Skip to main content
. Author manuscript; available in PMC: 2023 Jun 2.
Published in final edited form as: Med Image Anal. 2021 Apr 5;71:102048. doi: 10.1016/j.media.2021.102048

TABLE II.

Quantitative Result of Empirical Validation

Method Metric Data-Set
DIC-C2DH-HeLa Fluo-N2DH-
GOWT1
Fluo-N2DH-SIM+ PhC-C2DH-U373
Original(CPU)
[16], [36]
Time Cost (s/frame) 25.58 115.32 88.74 39.76
GPU Memory (GB) 5.92 5.92 5.92 5.92
GPU_H
[21]
Time Cost (s/frame) 9.83 37.54 18.60 10.81
GPU Memory (GB) 6.16 6.16 6.16 6.16
GPU_P
[22]
Time Cost (s/frame) - - - -
GPU Memory (GB) overflow overflow overflow overflow
Ours Time Cost (s/frame) 2.74 11.24 11.72 5.64
GPU Memory (GB) 8.38 7.24 6.95 6.82
*

5.92GB is the minimal GPU memory consumption for the deep learning based feature extraction.

*

Due to the GPU overflow, the time-cost is not available(−)