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Abstract

Background

Intervertebral disc degeneration (IDD) is a progressive chronic condition that commonly

causes low back pain. Cancer is among the primary reasons for deaths worldwide. Our pur-

pose was to identify the characteristic genes of IDD and explore the potential association

between IDD and cancer.

Methods

Immune cell infiltration and differentially expressed analysis were conducted utilizing data

from the GSE124272 database. Enrichment analysis of differentially expressed genes

(DEGs) was performed to explore the possible mechanisms underlying IDD development.

Moreover, weighted gene correlation network analysis (WGCNA) was applied to select IDD-

related hub genes. The immune-related key genes were determined by intersecting DEGs,

IDD-related hub genes, and immune genes. Subsequently, machine learning models based

on these genes were built to identify and verify the characteristic genes. RNA sequencing

and clinical data of 33 carcinoma categories were obtained from the Cancer Genome Atlas

(TCGA). The association between NAIP expression and prognosis was calculated using the

Kaplan-Meier analysis. To gain a deeper understanding of the impact of NAIP in tumor

immunotherapy, the association between NAIP and immune infiltration and two immuno-

therapeutic biomarkers were explored. Ultimately, the association between NAIP and immu-

notherapeutic response was investigated utilizing two independent cohorts.
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Results

NAIP was identified as an immune-related characteristic gene between IDD and normal

intervertebral disc tissue. In certain carcinoma categories, NAIP expression levels were ele-

vated (4/33) and significantly correlated to the respective tumor stage (4/21). Survival analy-

sis revealed that the expression levels of NAIP have prognostic significance in different

cancer types. Generally, NAIP presented a strong association with immune cell infiltration

and modulators. NAIP may influence immunotherapy effects through tumor mutational bur-

den and microsatellite instability. No remarkable association between NAIP and immuno-

therapy response was found in either cohort.

Conclusion

Our study is the first to identify NAIP as an immune-related characteristic gene. Pan-cancer

analysis revealed that NAIP could serve as a novel clinical prognostic marker and therapeu-

tic target for a variety of carcinoma categories, reducing the risk of IDD in tumor patients.

Introduction

Low back pain is a broad and complicated clinical condition that affects 80% of the population

worldwide [1]. Numerous factors can cause low back pain; however, proof of nerve compres-

sion cannot be found in over 40% of patients with chronic low back pain [2]. Hence, interver-

tebral disc degeneration (IDD) is regarded as one of the major factors that cause back pain and

stiffness [3]. IDD is recognized as a global health issue due to the enormous pressure on the

healthcare system and the subsequent economic burden [4]. Although several familiar ele-

ments, such as mechanical stimulation, degeneration, and inflammation [5–7], promote the

progression of IDD, the detailed process of IDD occurrence remains unclear. The current

treatment of IDD mainly includes conservative and surgical treatment, which provide symp-

tomatic and supportive measures, but cannot reverse IDD and reconstruct the mechanical

function of the spine [8]. Cancer occurrence is a complicated process consisting of multiple

risk factors, rendering this disease as the leading cause of death worldwide [9].

There is growing evidence that immunity affects IDD and cancer significantly [10, 11]. A

previous study suggested that disruption of the blood nucleus pulposus barrier triggers

immune reactions via the NP cells, which have been found to be important factors in the devel-

opment of IDD [12]. In addition, proinflammatory cytokines generated by immune cells, such

as interleukin-1β and tumor necrosis factor-alpha, have been found to induce degeneration

and apoptosis of NP cells by activating the β-catenin [5, 13]. However, the immune landscape

and regulatory mechanism of immune cells in IDD remain unknown. Immune infiltrates in

the tumor microenvironment (TME) play an essential role in tumor progression and influence

the prognosis of patients with cancer [14]. Therefore, a comprehensive analysis of tumor-infil-

trating immune cells will help elucidate the mechanisms of tumor immune evasion, laying the

foundation for the exploration of novel treatment approaches [14].

Our purpose was to identify IDD-related innate immunity genes utilizing bioinformatics

analysis and explore their roles in diverse cancer types with the hope to provide new perspec-

tives on the link between IDD and cancer and reveal possible therapeutic targets for IDD

patients with carcinoma. Fig 1 shows the flowchart of the entire procedure.
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Methods

Microarray data

Microarray data involving eight healthy volunteers and eight IDD patients were extracted

from the Gene Expression Omnibus (GEO) database (GSE124272) [15]. The RNA sequencing

and clinical data for 33 diverse carcinoma categories were obtained from the TCGA database

Fig 1. Flowchart of this study.

https://doi.org/10.1371/journal.pone.0286647.g001
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[16]. In addition, 3178 unique genes related to the immune were acquired from the Immunol-

ogy Database and Analysis Portal (ImmPort) and InnateDB databases [17, 18]. Finally, two

tumor immunotherapeutic cohorts (GSE78220 and GSE67501) were acquired from the GEO

database [15].

Estimation of immune cell infiltration

The CIBERSORT deconvolution algorithm was applied to estimate the abundance of 22 kinds

of immune cells and evaluate the percentage of different immune cells in 16 samples among

GSE124272 through expression values. Furthermore, we estimated discrepancies between IDD

and control samples. Finally, the stacked bar plot, correlation heatmap, and violin diagram

were visualized by “corrplot” and “vioplot” packages. The selection criteria were adjusted P
value < 0.05.

Differential expression analysis

Differentially expressed genes (DEGs) of GSE124272 were selected by using the Bioconductor

Limma package, with P< 0.05 and |log2(fold-change)| > 1.00 [19]. Furthermore, the volcano

and heatmap of DEGs were visualized by the pheatmap package.

Functional and pathway correlation analysis

To explore the role of DEGs, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) analyses were implemented utilizing the clusterProfiler package [20]. Both

the p and q values of the GO analysis were< 0.05. The q-value < 1.00 of KEGG analysis was

considered significant enrichment.

Weighted Gene Correlation Network Analysis (WGCNA)

WGCNA R package is a biological analysis approach for clustering genes into modules accord-

ing to interconnectivity, allowing the detection of hub genes through the most significant

module [21]. Therefore, we established a co-expression network based on all GSE124272 genes

utilizing the WGCNA. First, the sample cluster analysis was conducted using the hclust func-

tion to eliminate outliers. Then, the soft thresholding power value was identified using the

pickSoftThreshold function to obtain a nearly scale-free network topology [21, 22]. Further-

more, the whole genes were sorted into different modules according to a dynamic tree cutting

arithmetic with at least 100 genes in the module, and modules with significantly related eigen-

genes (correlation > 0.25) were combined [23]. Finally, the module with p< 0.05 and the

highest correlation coefficient was chosen for further investigation.

Identification of immune-related key genes

Following identification of the key module through WGCNA, the association between innate

immune genes and IDD progression was explored. The immune-related key genes were deter-

mined by intersecting three parts (DEGs, Hub genes from WGCNA, and Immune genes

downloaded from databases) using the Venn diagram.

Establishment of machine learning to verify the reliability of key genes

The least absolute shrinkage and selection operator (LASSO) logistic regression [24], support

vector machine-recursive features elimination (SVM-RFE) [25], and random forest algorithms

were performed to validate the robustness of the selected key genes. The LASSO algorithm was

implemented with the “glmnet” package [26]. SVM-RFE analysis was performed by the e1071
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package [27]. Furthermore, the random forest algorithm was conducted by the R package.

Ultimately, three-fold cross-verification was conducted to obtain the best predicting results

using the Venn diagram.

Assessment of diagnostic value of key genes

To validate whether key genes could discriminate between IDD and control samples in

GSE124272, the receiver operating characteristic curve assessed the diagnostic value of key

genes using the pROC R package [28].

Survival analysis

The Kaplan-Meier survival analysis was utilized to forecast the correlation between the overall

survival (OS) of patients and NAIP expression levels in 33 diverse cancer types.

Immune infiltrating analysis associated with NAIP

The CIBERSORT algorithm was utilized to quantify the abundance of 22 kinds of immune

cells in 33 diverse cancer types, and the correlation between NAIP levels and these cells was

evaluated [29]. A correlation coefficient > 0.4 was considered significant. Subsequently, the

tumor immune microenvironment, including stromal content (StromalScore), immune infil-

tration (ImmuneScore), and combined (ESTIMATEScore) score of each tumor sample, were

estimated via the ESTIMATE R package [30], and the association between NAIP and tumor

immune microenvironment was assessed by R. A correlation coefficient > 0.6 was considered

significant. Moreover, the potential association between NAIP levels and immunological mod-

ulators (immune inhibitors, immune stimulators, and MHC molecules) was investigated using

the TISIDB database (http://cis.hku.hk/TISIDB/).

Mutation and microsatellite instability

Currently, tumor mutational burden (TMB) and Microsatellite instability (MSI) are novel

genetic biomarkers forecasting the efficacy of immunotherapy. The relationship between

NAIP and novel dynamic biomarkers of the immune checkpoint blockade (TMB/MSI) was

predicted by R (Spearman’s rank correlation test).

PPI network and enrichment analysis

Protein-protein interaction (PPI) network with NAIP as the core was constructed using the

GeneMANIA online tool (http://genemania.org/) [31]. Furthermore, the Metascape (http://

metascape.org/) was applied to perform enrichment analysis of genes from the PPI network

[32]. Additionally, the biological signaling pathways between high and low NAIP expression

groups were performed using gene set enrichment analysis (GSEA) [33].

Immunotherapy response

Two immunotherapy cohorts were used for immunotherapy response analysis, and discrepan-

cies between the response (responding to immunotherapy) and non-response (non-respond-

ing to immunotherapy) groups were determined by R (Wilcoxon test).
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Results

Immune cell infiltration

The specific immune cell types infiltrating into the IDD tissues were analyzed utilizing the

CIBERSORT algorithm. The stacked bar plot showed the percentage of infiltrating immune

cells (Fig 2A). The violin diagram demonstrated that CD8 and γ/δ T cell levels were remark-

ably lower in IDD, whereas neutrophil expression was remarkably higher in IDD (Fig 2B). Fig

2C demonstrates a significant positive correlation between activated Mast cells and Macro-

phages M0, and a significant negative correlation between γ/δ T cells and neutrophils.

Identification of DEGs

The microarray dataset (GSE124272) was applied to select DEGs in IDD samples. Under the

criteria set in advance, 273 genes (182 upregulated and 91 downregulated) were identified as

DEGs (Fig 2D).

Functional and pathway enrichment analyses

GO analysis demonstrated that DEGs were clustered in 17 biological process (BP) terms

(mainly including neutrophil degranulation and neutrophil activation involved in immune

response), 29 cellular component (CC) terms (primarily including specific granule, specific

granule lumen, tertiary granule, secretory granule lumen, cytoplasmic vesicle lumen, and vesi-

cle lumen), and three molecular function (MF) terms (including serine-type endopeptidase

activity, serine-type peptidase activity, and serine hydrolase activity) (Fig 3A). Moreover,

KEGG demonstrated that such genes were centred in eight relevant pathways (primarily

including the PPAR signaling pathway and neutrophil extracellular trap formation) (Fig 3B).

Establishing weighted gene correlation network

First, whole genes from GSE124272 were selected for WGCNA analysis. The heterogeneity of

16 samples was detected, and outliers were checked and removed. As shown in Fig 4A, all sam-

ples were included. Then, the soft threshold power of β (scale-free R2 = 0.90) was set to 4, satis-

fying the distribution of a scale-free network (Fig 4B), and the modules with eigengenes

correlation above 0.3 were merged (Fig 4C). Consequently, 10 modules were identified for fur-

ther exploration (Fig 4D). After analyzing the correlation between modules and traits, we

found that the blue module was remarkably associated with IDD (Fig 4D). Fig 4E also con-

firmed the reliability of our findings. Hence, 1035 genes (176 hub genes) from the blue module

were identified as IDD-associated genes.

Identification and validation of hub immune-related genes

Considering the significant role of immune response in IDD, 3178 immune-related genes

were acquired from the ImmPort and InnateDB databases. Eight co-expressed genes

(CLEC4E, NAIP, SLC11A1, FCGR1A, IL1R1, HSPA6, ARG1, and IL1R2) were identified by

intersecting 273 DEGs, 176 hub genes from the blue module, and 3178 immune-related genes

(Fig 5A). Subsequently, machine learning models (LASSO, SVM-RFE, and random forest

algorithms) based on the eight co-expressed genes were built to validate their prediction

power. The LASSO algorithm determined four characteristic genes (CLEC4E, NAIP, IL1R1,

and HSPA6) (Fig 6A and 6B), the SVM-RFE algorithm identified two characteristic genes

(NAIP and HSPA6) (Fig 6C), and the random forest algorithm identified only one characteris-

tic gene (NAIP) (Fig 6D). After validation, one diagnostic gene (NAIP) was identified (Fig 5B).
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Furthermore, the AUC value of NAIP was > 0.7 in the GSE124272, indicating that NAIP

could be used as a diagnostic biomarker (Fig 6E).

Clinical landscape of NAIP expression in carcinomas

S1 Table demonstrates 33 types of carcinomas included in this study. We utilized the TCGA

database to calculate the NAIP levels in tumor and normal tissues, revealing that NAIP was dif-

ferentially expressed in 11 of the 33 carcinomas (CHOL, COAD, GBM, HNSC, KICH, KIRC,

LUAD, LUSC, READ, THCA, and UCEC) (Fig 7A). Also, NAIP expression levels were

remarkably related to the tumor stage of certain carcinomas (BLCA, KICH, SKCM, and

STAD) (Fig 7B).

Furthermore, the relationship between the survival time and NAIP expression levels was

investigated. The outcomes demonstrated that the NAIP expression levels was positively

Fig 2. Visualization of immune cell infiltration analysis. (A) Stacked bar plot of the percentage of infiltrating immune cells in each individual. (B) Violin

diagram of the abundance of infiltration by 22 immune cell subsets between IDD and control groups. Red and blue colors represent IDD and control groups,

respectively. (C) Correlation matrix of 22 immune cell type proportions. Red represents positive correlation, whereas blue represents negative correlation. (D)

Volcano map of DEGs, where red represents upregulated genes and green represents downregulated genes.

https://doi.org/10.1371/journal.pone.0286647.g002
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associated with OS in SKCM (p = 0.004), LUAD (p = 0.020), and HNSC (p = 0.014) (Fig 7C).

Overall, the survival analysis revealed that levels of NAIP in different cancer types had signifi-

cant prognostic implications.

Fig 3. GO and KEGG enrichment analysis. (A) Bar plot of BPs, CCs, and MFs from GO analysis. (B) Dot plot of KEGG

pathways analysis.

https://doi.org/10.1371/journal.pone.0286647.g003
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Association between NAIP expression and immune-related factors

Fig 8 demonstrates the tumor immune microenvironment (including immune score and stro-

mal score) and immune cell infiltration. NAIP expression was positively correlated with the

Fig 4. Identification of the key module related to IDD through WGCNA. (A) Sample cluster analysis identified the outlier samples in the

GSE124272 dataset. (B) Determination of the optimal soft threshold to conform to the scale-free distribution. (C) Dendrogram of genes clustered

based on the highly correlated eigengenes (correlation above 0.3). (D) Heatmap of the correlation between module eigengenes and clinical traits. (E)

Histogram of gene significance across modules.

https://doi.org/10.1371/journal.pone.0286647.g004
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Fig 5. (A) Venn diagram revealed that eight genes were commonly expressed in three parts. (B) Venn diagram showed the overlapped gene obtained by the

LASSO algorithm, VM-RFE algorithm and random forest algorithm.

https://doi.org/10.1371/journal.pone.0286647.g005

Fig 6. (A, B) LASSO regression to screen for characteristic genes. (C) SVM to screen for characteristic genes. (D) Random forest algorithm to screen for

characteristic genes. (E) ROC curve analysis of the NAIP for predicting IDD.

https://doi.org/10.1371/journal.pone.0286647.g006
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ESCA, GBM, HNSC, LUAD, LUSC, SARC, and STAD immune score, and with the LAML,

LUSC, and PAAD stromal score. For immune cell infiltration, NAIP expression was negatively

correlated to B cells naïve (LAMA) and activated dendritic cells (ESCA). In LAML, NAIP

expression was positively correlated to monocytes and macrophages M2. As shown in Fig 9,

among 24 types of immune inhibitors, NAIP levels were positively correlated with CSF1R in

Fig 7. (A) Expression levels of NAIP in 33 cancers. (B) The correlation between tumor stage and NAIP expression levels. (C)

Relationship between NAIP expression levels and prognosis (Kaplan-Meier curves for OS). “*” indicates p< 0.05, “**”
indicates p< 0.01 and “***” indicates p< 0.001.

https://doi.org/10.1371/journal.pone.0286647.g007
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HNSC, and negatively related to PVRL2 in UVM. Furthermore, 45 immune stimulators were

analyzed (Fig 10), indicating that NAIP levels were positively correlated to CD28 in HNSC

and negatively correlated to CD276 in UVM. The expression correlation between NAIP and

MHC molecules showed that NAIP levels were positively correlated with HLA-G in READ

and negatively associated with HLA-E in PCPG (Fig 11).

TMB and MSI

The relationship between NAIP and TMB/MSI revealed that NAIP levels were remarkably

associated with TMB in BRCA, BLCA, THCA, STAD, PAAD, MESO, LUSC, LUAD, LIHC,

HNSC, and COAD (Fig 12A). In COAD, high NAIP expression was positively correlated to

TMB, suggesting better prognosis and potential for immunotherapy. In terms of MSI, the

NAIP levels were positively correlated to COAD and READ and negatively associated with

UCS, UCEC, TGCT, STAD, SKCM, LUSC, KIRP, KICH, HNSC, and DLBC (Fig 12B).

PPI network and GSEA

A PPI network of 21 genes centred on NAIP was performed with GeneMANIA (Fig 13A),

which was then analyzed for enrichment using Metascape (Fig 13B). The outcomes indicated

that these 21 genes were concentrated in apoptosis, the nucleotide-binding oligomerization

Fig 8. (A) Correlation between NAIP expression and ESTIMATE score (including stromal score and immune score). (B) Correlation between NAIP expression

and immune infiltration.

https://doi.org/10.1371/journal.pone.0286647.g008
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domain (NOD) pathway, bacterial response, negative regulation of cysteine-type endopepti-

dase activity involved in apoptotic process, copper homeostasis, neutrophil degranulation,

phagocytosis, and adaptive immune response. In addition, GSEA revealed that KEGG terms in

the high NAIP expression were primarily enriched in pentose and glucuronate interconver-

sions, olfactory transduction, and steroid hormone biosynthesis, while in the low NAIP

expression were mainly enriched in ribosome and steroid biosynthesis (Fig 13C).

Immunotherapeutic response of NAIP

As illustrated in Fig 14, there were no significant differences in NAIP expression between

response and non-response groups in both independent cohorts.

Discussion

In the current study, increased neutrophil infiltration was observed in IDD compared to con-

trols. A remarkable increase in neutrophil accumulation has been reported with the develop-

ment of IDD [34]. Besides, neutrophil-derived S100A8 is regarded as a therapeutic target for

inflammation-related illnesses [35], while S100A8 have also been suspected of regulating neu-

trophil accumulation through CD11b upregulation [35]. These findings underline that target-

ing inflammation-dependent responses, such as neutrophil recruitment, could be an effective

therapy in IDD patients.

We identified 273 significant DEGs by analyzing the GSE124272 dataset, and KEGG

enrichment analysis primarily detected the PPAR signaling pathway and neutrophil extracellu-

lar trap formation. It has been revealed that PPAR -γ agonist pioglitazone protects against IL-

Fig 9. The expression correlation between NAIP and immune inhibitors. Red indicates positive correlation whereas blue indicates negative

correlation. (A) Dotplot of the strongest positive association. (B) Dotplot of the strongest negative association.

https://doi.org/10.1371/journal.pone.0286647.g009
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17-induced intervertebral disc inflammation and degeneration via suppression of the NF-κB

signaling pathway, which may provide a novel perspective on PPAR-γ agonist as a potential

treatment for IDD [36]. GO enrichment analysis revealed that these genes were primarily asso-

ciated with neutrophil degranulation and neutrophil activation involved in immune response,

indicating that DEGs have mainly immune-related functions.

The most relevant blue module (containing 176 hub genes) w was chosen for additional

investigation after WGCNA was used to identify IDD-related modules. Eight co-expressed

genes (CLEC4E, NAIP, SLC11A1, FCGR1A, IL1R1, HSPA6, ARG1, and IL1R2) were subse-

quently discovered by intersecting 273 DEGs, 176 hub genes from the blue module, and 3178

immune-related genes. The present study identified NAIP as the key characteristic gene via

overlapped genes acquired from the LASSO, SVM-RFE, and random forest algorithms. No

previous research has reported the important role of NAIP in IDD now. Therefore, NAIP

might influence the progression of IDD and could be utilized in the diagnosis of this disease.

Currently, several articles have revealed that NAIP inflammasomes play a significant role in

infectious diseases, auto inflammatory diseases, and cancer [37, 38]. Therefore, we hypothe-

sized that NAIP may also play an essential part in IDD. In addition, the emerging role of NAIP

in tumorigenesis can help identify novel pathway targets for the development of

immunotherapies.

Furthermore, we found that the expression of NAIP increased in some carcinoma catego-

ries, indicating the possibility that NAIP could serve as an oncogene. Survival analysis also

demonstrated the prognostic significance of NAIP. These findings suggest that targeted treat-

ment of NAIP may improve the prognosis of patients in diverse carcinoma categories. A recent

study indicated that NAIP could play a significant part in the inhibition of apoptosis through a

Fig 10. The expression correlation between NAIP and immune stimulators. Red indicates positive correlation whereas blue indicates negative

correlation. (A) Dotplot of the strongest positive association. (B) Dotplot of the strongest negative association.

https://doi.org/10.1371/journal.pone.0286647.g010
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Fig 11. The expression correlation between NAIP and MHC molecules. Red indicates positive correlation whereas blue indicates negative

correlation. (A) Dotplot of the strongest positive association. (B) Dotplot of the strongest negative association.

https://doi.org/10.1371/journal.pone.0286647.g011

Fig 12. The correlation between NAIP and both TMB and MSI. (A) The Rader chart showing correlation between expression levels of NAIP and TMB.

(B) The Rader chart showing correlation between expression levels of NAIP and MSI.

https://doi.org/10.1371/journal.pone.0286647.g012
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reverse effect on caspases. Dysregulated NAIP may contribute to the occurrence of carcinoma

and neurodegenerative disorders [39]. In breast carcinoma, p53 promotes the occurrence or

development of breast cancer by negatively regulating NAIP expression [37]. NAIP has also

Fig 13. PPI network and enrichment analysis (GSEA). (A) Construction of a PPI network with 21 genes centered on NAIP. (B)

Enrichment analysis using Matescape. (C) Gene set enrichment analysis (GSEA).

https://doi.org/10.1371/journal.pone.0286647.g013
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been reported to be a potential molecular treatment target for hematological malignancies

[40]. These results reveal that NAIP may provide a new target for anticancer treatment.

In addition, LAML showed that NAIP was strongly correlated to B Cells naïve, Macro-

phages M2, and Monocytes. In ESCA, dendritic cells were negatively associated with NAIP.

Furthermore, the PPI indicated that these 21 genes were concentrated in apoptosis, NOD

pathway and so on. Current literature also reports that deficiencies in apoptosis mechanisms

and chronic activation of NOD receptors may lead to the development of various illnesses

such as carcinomas. Also, the GSEA analysis revealed that high NAIP expression was primarily

concentrated in pentose and glucuronate interconversions and steroid hormone biosynthesis,

which were related to various carcinoma categories [41, 42].

Nevertheless, there were no significant differences between NAIP and immunotherapeutic

reactions in the two cohorts. Since only two cohorts received immunotherapy, it is difficult to

assess the actual immune response effect of NAIP. Therefore, more studies on immunotherapy

ought to be carried out in the future.

To our knowledge, this is the first study that focuses on the roles of NAIP in 33 different

cancer types and provides a novel perspective on the association between neoplastic and non-

neoplastic diseases (IDD). However, the article also exists limitations. Firstly, our bioinfor-

matic results are preliminary and need to be verified by further experiments. Secondly, further

clinical experiments on cancer patients with IDD should be conducted to explore and validate

the association between NAIP and cancer patients with IDD.

Conclusion

The present study highlights that NAIP is a key immunity gene. Pan-cancer analysis revealed a

noteworthy association between NAIP and prognosis and immune infiltration in diverse carci-

noma categories, indicating that NAIP is a promising biomarker for cancer therapy. Given its

effect on IDD and cancer, targeted treatment of NAIP may reduce the incidence of IDD. We

are convinced that such discoveries will provide the basis for future research and clinical

applications.

Fig 14. The correlation between NAIP and immunotherapeutic response. (A) GSE78220. (B) GSE67501.

https://doi.org/10.1371/journal.pone.0286647.g014
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