
RESEARCH ARTICLE

A deep memory bare-bones particle swarm

optimization algorithm for single-objective

optimization problems

Yule Sun1, Jia GuoID
1,2*, Ke Yan3, Yi Di1, Chao Pan1, Binghu Shi1, Yuji SatoID

4

1 School of Information Engineering, Hubei University of Economics, Wuhan, China, 2 Hubei Internet Finance

Information Engineering Technology Research Center, China, 3 China Construction Third Engineering

Bureau Installation Engineering Co., Ltd., Wuhan, China, 4 Faculty of Computer and Information Sciences,

Hosei University, Tokyo, Japan

* guojia@hbue.edu.cn

Abstract

A deep memory bare-bones particle swarm optimization algorithm (DMBBPSO) for single-

objective optimization problems is proposed in this paper. The DMBBPSO is able to perform

high-precision local search while maintaining a large global search, thus providing a reliable

solution to high-dimensional complex optimization problems. Normally, maintaining high

accuracy while conducting global searches is an important challenge for single-objective

optimizers. Traditional particle swarms optimizers can rapidly lose the diversity during itera-

tions and are unable to perform global searches efficiently, and thus are more likely to be

trapped by local optima. To address this problem, the DMBBPSO combines multiple mem-

ory storage mechanism (MMSM) and a layer-by-layer activation strategy (LAS). The MMSM

catalyzes a set of deep memories to increase the diversity of the particle swarm. For every

single particle, both of the personal best position and deep memories will be used in the

evaluation process. The LAS enables the particle swarm to avoid premature convergence

while enhancing local search capabilities. The collaboration between MMSM and LAS

enhances the diversity of the particle swarm, which in turn enhances the robustness of the

DMBBPSO. To investigate the optimization ability of the DMBBPSO for single-objective

optimization problems, The CEC2017 benchmark functions are used in experiments. Five

state-of-the-art evolutionary algorithms are used in the control group. Finally, experimental

results demonstrate that the DMBBPSO can provide high precision results for single-objec-

tive optimization problems.

Introduction

Single-objective optimization problem aims to select the optimal solution from all alternatives

of a problem, which is still a very significant problem for research. It can be applied to practical

problems in various fields, such as engineering optimization problems and scientific applica-

tions, which are usually computationally expensive and complex. The main methods for solv-

ing single-objective optimization problems are genetic algorithm, ant colony algorithm,

particle swarm algorithm, and so on. Among them, the particle swarm optimizer (PSO) [1] is
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favored by researchers for its simple structure and fast running speed. The PSO is firstly pro-

posed by Eberhart and Kennedy in 1995, which is an evolutionary computation algorithm.

The PSO is originally motivated by the regularity of flocks birds and schools fish, which has

the advantages of easy understanding, high accuracy and easy implementation. Since the PSO

was proposed, it has received wide attention by plenty researchers. It has been used in dealing

with nonlinear non-stationary problems and in real-world engineering problems. Such as

power system anomaly detection [2], path planning [3], data clustering [4], image segmenta-

tion [5, 6], networks [7] and other fields.

In summary, a number of researches have shown that the optimal particle swarm algorithm

has been well used in various aspects, however, the PSO algorithm and its many variants have

problems in different aspects. For example, due to insufficient search extent, it is prone to be

trapped into local optimum thus cannot guarantee to obtain the global optimum. In the mean-

while, premature maturity leaves the performance of the PSO algorithm to be optimized.

Therefore, the PSO shows great prospect for further research.

As technology advances, researchers need to solve single-objective optimization problems

in higher dimensions. Traditional optimization algorithms have the disadvantages of long

solution time and low solution accuracy when facing high-dimensional optimization prob-

lems. To address these shortcomings, a deep memory bare-bones PSO (DMBBPSO) algorithm

is introduced in this study. According to the intrinsic structure of the particles, the DMBBPSO

has enhanced the update strategy by assigning multiple layers of memory to the particle popu-

lation, which forms an innovative perspective.

The DMBBPSO is composed of two main modules: a multiple memory storage mechanism

(MMSM) and a Layer-by-layer activation strategy (LAS). The MMSM enables an extra mem-

ory space for all particles. In each iteration, deep memories of particles are engaged in the evo-

lution, thus the diversity of the particle is increased. The LAS ensures that the particle swarm is

capable of using past positions to refine past choices. Main contributions of this work are

reflected in following aspects:

1. The efficient deep memory topology enables the algorithm to choose its own evolutionary

direction, and to refine past choices without human interaction.

2. Inspired by the social structure of wild championess, outdated information will be removed

from memory spaces in a timely manner. This strategy ensures the accuracy and efficiency

of the search.

The rest of this paper is orginized below: Section 2 presents the literature review; Section 3

presents the problem definitions and the proposed algorithm; Section 4 introduce the experi-

mental settings and results analysis; at last, the conclusions of this work are shown in Section 5.

Literature review

Jafari-Asl [8] proposes an optimization-simulation approach based on the PSO to get the opti-

mum location and settings of pressure-reducing valves. Based on the PSO, Tan [9] proposes a

PSO variant to improve the learning hyper-parameters of CNNS for skin lesion segmentation

and difficult diverse image segmentation. Zhang [10] designed a PSO variant to extract effec-

tive spatial–temporal characteristics from the spectrogram inputs for sound classification

tasks. Fernandes [11] proposes a novel quantum-behaved PSO used to get safe and efficient

routes of mobile robotic vehicles in complex environment. Singh [12] proposes a hybrid algo-

rithm with PSO to solve transportation problems.

Traditional PSO methods has some shortcomings as well, such as it will fall into local opti-

mum easily, poor optimization processing for discrete problems and so on. To solve these
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problems, many scholars proposed the variants of PSO from various per-spectives such as

Topology [13, 14] and updating strategies [15], improving learning strategies [16], and combi-

nation with other algorithms [17].

To increase the probability of finding the optimal solution, Li [18] proposes historical mem-

ory-based PSO (HMPSO), which preserve the particles’ information of the distribution of

promising pbests in the history. Then, the best candidate position will be selected from the his-

torical memory, the current pbests of the particle, and the gbest of the swarm.

In order to avoid falling into a local optimum, Tian [5] proposes Modified PSO (MPSO).

The MPSO uses logistic graphs to generate particles that distributing uniformly and uses sig-

moid-like inertia weights to enable PSO to employ inertia weight between linearly decreasing

strategies and nonlinearly decreasing strategies adaptively. The MPSO has been proved to be

efficient and effective in the tasks of standard image segmentation.

Karim [19] proposes modified PSO with effective guides (MPSOEG), which uses multiple

learning strategies to create multiple exemplars instead of the self-cognitive and social compo-

nents. This approach is used to improve the performance when dealing with complex optimi-

zation problems. In this study, the optimal guide creation (OGC) module is introduced, which

can explore the particles at a lower computational cost. In the OGC, just the two nearest neigh-

bors of global best particle will be considered and a diversity enhancement solution will be

used to avoid premature convergence. Xu [20] proposes a parameter-free PSO integrating a

reinforcement learning method. During its iteration, each particle will choose the optimal

topology under the control of Q-learning (QL). The proposed strategy has been proved to be

more superior compared with some methods.

Wang [21] proposes a cooperating PSO with depth first search strategy, which has better

search capability in solving multimodal optimization problems. Li proposes [15] a new variant

PSO, which uses novel competition and cooperation strategies to update the information of

particles. The diversity of the swarm is enhanced, and it had a positive impact on the perfor-

mance of PSO. Liu [22] designs an adaptive weighting strategy, which has the distinguishing

feature of enhancing the convergence rate. Zhang [23] proposes a variant of BBPSO to solve

the path planning problem for mobile robots.

In 2003, Kennedy [24] proposed the bare bones PSO (BBPSO), which eliminated the veloc-

ity term, and used random numbers which obedience to Gaussian distribution to update the

positions of particles. It is a simple form of the particle swarm optimizer. The BBPSO has been

proved to be outstanding to improve search efficiency and accuracy and has used successfully

in constraint optimal issues, power system regulation and control, and data mining.

The BBPSO eliminated the velocity term, and used random numbers which obedience to

Gaussian distribution to update the positions of the particles. The candidate position of parti-

cles will be update with Eq 1:

xidðt þ 1Þ ¼ N
pidðtÞ þ pgdðtÞ

2
; jpidðtÞ � pgdðtÞj

� �

ð1Þ

where xid(t + 1) is the new position of the idth particle in the (t + 1)th iteration, pid(t) is the per-

sonal best position of the idth particle in the tth iteration, pgd(t) is the global best position of

the tth iteration. In the d dimension search area, with a mean μ = (p_id(t) + p_gd(t))/2, and a

standard deviation σ = |p_id(t) − p_gd(t)| of Gaussian distribution, the position of the ith parti-

cle will be updated. However, the BBPSO is not very effective in dealing with some multi-

peaked problems and may be caught in a local optimum. In order to strengthen the capability

of BBPSO, many researchers have made improvements on it.
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Based on the BBPSO, a nominalized bare bones PSO algorithm [25] is proposed to solve the

Traveling Salesman Problem, which has shown good performances. Zhang [26] designed a

cooperative coevolutionary bare-bones PSO for the design of large-scale supply chain net-

works with uncertainty.

In order to avoid getting trapped in a local optimum and increase the performance of the

BBPSO, Campos designed a new version of BBPSO named BBPSO with scale matrix adapta-

tion (SMA-BBPSO), where a t-distribution is used to select a specific position of the particular.

To improve the possibility of obtaining the best position of a particle, the strategy includes a

rule for adjusting the scaling matrix. The experiments proved the effectiveness of proposed

approach [27]. Guo proposes the pair-wise bare bones PSO (PBBPSO), which introduced a

pair-wise strategy to the BBPSO. The strategy can improve the diversity of the swarm and

avoid the excessively premature convergence. The particle pair will be chosen randomly at

first. And they will be divided into two groups. The one that has a better position will be at

leadership group and the other will be in the follower group. These two groups will be updated

in different rules. In order to verify the better capability of PBBPSO compared to other optimi-

zation algorithm, Guo used a set of well-known benchmark functions in this study [28]. To

alleviate the problem of premature convergence, Guo [29] designs a dynamic allocation bare

bones PSO (DABBPSO). There are two groups which named as main group (MG) and ancil-

lary group (AG) in this algorithm, which will work together to get the gbest. The focus of MG

is to mine and try to find the optimal point in the current local optimum, the aim of AG is to

explore the research area and give the whole swarm more chances to get rid of the local opti-

mum. The optimization capability of the proposed algorithm is confirmed by the experimental

results. Guo [30] proposes FHBBPSO, which introduce a fission strategy and a fusion strategy.

They cooperate to obtain the theoretical optimal value. The fission strategy used to split the

search space and the fusion strategy used to narrow the search space. The central group will

gradually absorb the marginal groups and eventually merge into one group. According to the

results of the test on the CEC2014, the proposed approach was confirmed to be an optimiza-

tion algorithm with excellent competitiveness when solving single-objective problems.

Materials and methods

The deep memory bare-bones PSO (DMBBPSO) algorithm is introduced in this section. The

DMBBPSO is consisted of a multiple memory storage mechanism and a Lay-er-by-layer acti-

vation strategy. The efficient deep memory topology enables the algorithm to choose its own

evolutionary direction, and to refine past choices without human inter-action.

Multiple memory storage mechanism

The multiple memory storage mechanism (MMSM) is designed to enrich the diversity of the

particle swarm. In MMSM, an extra storage is used to record the second best posi-tion of each

particle. Second best positions engage in the evolution to catalyze the global search of the parti-

cle swarm, which realize the self-correction of the particle swarm. Spe-cifically, the candidate

position of a particle is calculated by Eq 2:

g ¼ ðm p pðm; iÞt þ GbesttÞ=2

d ¼ jm pt pðm; iÞt þ Gbesttj

candidate xðm; iÞtþ1
¼ Nðg; dÞ

ð2Þ

where m_p_p is the memory list of the ith particle in the tth iteration, candidate_x(m, i)t+1 is
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the candidate position for the ith particle in the (t + 1)th iteration, Gbestt is the best position of

the particle swarm in the tth iteration, m is the depth of the memory space, N(γ, δ) is the

Gaussian distribution with a mean gamma and a standard deviation delta.

Layer-by-layer activation strategy

In this part, the Layer-by-layer activation strategy (LAS) is introduced to avoid prem-ature

convergence. The LAS is inspired by the structure of society of wild chimpanzee population,

where weak individuals will be abnegated due to limited living spaces. In LAS, candidates of

each particle will be assigned to compare with each layer of memories. The best m positions

will be retained and the rest will be abandoned, where m is the depth of the memory space.

Specifically, the memories of the ith particle in the tth iteration are calculated with Eq 3:

candi memory ¼ Fusionð½m p pðiÞt; candidate xðiÞt�Þ

m p pðm; iÞtþ1
¼ Selðcandi memory;mÞ

ð3Þ

where m_p_p(i)t+1 is the memory list of the ith particle in the t+1th iteration, candidate_x(i)t is

candidate positions calculated by Eq (3), Fusion() is a fusion method that combines all the

input data into an array for easy calculation, Sel(candi_memory, m) is a selection functions to

select best m positions from candi_memory, m is the depth of the memory space.

The complete process of DMBBPSO

The complete process of the DMBBPSO is presented in this session. After generating multiple

layers of memory, the layer-by-layer activation strategy is applied to each particle. In the itera-

tion, the M-layer memory of each particle will be stored by MMSM, and then the LAS is per-

formed to preserve the stronger values and eliminate the worse ones. In order to demonstrate

the algorithm more distinctly, the pseudo-code of the DMBBPSO is given in Algorithm 1, the

flowchart is shown in Fig 1.

Here we will discuss the time complexity of DMBBPSO. In each iteration, two layers of

memory of each particle are computed once with the global best particle respectively, so the

computation is 2n. Each particle will update the candidate position based on computation

results. After that, the global best particle will update its position according to the updated

positions of the all particles. The process of position-updating only requires comparison and

no computation. So this part will not generate any computation. To sum up, the time complex-

ity of DMBBPSO is o(n).

Results

Problem statement

Single-objective optimization problem aims to select the optimal solution from all alternatives

of a problem, which is still a very significant problem for research. It can be applied to practical

problems in various fields, such as engineering optimization problems and scientific applica-

tions, which are usually computationally expensive and complex.

Algorithm 1 Dynamic Particle Grouping
Require: Maximum number of iterations, T
Require: Fitness function, F
Require: Search Space, R
Require: Dimension of the function, D
Require: Number of particles, n
Require: Particle swarm, X = x1, x2, . . . xn
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Require: Memory personal best position of X, memory_pbest_position
Require: Global best position, gbest
Require: Depth of historical memory, M
1: Initialization:
2: for m = 1 to M step 1 do
3: Randomly generate the initial position of x(i)
4: memory_pbest_position(m, i) = x(i)
5: end for
6: Evolution:
7: t = 1
8: while t < T do
9: for m=1 to M step 1 do
10: for i=1 to n step 1 do
11: Calculate candidate_x(i) of each particle with Eq 2
12: end for
13: end for
14: for i=1 to n step 1 do
15: Merge memory_pbest_position(i) and candidate_x(i)
16: Update memory_pbest_position(i) by Eq 3
17: end for
18: Update gbest
19: t = t + 1
20: end while
21: Output gbest

In practical applications, optimization algorithms usually do not arrive at the theoretically

optimal solution. Therefore, to compare the performance of different algorithms, we use we

use the eventual error (EE) as the judgment criterion, where EE is defined as |final gbest value
− Theoretically optimal|. A smaller EE means that the algorithm has stronger optimization

capabilities.

Experimental methods

In this section, simulation tests are evaluated to verify the performance of DMBBPSO. To

enhance the persuasiveness of the experiments, cutting-edge and publicly available bench-

mark functions, CEC2017, are selected in experiments. CEC2017 includes 29 functions with

novel features, for example, composing test functions by extraction of features dimension-

wise from among functions, graded level of linkages, rotated trap functions, which is

designed for real parameter single objective optimization. The FisBBPSO, PBBPSO,

TBBPSO, ETBBPSO are selected to be control groups. Details of CEC2017BF are pretended

in Table 1. Details of experimental parameters are shown in Table 2. Details of the control

group are shown in Table 3.

Experimental results and discussion

The numerical results are shown in Tables 4 and 5. In f2, f3, f4, f5, f8, f10, f11, f12, f14, f16, f17, f18,

f19, f20, f21, f22, f23, f25, f26, f27, f28, the DMBBPSO gains the first rank. In f7, f13, f29, the

DMBBPSO gains the second rank. In f1, f9, f19, f24, the DMBBPSO gains the third rank. In f6
and f15, the DMBBPSO gains the fifth rank, these results suggest that in the face of valley-

shaped function, which is tending to produce multiple local optima, the search capabilities of

DMBBPSO prone to be limited. Specifically, numerical analyses are presented for critical dis-

cussions. In this paper, when we compare two algorithms means we compare their EEs.

• In f1, DMBBPSO gains the third rank, 28.09% worse than PBBPSO, the best algorithm.
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Fig 1. The flowchart of DMBBPSO.

https://doi.org/10.1371/journal.pone.0284170.g001
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Table 1. Experimental functions, the CEC 2017 benchmark functions, the search range for each function is [-100,100].

Types Function Theoretically Optimal

Unimodal Functions f1=Shifted and Rotated Bent Cigar Function 100

f2=Shifted and Rotated Zakharov Function 200

Simple Multimodal Functions f3=Shifted and Rotated Rosenbrock’s Function 300

f4=Shifted and Rotated Rastrigin’s Function 400

f5=Shifted and Rotated Expanded Scaffer’s f6 Function 500

f6=Shifted and Rotated Lunacek Bi_Rastrigin Function 600

f7=Shifted and Rotated Non-Continuous Rastrigin’s Function 700

f8=Shifted and Rotated Levy Function 800

f9=Shifted and Rotated Schwefel’s Function 900

Hybrid Functions f10=Hybrid Function 1 (N = 3) 1000

f11=Hybrid Function 2 (N = 3) 1100

f12=Hybrid Function 3 (N = 3) 1200

f13=Hybrid Function 4 (N = 4) 1300

f14=Hybrid Function 5 (N = 4) 1400

f15=Hybrid Function 6 (N = 4) 1500

f16=Hybrid Function 6 (N = 5) 1600

f17=Hybrid Function 6 (N = 5) 1700

f18=Hybrid Function 6 (N = 5) 1800

f19=Hybrid Function 6 (N = 6) 1900

Composition Functions f20=Composition Function 1 (N = 3) 2000

f21=Composition Function 2 (N = 3) 2100

f22=Composition Function 3 (N = 4) 2200

f23=Composition Function 4 (N = 4) 2300

f24=Composition Function 5 (N = 5) 2400

f25=Composition Function 6 (N = 5) 2500

f26=Composition Function 7 (N = 6) 2600

f27=Composition Function 8 (N = 6) 2700

f28=Composition Function 9 (N = 3) 2800

f29=Composition Function 10 (N = 3) 2900

Search Range: [-100,100]

https://doi.org/10.1371/journal.pone.0284170.t001

Table 2. The details of the test algorithm.

Parameters name value

Population size 100

Independent Runs 37

Search Range 1.00E+04

Max iteration 10000

https://doi.org/10.1371/journal.pone.0284170.t002

Table 3. The details of the control group.

Algorithm Delivery Year Reference

FisBBPSO 2019 [30]

PBBPSO 2017 [31]

TBBPSO 2022 [32]

ETBBPSO 2022 [33]

https://doi.org/10.1371/journal.pone.0284170.t003
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Table 4. Experimental results and average rank. EEs of DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ET-BBPSO. Mean EE is the average EE of 37 experiments, Std is

the standard deviation of 37 EEs, Rank is the rank competition results based on EEs. f1–f15.

Function Number Data Type DMBBPSO FisBBPSO PBBPSO TBBPSO ETBBPSO

f1 Mean EE 2.061E+04 2.174E+04 1.609E+04 2.403E+04 1.639E+04

Std 2.528E+04 2.596E+04 2.367E+04 3.460E+04 2.367E+04

Rank 3 4 1 5 2

f2 Mean EE 4.696E+96 1.241E+134 1.209E+137 7.324E+118 2.963E+128

Std 1.531E+97 6.908E+134 7.351E+137 3.439E+119 1.802E+129

Rank 1 4 5 2 3

f3 Mean EE 1.737E+06 2.995E+06 3.683E+06 1.924E+06 2.864E+06

Std 9.362E+05 2.325E+06 2.993E+06 7.351E+05 2.389E+06

Rank 1 4 5 2 3

f4 Mean EE 1.360E+02 1.527E+02 1.800E+02 1.737E+02 1.716E+02

Std 3.257E+01 5.018E+01 6.134E+01 5.786E+01 5.101E+01

Rank 1 2 5 4 3

f5 Mean EE 8.823E+02 1.024E+03 9.414E+02 9.294E+02 8.929E+02

Std 2.057E+02 1.466E+02 1.446E+02 1.631E+02 1.582E+02

Rank 1 5 4 3 2

f6 Mean EE 4.081E+01 3.988E+01 3.960E+01 3.729E+01 3.872E+01

Std 9.078E+00 7.429E+00 7.868E+00 7.132E+00 9.221E+00

Rank 5 4 3 1 2

f7 Mean EE 9.171E+02 9.579E+02 9.258E+02 9.669E+02 8.994E+02

Std 2.235E+02 1.555E+02 1.728E+02 1.926E+02 1.635E+02

Rank 2 4 3 5 1

f8 Mean EE 7.985E+02 9.591E+02 9.428E+02 9.370E+02 8.740E+02

Std 1.406E+02 1.574E+02 1.674E+02 1.840E+02 1.563E+02

Rank 1 5 4 3 2

f9 Mean EE 3.676E+04 3.677E+04 3.482E+04 3.592E+04 3.832E+04

Std 6.538E+03 7.240E+03 1.742E+04 1.090E+04 7.871E+03

Rank 3 4 1 2 5

f10 Mean EE 1.857E+04 2.145E+04 3.146E+04 2.571E+04 2.301E+04

Std 7.535E+03 8.098E+03 3.570E+03 5.069E+03 9.342E+03

Rank 1 2 5 4 3

f11 Mean EE 4.417E+02 7.161E+03 4.351E+03 5.135E+03 7.200E+03

Std 1.969E+02 8.651E+03 4.259E+03 1.018E+04 2.465E+04

Rank 1 4 2 3 5

f12 Mean EE 3.202E+07 4.587E+07 4.727E+07 4.967E+07 4.746E+07

Std 1.454E+07 2.502E+07 3.105E+07 2.764E+07 2.125E+07

Rank 1 2 3 5 4

f13 Mean EE 8.825E+03 1.169E+04 1.518E+04 6.120E+03 1.853E+04

Std 1.111E+04 1.321E+04 1.932E+04 5.777E+03 2.730E+04

Rank 2 3 4 1 5

f14 Mean EE 5.754E+05 1.347E+06 1.108E+06 1.341E+06 1.274E+06

Std 3.286E+05 8.529E+05 6.696E+05 7.917E+05 7.567E+05

Rank 1 5 2 4 3

f15 Mean EE 1.205E+04 1.041E+04 6.022E+03 7.596E+03 8.918E+03

Std 1.572E+04 1.240E+04 7.023E+03 7.655E+03 1.159E+04

Rank 5 4 1 2 3

https://doi.org/10.1371/journal.pone.0284170.t004
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Table 5. Experimental results and average rank. EEs of DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ET-BBPSO. Mean EE is the average EE of 37 experiments, Std is

the standard deviation of 37 EEs, Rank is the rank competition results based on EEs, f16–f29.

Function Number Data Type DMBBPSO FisBBPSO PBBPSO TBBPSO ETBBPSO

f16 Mean EE 5.240E+03 6.566E+03 8.887E+03 6.480E+03 6.624E+03

Std 6.981E+02 2.590E+03 2.706E+03 2.493E+03 2.414E+03

Rank 1 3 5 2 4

f17 Mean EE 4.723E+03 4.856E+03 6.005E+03 4.955E+03 5.171E+03

Std 7.406E+02 1.205E+03 1.513E+03 1.233E+03 9.961E+02

Rank 1 2 5 3 4

f18 Mean EE 2.636E+06 6.789E+06 7.217E+06 4.932E+06 6.719E+06

Std 1.177E+06 3.763E+06 5.035E+06 4.422E+06 3.899E+06

Rank 1 4 5 2 3

f19 Mean EE 3.645E+03 7.993E+03 7.453E+03 8.500E+03 9.853E+03

Std 5.753E+03 1.088E+04 9.692E+03 9.840E+03 1.355E+04

Rank 1 3 2 4 5

f20 Mean EE 3.112E+03 3.914E+03 4.983E+03 3.750E+03 3.631E+03

Std 4.908E+02 1.130E+03 1.504E+03 1.216E+03 1.141E+03

Rank 1 4 5 3 2

f21 Mean EE 1.055E+03 1.188E+03 1.125E+03 1.106E+03 1.109E+03

Std 1.274E+02 1.528E+02 1.697E+02 1.474E+02 1.502E+02

Rank 1 5 4 2 3

f22 Mean EE 2.013E+04 2.480E+04 3.222E+04 2.623E+04 2.698E+04

Std 7.371E+03 8.347E+03 4.319E+03 5.163E+03 8.592E+03

Rank 1 2 5 3 4

f23 Mean EE 1.266E+03 1.307E+03 1.334E+03 1.281E+03 1.287E+03

Std 9.421E+01 1.018E+02 1.484E+02 1.081E+02 1.166E+02

Rank 1 4 5 2 3

f24 Mean EE 1.901E+03 1.936E+03 1.839E+03 1.875E+03 1.929E+03

Std 1.561E+02 1.991E+02 1.657E+02 1.754E+02 2.645E+02

Rank 3 5 1 2 4

f25 Mean EE 7.521E+02 7.636E+02 7.607E+02 7.523E+02 7.595E+02

Std 5.244E+01 6.427E+01 5.656E+01 5.669E+01 6.666E+01

Rank 1 5 4 2 3

f26 Mean EE 1.390E+04 1.462E+04 1.437E+04 1.482E+04 1.467E+04

Std 1.786E+03 1.725E+03 1.554E+03 1.809E+03 1.580E+03

Rank 1 3 2 5 4

f27 Mean EE 5.000E+02 5.000E+02 5.000E+02 5.000E+02 5.000E+02

Std 3.535E-04 5.553E-04 3.064E-04 3.289E-04 5.400E-04

Rank 1 3 5 4 2

f28 Mean EE 5.000E+02 5.000E+02 5.000E+02 5.000E+02 5.000E+02

Std 3.393E-04 4.275E-04 3.206E-04 3.485E-04 4.873E-04

Rank 1 4 5 3 2

f29 Mean EE 4.290E+03 4.303E+03 4.374E+03 4.425E+03 4.267E+03

Std 668.2378204 868.1706402 796.0159241 590.8446466 796.7057972

Rank 2 3 4 5 1

Average Rank 1.586 3.655 3.621 3.035 3.103

https://doi.org/10.1371/journal.pone.0284170.t005
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• In f2, DMBBPSO gains the first rank, 100.00% better than TBBPSO, the second-best

algorithm.

• In f3, DMBBPSO gains the first rank, 9.72% better than TBBPSO, the second-best algorithm.

• In f4, DMBBPSO gains the first rank, 10.91% better than FisBBPSO, the second-best

algorithm.

• In f5, DMBBPSO gains the first rank, 1.19% better than ETBBPSO, the second-best

algorithm.

• In f6, DMBBPSO gains the fifth rank, 9.45% worse than TBBPSO, the best algorithm.

• In f7, DMBBPSO gains the second rank, 1.97% worse than ETBBPSO, the best algorithm.

• In f8, DMBBPSO gains the first rank, 8.63% better than ETBBPSO, the second-best

algorithm.

• In f9, DMBBPSO gains the third rank, 5.59% worse than PBBPSO, the best algorithm.

• In f10, DMBBPSO gains the first rank, 13.40% better than FisBBPSO, the second-best

algorithm.

• In f11, DMBBPSO gains the first rank, 89.85% better than PBBPSO, the second-best

algorithm.

• In f12, DMBBPSO gains the first rank, 30.20% better than TBBPSO, the second-best

algorithm.

• In f13, DMBBPSO gains the second rank, 44.20% worse than TBBPSO, the second-best

algorithm.

• In f14, DMBBPSO gains the first rank, 48.05% better than PBBPSO, the second-best

algorithm.

• In f15, DMBBPSO gains the fifth rank, 100.05% worse than PBBPSO, the best algorithm.

• In f16, DMBBPSO gains the first rank, 19.147% better than TBBPSO, the best algorithm.

• In f17, DMBBPSO gains the first rank, 2.74% better than FisBBPSO, the second-best

algorithm.

• In f18, DMBBPSO gains the first rank,46.54% better than TBBPSO, the second-best

algorithm.

• In f19, DMBBPSO gains the first rank, 51.10% better than PBBPSO, the second-best

algorithm.

• In f20, DMBBPSO gains the first rank, 14.29% better than ETBBPSO, the second-best

algorithm.

• In f21, DMBBPSO gains the first rank, 4.67% better than TBBPSO, the second-best

algorithm.

• In f22, DMBBPSO gains the first rank, 18.82% better than ETBBPSO, the second-best

algorithm.

• In f23, DMBBPSO gains the first rank, 1.22% better than TBBPSO, the second-best algorithm.

• In f24, DMBBPSO gains the third rank, 3.35% worse than PBBPSO, the best algorithm.
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Fig 2. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f1.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g002

Fig 3. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f2.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g003

Fig 4. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f3.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g004
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Fig 5. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f4.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g005

Fig 6. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f5. (a)

iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g006

Fig 7. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f6.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g007
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Fig 8. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f7. (a)

iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g008

Fig 9. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f8. (a)

iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g009

Fig 10. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f9.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g010
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Fig 11. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f10. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g011

Fig 12. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f11. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g012

Fig 13. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f12. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g013
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Fig 14. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f13. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g014

Fig 15. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f14. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g015

Fig 16. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f15. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g016
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Fig 17. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f16. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g017

Fig 18. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f17. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g018

Fig 19. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f18. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g019
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Fig 20. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f19. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g020

Fig 21. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f20.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g021

Fig 22. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f21.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g022
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Fig 23. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f22. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g023

Fig 24. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f23.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g024

Fig 25. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f24.

(a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g025
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Fig 26. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f25. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g026

Fig 27. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f26. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g027

Fig 28. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f27. (a)

iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g028
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• In f25, DMBBPSO gains the first rank, 0.02% better than TBBPSO, the second-best

algorithm.

• In f26, DMBBPSO gains the first rank, 3.26% better than PBBPSO, the second-best

algorithm.

• In f27, four algorithms give the same results.

• In f28, four algorithms give the same results.

• In f29, DMBBPSO gains the second rank, 0.54% worse than ETBBPSO, the best algorithm.

To perform the convergence situation across iterations, EEs in different iterations for

DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO is shown in figures. The conver-

gence curve of f1 to f29 is shown in Figs 2–30, separately. The scale on the vertical axis repre-

sents the value of EE. The scale on the horizontal axis represents iteration times, 10 on the hor-

izontal axis represents 1,000 iterations.

To conclude, in a total of 29 benchmark functions, the DMBBPSO ranked first in 21 func-

tions and ranked second in 3 functions. In addition, a rank competition is designed based on

Fig 29. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO, f28. (a)

iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g029

Fig 30. Comparison of convergence speed between DMBBPSO, FisBBPSO, PBBPSO, TBBPSO and ETBBPSO,

f29. (a) iteration 0–6000, (b) iteration 6000–10000 the unit is 100 iterations.

https://doi.org/10.1371/journal.pone.0284170.g030
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EEs. In each benchmark func-tion, the first, second, third, fourth and fifth functions will

receive 1, 2, 3, 4 and 5 points. The average rank of DMBBPSO is 1.586, which own the best per-

formance in the five algorithms.

The excellent optimization capability of the DMBBPSO is derived from the collaboration

between MMSM and LAS. The MMSM catalyzes a set of deep memories to increase the diver-

sity of the particle swarm. The LAS enables the particle swarm to avoid premature convergence

while enhancing local search capabilities. Compared to traditional optimization tools,

DMBBPSO does not require pre-training and parameter tuning. The simple structure and lin-

ear time complexity also allow DMBBPSO to be rapidly applied to a variety of practical

applications.

Nevertheless, we find that DMBBPSO does not escape from the local optimum in all cases.

We believe this is due to the fact that the current particle population does not possess enough

memory depth to go back far enough in the past during the evolutionary process. On the other

hand, blindly increasing the memory depth increases the computational effort, which leads to

the algorithm running slowly.

Therefore, how to improve the performance of the algorithm while maintaining the compu-

tational speed is the main direction of future work. In addition, applying the evolutionary

strategy of DMBBPSO to a multi-objective optimization algorithm is a feasible future work.

Conclusions

A deep memory bare-bones particle swarm optimization algorithm (DMBBPSO) is proposed

in this paper for single-objective optimization problems. The DMBBPSO improves the accu-

racy and stability of traditional BBPSO while maintaining linear time complexity. Compared

to traditional optimization tools, DMBBPSO does not require pre-training and parameter tun-

ing. The simple structure and linear time complexity also allow DMBBPSO to be rapidly

applied to a variety of practical applications. Specifically, the DMBBPSO combines a multiple

memory storage mechanisms (MMSM) and a layer-by-layer activation strategy (LAS). The

MMSM enables an extra memory space for all particles, which is used to increase the diversity

of every single particle. The cooperation of MMSM and LAS ensures the algorithm is able to

implement high-precision local search while keeping a wide-range global search. Finally, simu-

lation tests are implemented with the CEC 2017 benchmark functions. In a total of 29 bench-

mark functions, the DMBBPSO ranked first in 21 functions and ranked second in 3 functions.

The average rank of DMBBPSO is 1.586, which own the best performance in the five algo-

rithms. Experimental results confirmed that the DMBBPSO is able to present high precision

results for single-objective optimization problems.
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