C15 180.000
C18–C14 1.485 O19–C18–C14 115.216 N11–C13–C14–C18 0.000
C13–C14 1.466 C13–C14–C18 118.955 S12–C13–C14–C18 180.000
C4–S12 1.748 S12–C13–C14 119.763 S12–C13–C14–C15 0.000
C13–N11 1.290 N11–C13–C14 125.829 C4–S12–C13–C14 180.000
C3–C4 1.414 N11–C13–S12 114.409 C6–C4–S12–C13 180.000
C2–C3 1.401 C3–N11–C13 112.339 C2–C3–N11–C13 180.000
9c C18–O19 1.409 C17–O19–C18 124.366 C13–C14–C18–O20 0.000
C18–O20 1.192 O19–C18–O20 116.572 N11–C13–C14–C15 180.000
C18–C14 1.484 O19–C18–C14 115.207 N11–C13–C14–C18 0.000
C13–C14 1.466 C13–C14–C18 118.991 S12–C13–C14–C18 180.000
C4–S12 1.747 S12–C13–C14 119.731 S12–C13–C14–C15 0.000
C13–N11 1.290 N11–C13–C14 125.852 C4–S12–C13–C14 180.000
C3–C4 1.414 N11–C13–S12 114.417 C6–C4–S12–C13 180.000
C2–C3 1.4015 C3–N11–C13 112.335 C2–C3–N11–C13 180.000
9d C18–O19 1.405 C17–O19–C18 124.329 C13–C14–C18–O20 0.000
C18–O20 1.193 O19–C18–O20 116.664 N11–C13–C14–C15 180.000
C18–C14 1.484 O19–C18–C14 115.265 N11–C13–C14–C18 0.000
C13–C14 1.465 C13–C14–C18 119.030 S12–C13–C14–C18 180.000
C4–S12 1.748 S12–C13–C14 119.691 S12–C13–C14–C15 0.000
C13–N11 1.290 N11–C13–C14 125.993 C4–S12–C13–C14 180.000
C3–C4 1.414 N11–C13–S12 114.316 C6–C4–S12–C13 180.000
C2–C3 1.401 C3–N11–C13 112.403 C2–C3–N11–C13 180.000
9e C18–O19 1.417 C17–O19–C18 124.476 C13–C14–C18–O20 0.000
C18–O20 1.189 O19–C18–O20 116.236 N11–C13–C14–C15 180
C18–C14 1.484 O19–C18–C14 115.154 N11–C13–C14–C18 0.000
C13–C14 1.4659 C13–C14–C18 118.882 S12–C13–C14–C18 180
C4–S12 1.747 S12–C13–C14 119.863 S12–C13–C14–C15 0.000
C13–N11 1.291 N11–C13–C14 125.602 C4–S12–C13–C14 180.000
C3–C4 1.415 N11–C13–S12 114.535 C6–C4–S12–C13 180.000
C2–C3 1.402 C3–N11–C13 112.257 C2–C3–N11–C13 180.000
9f C18–O19 1.412 C17–O19–C18 124.330 C13–C14–C18–O20 2.813
C18–O20 1.195 O19–C18–O20 116.547 N11–C13–C14–C15 ––148.804
C18–C14 1.473 O19–C18–C14 115.271 N11–C13–C14–C18 31.707
C13–C14 1.464 C13–C14–C18 118.576 S12–C13–C14–C18 –148.749
C4–S12 1.749 S12–C13–C14 119.403 S12–C13–C14–C15 30.740
C13–N11 1.290 N11–C13–C14 125.862 C4–S12–C13–C14 ––178.502
C3–C4 1.415 N11–C13–S12 114.734 C6–C4–S12–C13 –179.552
C2–C3 1.401 C3–N11–C13 112.047 C2–C3–N11–C13 157.680
9g C18–O19 1.414 C17–O19–C18 124.404 C13–C14–C18–O20 0.000
C18–O20 1.189 O19–C18–O20 116.426 N11–C13–C14–C15 180.000
C18–C14 1.483 O19–C18–C14 115.021 N11–C13–C14–C18 0.000
C13–C14 1.466 C13–C14–C18 118.934 S12–C13–C14–C18 180.000
C4–S12 1.747 S12–C13–C14 119.856 S12–C13–C14–C15 0.000
C13–N11 1.290 N11–C13–C14 125.670 C4–S12–C13–C14 180.000
C3–C4 1.415 N11–C13–S12 114.475 C6–C4–S12–C13 180.000
C2––C3 1.402 C3–N11–C13 112.307 C2–C3–N11–C13 180.000
9h C18–O19 1.412 C17––O19–C18 124.530 C13–C14–C18–O20 0.000
C18–O20 1.190 O19–C18–O20 116.481 N11–C13–C14–C15 180.000
C18–C14 1.484 O19–C18–C14 115.078 N11–C13–C14–C18 0.000
C13–C14 1.465 C13–C14–C18 118.966 S12–C13–C14–C18 180.000
C4–S12 1.748 S12–C13–C14 119.820 S12–C13–C14–C15 0.000
C13–N11 1.290 N11–C13–C14 125.716 C4–S12–C13–C14 180.000
C3–C4 1.414 N11–C13–S12 114.463 C6–C4–S12–C13 180.000
C2–C3 1.402 C3–N11–C13 112.308 C2–C3–N11–C13 180.000