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Abstract
Background.  Gliomas are the most common type of central nervous system tumors in children, and the combi-
nation of histological and molecular classification is essential for prognosis and treatment. Here, we proposed a 
newly developed microstructural mapping technique based on diffusion-time-dependent diffusion MRI td-dMRI 
theory to quantify tumor cell properties and tested these microstructural markers in identifying histological grade 
and molecular alteration of H3K27.
Methods. This prospective study included 69 pediatric glioma patients aged 6.14 ± 3.25 years old, who underwent 
td-dMRI with pulsed and oscillating gradient diffusion sequences on a 3T scanner. dMRI data acquired at varying 
tds were fitted into a 2-compartment microstructural model to obtain intracellular fraction (fin), cell diameter, cel-
lularity, etc. Apparent diffusivity coefficient (ADC) and T1 and T2 relaxation times were also obtained. H&E stained 
histology was used to validate the estimated microstructural properties.
Results.  For histological classification of low- and high-grade pediatric gliomas, the cellularity index achieved the 
highest area under the receiver-operating-curve (AUC) of 0.911 among all markers, while ADC, T1, and T2 showed 
AUCs of 0.906, 0.885, and 0.886. For molecular classification of H3K27-altered glioma in 39 midline glioma patients, 
cell diameter showed the highest discriminant power with an AUC of 0.918, and the combination of cell diameter 
and extracellular diffusivity further improved AUC to 0.929. The td-dMRI estimated fin correlated well with the his-
tological ground truth with r = 0.7.
Conclusions. The td-dMRI-based microstructural properties outperformed routine MRI measurements in diagnosing 
pediatric gliomas, and the different microstructural features showed complementary strength in histological and 
molecular classifications.
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Key Points

•	 We proposed a new microstructural imaging technique to quantify tumor 
pathology.

•	 It classified low- and high-grade pediatric gliomas using cellularity index 
(AUC = 0.91), and H3K27-altered and wildtype using cell diameter (AUC = 0.92), 
outperforming conventional MRI.

Central nervous system (CNS) tumors are the most fre-
quent solid tumors in children, accounting for 21% of pedi-
atric cancers and representing a primary cause of mortality.1 
Survivors of pediatric CNS tumors are at high risk for late 
mortality and for developing life-long neurological and 
chronic diseases.2 Gliomas are the most common type of 
CNS tumors, accounting for 35% of CNS tumors diagnosed 
in children between birth and 19  years of age.1 Pediatric 
gliomas are typically classified into histologically low-grade 
glioma (LGG) accounts for the majority of pediatric glioma 
and ensures a favorable prognosis with more than 90% 
overall survival rate; and high-grade glioma (HGG) inflect 
about one-third of the population and has less than 10% 
long-term survival rate, despite the aggressive treatment 
regimens.3,4 Therefore, accurate histological classification 
is important for prognostic decisions and management 
strategy.

Among pediatric gliomas, midline glioma is a common 
type, and given the special location of midline glioma in 
the thalamus, brainstem, or spinal cord, it is often con-
sidered nonoperative and faces a very poor survival 
rate.5 In pediatric midline gliomas, the H3K27-altered pa-
tients suffered significantly shorter overall survival than 
wildtypes, regardless of histologic features.6 Therefore, 
H3K27-alteration has been defined as the most important 
molecular marker for midline glioma in the 2021 World 
Health Organization (WHO) classification of tumors of 
CNS7 and may provide a novel target for radiation and/or 
immunotherapy.8 Although H3K27-alteration can be iden-
tified from biopsy, the procedure remains very restricted 
due to the location in the middle deep structures of the 
brain, as well as the potential bias of biopsy due to the 

lack of spatial information in contrast to the molecular 
heterogeneity.9

In an effort to noninvasively identify the histological 
grade and molecular subtypes of pediatric gliomas before 
surgery, multiparametric MRI has been commonly used 
to assist in the diagnosis. Contrast-enhanced T1-weighted 
MRI is a radiological standard for tumor screening but 
the degree of enhancement does not always correlate 
with tumor grade. Diffusion MRI (dMRI) has been shown 
to outperform conventional MRI, eg, the apparent diffu-
sivity coefficients (ADC) provided good diagnostic power 
for differentiating HGG from LGG for both pediatric10 and 
adult11 types. Despite its sensitivity advantage, ADC is only 
a simple measure of restricted diffusivity that is affected 
by a number of pathological events, such as inflammation, 
cell proliferation, necrosis or apoptosis, and thus, could not 
offer specific microstructural information about tumor pa-
thology. Moreover, in an era of molecular diagnostics, the 
role of dMRI remains very limited. Two recent studies12,13 
reported no statistical difference in ADC between H3K27M-
mutant and wild-type midline glioma. An adult glioma 
study found a marginal ADC difference (P = .04) between 
H3K27M-mutant and wild-type groups.14

Recent advances in dMRI-based microstructural im-
aging provided an opportunity to characterize tumor pa-
thology in vivo. Particularly, besides the q-space dMRI 
approaches15–18 that target fiber/neurite microstructure, 
diffusion-time dependent dMRI td-dMRI has shown unique 
advantages in mapping the cellular microstructures by 
capturing the behavior of restriction diffusion at varying 
td, using a combination of specialized diffusion encoding 
schemes.19 The td-dependent diffusion behavior can be 

Importance of the Study

The current study targeted histological and molecular 
classifications of pediatric gliomas. In a cohort of 69 
pediatric glioma patients in this preliminary study, the 
proposed tumor microstructural markers obtained from 
diffusion-time-dependent diffusion MRI td-dMRI dem-
onstrated promising diagnostic power in differentiating 
low- versus high-grade glioma with an AUC of 0.911 
using the cellularity index, as well as H3K27-altered 
versus wildtype with an AUC of 0.918 based on the cell 
diameter measurement, outperforming the conventional 
apparent diffusion coefficient or T1/T2 relaxation time 
measurements.

Given that the combination of histological and mo-
lecular classification is essential for precise prognosis 
and optimal treatment plan in central nervous system 
(CNS) tumor patients, as pointed out by the WHO 2021 
guideline, we think the high diagnostic performance of 
td-dMRI based microstructural markers in both histo-
logical and molecular classification makes it potentially 
useful not only in pediatric gliomas but also in adult 
types of gliomas and other types of CNS tumors. The 
6 min protocol is easily translatable to routine clinical 
scans.
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utilized to build biophysical models for quantifying micro-
structural properties such as cell size, cell volume fraction, 
and transcytolemmal water exchange.20–23 The principle of 
td-dMRI is illustrated in Supplementary Figure S1. In ad-
dition to the validation studies in animal models of the 
tumor,24 technical feasibility of td-dMRI has been recently 
tested in head and neck tumors,25 breast cancer,21 prostate 
cancer grade,26 etc. td-dMRI based microstructural map-
ping is considered 1 step further toward achieving “virtual 
pathology,” 27 although the clinical value of this method is 
still under investigation.

Given the distinct histological signatures between LGG 
and HGG, eg, anaplastic astrocytoma and glioblastoma ex-
hibit greater cellularity and multiple mitotic figures com-
pared to low-grade astrocytoma,28 we expect that they are 
separable with td-dMRI. Moreover, the pathological fea-
tures of midline glioma with H3K27-alteration, eg, astro-
cytic morphology that is limited to neoplastic cells,29 may 
also allow us to identify the molecular alterations with td-
dMRI. Therefore, the aim of the present study is to inves-
tigate the clinical value of td-dMRI-based microstructural 
mapping for noninvasively differentiating the histological 
grade and molecular alteration of H3K27, both of which are 
essential in clinical decisions of pediatric glioma.

Material and Methods

Patient Cohort

Seventy-five pediatric patients were prospectively re-
cruited between November 2019 and March 2022. The 

study was approved by the hospital research ethics board. 
Written informed consent was obtained from the legal 
guardians of all participants. The inclusion criteria were as 
follows: (1) suspected of gliomas, (2) <18 years old, (3) no 
prior treatment related to gliomas, and (4) eligible for MRI. 
The exclusion criteria and participation flowchart are illus-
trated in Figure 1.

Data Acquisition

All scans were performed on a 3T scanner (Achieva, 
Phillips Healthcare, Best, The Netherlands) with a max-
imum gradient of 80 mT/m and slew rate of 200 mT/m/s, 
and a 24-channel head coil. td-dMRI was acquired using 
an in-house oscillating gradient spin-echo (OGSE) se-
quence with trapezoid cosine gradient30 and pulsed gra-
dient spin-echo (PGSE) sequence. Schematics of OGSE 
and PGSE sequences are illustrated in Supplementary 
Figure S2. OGSE data were acquired at 17 Hz (effective 
td = 14.7 ms, 1 cycle, b = 500/1000/1500 s/mm2), 33 Hz (ef-
fective td = 7.6  ms, 2 cycles, b = 500  s/mm2), and 50 Hz 
(effective td = 5  ms, 3 cycles, b = 350  s/mm2). PGSE was 
acquired with diffusion duration/separation = 60/82.3  ms 
at b-value of 500/1000/1500  s/mm2. The other acquisi-
tion parameters were kept the same between the two 
sequences: Echo time/repetition time = 168/3000 ms, field-
of-view = 180 × 180 mm, matrix size = 128 × 128, slice thick-
ness = 8  mm, 3 slices, 1 non-diffusion-weighted image 
(b0), 6 diffusion directions per b-value, and SENSE acceler-
ation factor = 2. The total scan time of the td-dMRI protocol 
was 6 min and 19s.

  

Children diagnosed with glioma between Nov 2019 and Mar 2022 
n = 75

Eligible pediatric glioma patients 
n = 69

Diffuse midline glioma patients
n = 39

Low histological grade 
n = 42

H3K27-wildtype
n = 19

H3K27-altered
n = 20

High histological grade 
n = 27

Histological classification

Excluded: (1) Wrong parameters (n = 2)
(2) Incomplete scan (n = 3)
(3) Poor image quality (n = 1)

Molecular classification

Figure 1.  The participant enrollment flowchart.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad003#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad003#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad003#supplementary-data
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Figure 1.  The participant enrollment flowchart.
  

Routine structural MRI included T1-weighted images be-
fore and after Gd-enhancement, T2-weighted, and FLAIR 
images. Quantitative T1 and T2 mapping were obtained 
using vendor-provided “MIX” sequence,31 which was ac-
quired using interleaved spin-echo and inversion-recovery 
sections at a single slice corresponding to the center slice 
of the td-dMRI scans. The imaging parameters are listed in 
Supplementary Table S1.

Image Analysis

To correct for the patient motion and eddy-current-induced 
image misalignment, we registered all the OGSE images 
to PGSE according to the b0 images or diffusion-weighted 
images at equivalent b-values in FSL (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki/FLIRT/). Registration quality was manu-
ally checked by a radiologist (Z.H. with 14 years of experi-
ence in pediatric radiology).

td-dMRI signals were fitted according to the IMPULSED 
(Imaging Microstructural Parameters Using Limited 
Spectrally Edited Diffusion) model,20 which is a 2-com-
partment model consisting of the intra- and extra-cellular 
components:

	
S = finSin + (1− fin)Sex� (1)

where S  is the measured td-dMRI signal, Sin and Sex are the 
intracellular and extracellular signals, respectively, and fin 
represents the volume fraction of the intracellular space. 
The analytic expression of Sin is defined for spheres32 
based on the diameter and intracellular diffusivity and is 
adapted for trapezoid OGSE waveform according to.21 
Sex = e−bDex considering that the extracellular signal is in-
dependent of td within the short td regime,20 where Dex  is 
the extracellular diffusivity.

Microstructural parameters including cell diameter d , 
fin, and Dex  were estimated from Eq. 1 using a nonlinear 
least squares algorithm in Matlab R2018a (Mathworks, 
Natick, MA) with a fixed intracellular diffusion coefficient 
at 1.0 µm2/ms. The fitting was repeated 100 times with ran-
domized initializations to avoid local minimums, under the 
following physiological constraints: 1< d  <60  µm, 0.01< 
fin <1, 0.5< Dex <3.5  µm2/ms. Cellularity was defined as 
fin/d*100 for simplicity.26 ADC maps were calculated at each 
td according to the log-linear fitting S/S0 = e-bD to obtain 
D0Hz (PGSE), D17Hz, D33Hz, and D50Hz. Fractional anisotropy 
(FA), axial diffusivity (AD), and radial diffusivity (RD) maps 
were also obtained based on diffusion tensor decompo-
sition using the PGSE data. The Matlab code in a graphic-
user interface format was deposited at https://github.com/
KuiyuanLiu/app_IMPULSED_Fitting.

Based on the MIX data, T1, T2, and proton density maps 
were obtained simultaneously by solving the interleaved 
spin-echo and inversion-recovery signal equations with 
ratios and nonlinear least squares algorithm.31

Histopathological Analysis

Tumor grading was determined according to the 2021 
WHO classification of CNS tumors.7 H3K27-alteration 

was determined by immunohistochemical staining using 
anti-histone H3 (mutated K27M, rabbit monoclonal, clone 
EPR18340, 1:100, Abcam, Cambridge, UK),29 performed on 
a Leica Biosystems BOND3 instrument. The positive status 
was defined as nuclear staining in >80% of tumor cells 
visualized in the absence of staining in tumor vascular ep-
ithelial cells (internal negative control). The primary anti-
bodies were incubated overnight at 4°C. All sections were 
counterstained with hematoxylin. All biopsy specimens 
and histopathological slides were interpreted by a ded-
icated pathologist (G.W.  with 26  years of experience in 
pathology).

High-definition (30×) hematoxylin and eosin (H&E)-
stained sections of suspected glioma tissues were 
obtained from 37 patients. The nuclei in each H&E section 
were segmented via a pre-trained Conditional Generative 
Adversarial Networks (cGAN)33 (code deposited at https://
github.com/zjuzzl/Prostate_MRI/blob/main/Histology.rar). 
The nuclei diameter dnuclei was calculated for each nucleus 
as dnuclei = 2

»
Anuclei

π , where, Anuclei was the area of the seg-
mented nuclei. Since dnuclei was obtained from the 2D H&E 
slices, we adjusted it to a 3D volume-weighted diameter as 

d ′
nuclei =

∑
n
d4
nulcei/

∑
n
d3
nulcei  where n represented the nuclei 

number. The pathology-based fin = 
Å∑

n
Anuclei/Atissue

ã3/2
, 

where, Atissue was the area of the whole tissue.

Statistical Analysis

The tumor region-of-interest (ROI) was manually delin-
eated to include both the enhancing and non-enhancing 
solid components of the tumors, excluding the peritumoral 
edema, intratumoral hemorrhage, necrosis, calcification, 
and associated cysts. The ROIs were identified by a ded-
icated radiologist (Z.H with 14 years of experience in pe-
diatric radiology) on all slices of the b0 images, T1 and 
T2 mapping images, and contrast-enhanced T1-weighted 
images. The tumor volumes were calculated using the 
ROIs on the T1-weighted images that covered the entire 
tumor. T1 and T2 relaxation times, fin, d, cellularity, Dex, 
D0Hz, D17Hz, D33Hz, and D50Hz were averaged from the cor-
responding ROIs from each patient. Group comparison 
between LGG and HGG groups and also between H3K27-
altered and wildtype groups were performed using a t-test 
with unequal variance in Graphpad Prism 8.0 (https://www.
graphpad.com/scientific-software/prism/). The diagnostic 
performance of individual MRI metrics and their com-
binations were evaluated based on accuracy, sensitivity, 
specificity, and AUC in Graphpad. The correlation between 
histologically quantified and td-dMRI-fitted microstructural 
parameters were assessed by linear regression. The signif-
icance level was set at P = .05 for all tests.

Results

Patient Characteristics

According to the histological examination, 69 pediatric 
glioma patients were classified into the LGG group (n = 42) 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad003#supplementary-data
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT/
https://github.com/KuiyuanLiu/app_IMPULSED_Fitting
https://github.com/KuiyuanLiu/app_IMPULSED_Fitting
https://github.com/zjuzzl/Prostate_MRI/blob/main/Histology.rar
https://github.com/zjuzzl/Prostate_MRI/blob/main/Histology.rar
https://www.graphpad.com/scientific-software/prism/
https://www.graphpad.com/scientific-software/prism/
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and HGG group (n = 27). The midline glioma patients 
(n = 39) were further divided into H3K27-altered (n = 20) and 
wildtype (n = 19) according to the immunohistochemical 
staining. The participant information and tumor character-
istics are described in Supplementary Table S2. The tumor 
volumes were 22.5 ± 12.4 × 103 mm3 based on the T1w-
enhanced images.

Histological Grading

The td-dMRI-based microstructural maps were illustrated 
in Figure 2A for 2 representative patients with LGG (3 years 
old boy, pilocytic astrocytoma, grade 2) and HGG (9 years 
old boy, midline glioma, grade 4). The ADC maps at indi-
vidual tds showed a td-dependent increase of ADC from 
D0Hz to D50Hz in both LGG and HGG, as expected. It is ev-
ident that the diffusivity measurements were lower, fin 
and cellularity were higher, and d was lower in the HGG 

case compared to LGG. Within the HGG case, heteroge-
neity was also observed with lower diffusivity, lower d, 
and higher fin and cellularity in the center of the tumor, 
which corresponded to the slightly elevated intensity in the 
T1w-enhanced image.

Group differences between LGG and HGG were signifi-
cant (P < 10−4) for all MRI markers (Figure 2B). Specifically, 
T1 and T2 relaxation times, ADCs at individual tds, Dex, and 
d were lower in HGG patients compared to LGG, while fin 
and cellularity were higher in the HGG group. As a result, 
all of the MRI markers showed reasonable diagnostic accu-
racy in differentiating HGG from LGG. The cellularity index 
achieved the highest AUC of 0.911 and accuracy/sensitivity/
specificity of 0.884/0.893/0.878, followed by D0Hz and D33Hz 
with AUCs of 0.906 and 0.891, respectively (Table 1). T1 and 
T2 relaxation times showed relatively low classification ac-
curacy compared to the dMRI markers with AUCs of 0.847 
and 0.861, respectively. We also tested the combinations of 
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Figure 2.  td-dMRI-based microstructural mapping for histological grading. (A) T1w-enhanced image, diffusivity maps at each td, and micro-
structural maps of fin, d, Dex, and cellularity estimated from the IMPULSED model in one LGG patient (3-year-old boy, pilocytic astrocytoma, 
WHO II) and one high-grade glioma (HGG) patient (9-year-old boy, midline glioma, WHO IV). (B) Group differences between LGG and HGG patients 
for all MRI markers, including T1 and T2 relaxation times, ADCs at individual tds, fin, d, Dex, and cellularity. *** P < 10−4.
  

  
Table 1.  Diagnostic Performance of the Multi-modal MRI Markers in Differentiating HGG From LGG. Data in the Second Rows are Numbers 
of Correctly Identified Numbers/Total Number of Patients for Accuracy, Sensitivity, and Specificity. Data in Parenthesis have Bootstrapped 95% 
Confidence Intervals for AUC. The Cutoffs Between LGG and HGG Groups for Each of the Markers are Also Listed. The Markers With the Highest 
Performance for Each Evaluation Metric Are Bolded

MRI Marker Accuracy Sensitivity Specificity AUC Cutoff 

Cellularity 0.8841  
61/69

0.8929  
25/28

0.8780  
36/41

0.9111  
(0.8393–0.9830)

0.4120

d 0.7826  
54/69

0.7857  
22/28

0.7805  
32/41

0.8493  
(0.7602–0.9384)

24.20 μm

Dex 0.8551  
59/69

0.8214  
23/28

0.8780  
36/41

0.8789  
(0.7827–0.9752)

1.643  
μm2/ms

fin 0.8116  
56/69

0.8929  
25/28

0.7561  
31/41

0.8650  
(0.7787–0.9513)

0.08679

D0Hz 0.8696  
60/69

0.8214  
23/28

0.9024  
37/41

0.9059  
(0.8254–0.9864)

1.292  
μm2/ms

D17Hz 0.8696  
60/69

0.8571  
24/28

0.8780  
36/41

0.8955  
(0.8102–0.9807)

1.459  
μm2/ms

D33Hz 0.8696  
 60/69

0.7857  
22/28

0.9268  
38/41

0.8911  
(0.8021–0.9801)

1.483  
μm2/ms

D50Hz 0.8696  
60/69

0.8214  
23/28

0.9024  
37/41

0.8780  
(0.7847–0.9713)

1.517  
μm2/ms

FA 0.7246  
50/69

0.8214  
23/28

0.6585  
27/41

0.7265  
(0.5981–0.8549)

0.2570

AD 0.7681  
52/69

0.7857  
22/28

0.7561  
31/41

0.8127  
(0.7092–0.9162)

1.1336  
μm2/ms

RD 0.8551  
60/69

0.8571  
24/28

0.8537  
35/41

0.8685  
(0.7784–0.9585)

0.7210  
μm2/ms

T1 0.8116  
56/69

0.7857  
22/28

0.8293  
34/41

0.8467  
(0.7454–0.9480)

1514 ms

T2 0.8116  
56/69

0.8571  
24/28

0.7805  
32/41

0.8615  
(0.7744–0.9485)

204.0 ms

HGG, high-grade glioma; LGG, low-grade gioma.

  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noad003#supplementary-data
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these MRI markers but did not find further improvement 
compared to the single marker of cellularity.

Molecular Classification

Within the 39 midline glioma patients, we investigated 
microstructural features in H3K27-altered and wild-type pa-
tients. Figure 3A demonstrated representative microstruc-
tural maps from a H3K27-wildtype (12  years 11  months 
old boy, midline glioma in the cerebellar vermis) and a 
H3K27-altered patient (5 years old girl, midline glioma in 
the brainstem). The H3K27-altered tumor exhibited clearly 
reduced ADC, Dex, and d, and elevated fin and cellularity 
compared to the wildtype midline glioma, with a slight re-
gional heterogeneity, eg, higher malignancy in the left part 
of the tumor as indicated by the dMRI parametric maps 
and T1w-enhanced image.

Quantitative analysis revealed significantly reduced T1 
and T2 relaxation times (P < .01) in the H3K27-altered group 
compared to the wildtype midline glioma (Figure 3B), but 
the diagnostic accuracy of T1 and T2 mapping were rela-
tively low with AUCs of 0.821 and 0.808, respectively. The td-
dMRI-based parameters showed strong group differences 
with considerably lower ADCs, d, and Dex, and elevated 

fin and cellularity in the H3K27-altered group (Figure 3B). 
Particularly, the cell diameter index d showed the highest 
discriminant power with an AUC of 0.918 and accu-
racy/sensitivity/specificity of 0.846/0.950/0.737 (Table 2),  
which was different from the histological classification 
where the cellularity was the best. D17Hz had the second-
to-best performance with an AUC of 0.910 and the other 
diffusivity metrics had equivalent AUCs of around 0.9. 
Combinations of d and Dex further improved the AUC to 
0.929 compared to the single markers.

Pathological Validation

The nuclei of cells were automatically segmented from the 
H&E stained sections with cGAN, which revealed different 
degrees of cell proliferation in LGG and HGG patients 
(Figure 4A–B). The volume fraction quantified from the seg-
mented nuclei (fnuclei) correlated well with the IMPULSED 
model-derived fin with a correlation coefficient (r) of 0.6996 
and P < .0001 in 37 patients (Figure 4C). But the histology-
based dnuclei did not show a significant correlation with 
IMPULSED-based d, possibly because the nuclei diam-
eter from histology was not linearly scalable to cell diam-
eter from td-dMRI given the high degree of pleomorphism 

  
Table 1.  Diagnostic Performance of the Multi-modal MRI Markers in Differentiating HGG From LGG. Data in the Second Rows are Numbers 
of Correctly Identified Numbers/Total Number of Patients for Accuracy, Sensitivity, and Specificity. Data in Parenthesis have Bootstrapped 95% 
Confidence Intervals for AUC. The Cutoffs Between LGG and HGG Groups for Each of the Markers are Also Listed. The Markers With the Highest 
Performance for Each Evaluation Metric Are Bolded

MRI Marker Accuracy Sensitivity Specificity AUC Cutoff 

Cellularity 0.8841  
61/69

0.8929  
25/28

0.8780  
36/41

0.9111  
(0.8393–0.9830)

0.4120

d 0.7826  
54/69

0.7857  
22/28

0.7805  
32/41

0.8493  
(0.7602–0.9384)

24.20 μm

Dex 0.8551  
59/69

0.8214  
23/28

0.8780  
36/41

0.8789  
(0.7827–0.9752)

1.643  
μm2/ms

fin 0.8116  
56/69

0.8929  
25/28

0.7561  
31/41

0.8650  
(0.7787–0.9513)

0.08679

D0Hz 0.8696  
60/69

0.8214  
23/28

0.9024  
37/41

0.9059  
(0.8254–0.9864)

1.292  
μm2/ms

D17Hz 0.8696  
60/69

0.8571  
24/28

0.8780  
36/41

0.8955  
(0.8102–0.9807)

1.459  
μm2/ms

D33Hz 0.8696  
 60/69

0.7857  
22/28

0.9268  
38/41

0.8911  
(0.8021–0.9801)

1.483  
μm2/ms

D50Hz 0.8696  
60/69

0.8214  
23/28

0.9024  
37/41

0.8780  
(0.7847–0.9713)

1.517  
μm2/ms

FA 0.7246  
50/69

0.8214  
23/28

0.6585  
27/41

0.7265  
(0.5981–0.8549)

0.2570

AD 0.7681  
52/69

0.7857  
22/28

0.7561  
31/41

0.8127  
(0.7092–0.9162)

1.1336  
μm2/ms

RD 0.8551  
60/69

0.8571  
24/28

0.8537  
35/41

0.8685  
(0.7784–0.9585)

0.7210  
μm2/ms

T1 0.8116  
56/69

0.7857  
22/28

0.8293  
34/41

0.8467  
(0.7454–0.9480)

1514 ms

T2 0.8116  
56/69

0.8571  
24/28

0.7805  
32/41

0.8615  
(0.7744–0.9485)

204.0 ms

HGG, high-grade glioma; LGG, low-grade gioma.
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in glioma.34 Nevertheless, the estimated cell diameters 
(24.27 ± 5.90 μm) were consistent with the previous studies 
that reported the glioma cell size around 20 μm.35,36

Discussion

As pointed out by the WHO 2021 guideline, the combina-
tion of histological and molecular classification is essen-
tial for precise prognosis and optimal treatment plans 
in CNS tumor patients. Here, we designed a prospective 
study to investigate the clinical utility of newly proposed 
cell microstructural markers based on the td–dMRI theory 
for both histological and molecular identification in pedi-
atric gliomas. Our preliminary results illustrated that the 
cellularity index had a superior performance in diagnosing 
LGG and HGG, while the cell diameter index showed high 
discriminative power in separating H3K27-altered and 

wildtype midline glioma, indicating promising values of 
these noninvasive microstructural features in pediatric 
gliomas. Particularly, the fact that different histological 
and molecular subtypes exhibited unique microstructural 
properties (cellularity or cell size) suggested the impor-
tance of having specific pathological indicators, instead 
of the simple ADC measurement, and td-dMRI could accu-
rately provide such information.

Despite the importance of molecular markers, histolog-
ical grading still plays an indispensable role in the clinical 
management of pediatric gliomas. The general consensus 
is that HGG must always be operated on except for sur-
gical contradictions, along with adjuvant radiotherapy 
and/or chemotherapy; while the treatment strategy for 
LGG remains controversial given the balance between 
treatment efficacy and post-treatment quality of life in pe-
diatric patients.37 Therefore, timely and accurate histolog-
ical grading of the tumor malignancy provides important 
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Figure 3.  td-dMRI based microstructural mapping for classification of H3K27-altered and wildtype midline glioma. (A) T1w-enhanced 
image, diffusivity maps at each td, and microstructural maps of fin, d, Dex, and cellularity estimated from the IMPULSED model in a wildtype 
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first-hand information. Several studies have investigated 
the use of advanced MRI in grading pediatric gliomas. A re-
cent study by Yao et al. reported an accuracy of 89.5% and 

86.9% using ADC and NAA/Cho from MR spectroscopy in a 
cohort of 143 LGG and 66 HGG pediatric patients.10 Gupta 
et al. tested dynamic contrast-enhanced (DCE) in a cohort 
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Figure 4.  Pathological validation of td-dMRI microstructural mapping results. (A–B) Typical segmented hematoxylin and eosin (H&E)-stained 
slices (×30 magnification, scale bar: 50 μm) from the biopsy of a LGG (a, 2 years and 11 months old boy, pilocytic astrocytoma in the cerebellum, 
grade 1) and a high-grade glioma (b, 10 years and 3 months old girl, midline glioma in the brainstem, grade 4) patients. (C) Correlation between fin 
from IMPULSED model and fnuclei from the pathological images in 37 patients.
  

  
Table 2.  Diagnostic Performance of the Multi-modal MRI Markers in Differentiating H3K27-altered From Wildtype DMG Patients. Data in the 
Second Rows are Numbers of Correctly Identified Numbers/Total Number of Patients for Accuracy, Sensitivity, and Specificity. Data in Parenthesis 
have Bootstrapped 95% Confidence Intervals for AUC. The Cutoffs Between H3K27-altered and Wildtype Groups for Each of the Markers are Also 
Listed. The Markers With the Highest Performance for Each Evaluation Metric are Bolded

MRI Marker Accuracy Sensitivity Specificity AUC Threshold 

Cellularity 0.8718  
34/39

1.0000  
20/20

0.7368  
14/19

0.9132  
(0.8181–1.000)

0.3641

d 0.8718  
34/39

0.9000  
18/20

0.8421  
16/19

0.9184  
(0.8330–1.000)

24.89 μm

Dex 0.8974  
35/39

0.9000  
18/20

0.8947  
17/19

0.9026  
(0.7959–1.000)

1.643 μm2/ms

fin 0.7692  
30/39

0.9000  
18/20

0.6316  
12/19

0.7842  
(0.6376–0.9303)

0.08679

D0Hz 0.8718  
34/39

0.9500  
19/20

0.7895  
15/19

0.9053  
(0.8111–0.9994)

1.392 μm2/ms

D17Hz 0.8718  
34/39

0.9000  
18/20

0.8421  
16/19

0.9105  
(0.8218–0.9993)

1.486 μm2/ms

D33Hz 0.8718  
34/39

0.8500  
17/20

0.8947  
17/19

0.9026  
(0.8051–1.000)

1.497 μm2/ms

D50Hz 0.8462  
33/39

0.7500  
15/20

0.9474  
18/19

0.8868  
(0.7782–0.9955)

1.471 μm2/ms

FA 0.7436  
29/39

1.0000  
20/20

0.4737  
9/19

0.7763  
(0.6216–0.9311)

0.2349

AD 0.7436  
29/39

0.7500  
15/20

0.7368  
14/19

0.7684  
(0.6166–0.9202)

1.136 μm2/ms

RD 0.8718  
34/39

0.8500  
17/20

0.8947  
17/19

0.8868  
(0.7793–0.9944)

0.7059 μm2/ms

T1 0.8462  
33/39

0.8500  
17/20

0.8421  
16/19

0.8211  
(0.6779–0.9642)

1562 ms

T2 0.7949  
31/39

0.8500  
17/20

0.7368  
14/19

0.8079  
(0.6653–0.9505)

204.0 ms
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of 64 pediatric tumor patients and found the relative ce-
rebral blood volume could separate HGG from LGG with 
88.6% sensitivity and 65% specificity; 38 although DCE is 
not the standard way to calculate cerebral blood volume, 
it is still feasibly after the correction of the leakage effect. 
Zhang et al. employed amide proton transfer (APT) MRI in 
48 pediatric glioma patients and obtained an AUC of 0.86 
in differentiating LGG versus HGG.39 In our study cohort, 
the microstructural index of cellularity achieved an AUC 
of 0.911, outperforming the conventional dMRI measure-
ments and also T1/T2 mappings. The findings corresponded 
well with the characteristic cell proliferation in HGG that 
led to elevated cellularity.28 It was also assuring from the 
histological validation that the td-dMRI-based estimation 
of microstructural properties agreed well with the ground 
truth. Therefore, by pinpointing the microstructural fea-
tures of tumor pathology, we may further enhance the ac-
curacy of noninvasive identification of histological grade.

On the other hand, midline glioma, as an inoperable cat-
egory in pediatric glioma, is known to have a highly com-
plex and variable radiological appearance depending on 
its molecular subtypes.40 Conventional MRI has limited 
power in predicting H3K27 alteration in midline glioma 
patients.41,42 The applications of advanced molecular im-
aging12,43 or advanced analytical approaches including 
radiomics and machine-learning methods44–46 showed 
promising improvement. Zhuo et  al. reported that the 
radiomics measures from APT-weighted imaging provided 
an accuracy of 0.88 in identifying H3K27M-mutant brain-
stem glioma.43 Su et al. utilized radiological features from 
FLAIR images along with a machine-learning model and 
achieved AUCs of 0.85 in the testing set from a total of 
100 midline glioma patients.44 A most recent study used a 
combination of clinical and radiological features from 107 
HGG patients and reached an AUC of 0.92 for predicting 
H3K27M mutation in the testing data.45 However, sophisti-
cated radiomics and machine-learning models are known 
to have limited generalizability and easily get overfitted 
without a large number of samples. Here we used the 
simple ROI means to evaluate the native performance of 
each MRI marker. The cell diameter index performed best 
in this task with the highest AUC of 0.918, despite the rel-
atively small sample size (n = 39). Despite the histopatho-
logical spectrum of H3K27 alteration,29 the H3K27-altered 
group had a significantly lower cell diameter compared to 
wildtype midline glioma. One common histologic feature 
of H3K27-alteration is that the tumor cells exhibit pilocytic 
astrocytic morphology with piloid appearance,29,47 which 
may lead to a reduced diameter measurement from the 
td-dMRI model.

Interestingly, we noticed some of the H3K27-altered 
midline gliomas exhibited low histological characteristics. 
We further looked at the microstructural features of these 
cases and found relatively low cellularity in these patients 
but their cell diameter was in the range of the H3K27-
altered group (Supplementary Figure S3). Therefore, it is 
important to have a comprehensive picture of the tumor 
microstructure for accurate histological and molecular 
identification. In addition, correlation analysis between 
ADC and the microstructural markers showed relatively 
weak and nonlinear correlations (Supplementary Figure 
S4), indicating the different measurements may provide 

complementary information. Indeed, we found further im-
provement of H3K27 diagnosis was achieved by combining 
cell diameter and diffusivity markers.

Notably, H3K27-altered midline glioma is characterized 
mainly by H3K27M mutation, EZHIP-overexpression, 
and others.7 In company with the primary genomic al-
ternation, additional recurrent defects include inactiva-
tion of the p53 and Rb pathways, activation mutations 
of ACVR1, and alternations of genes in the receptor ty-
rosine kinase pathway (eg, PDGFRA, EGFR, FGFR1, and 
PI3KCA).48,49 Hence, it is very likely that H3K27-alteration 
collaborates with other “cooperating mutations” on dis-
ease development and progression. It would be inter-
esting to further group patients according to the histone 
alterations and genetic co-mutations for their micro-
structural signatures with the td-dMRI model, given full 
sequencing data.

The current study has several limitations. Our sample 
size was not large enough (n = 69 for histological grading 
and 39 for molecular classification), which limited the diag-
nostic accuracy. Larger sample sizes and ideally a multisite 
study are needed in the future to confirm the clinical value 
of the proposed microstructural markers. Secondly, for 
histological validation, we could not have an exact spa-
tial match between the MRI-based tumor ROI and biopsy 
sample. Since it is extremely difficult to dissect the intact 
tumor from brain glioma patients, we assumed the biopsy 
was representative of the tumor pathology. In addition, 
we only presented the ROI average for direct assessment 
of the diagnostic accuracy of each MRI marker. The use of 
radiomics for higher-order features may further improve 
the discriminative power, given sufficient sample size. 
Also, the combination of td-dMRI with other imaging mo-
dalities, such as molecular imaging or perfusion MRI, may 
also enhance our ability to noninvasively predict tumor 
phenotypes and genotypes.

Supplementary Material

Supplementary material is available online at Neuro-
Oncology (http://neuro-oncology.oxfordjournals.org/).
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