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Abstract

Despite numerous innovative designs having been published for phase I drug-combination dose 

finding trials, their use in real applications is rather limited. As a working group under the 

American Statistical Association Biopharmaceutical Section, our goal is to identify the unique 

challenges associated with drug combination, share industry’s experiences with combination trials, 

and investigate the pros and cons of the existing designs. Toward this goal, we review seven 

existing designs and distinguish them based on the criterion of whether their primary objectives 

are to find a single maximum tolerated dose (MTD) or the MTD contour (i.e., multiple MTDs). 

Numerical studies, based on either industry-specified fixed scenarios or randomly generated 

scenarios, are performed to assess their relative accuracy, safety, and ease of implementation. 

We show that the algorithm-based 3+3 design has poor performance and often fails to find the 

MTD. The performance of model-based combination trial designs is mixed: some demonstrate 

high accuracy of finding the MTD but poor safety, while others are safe but with compromised 

identification accuracy. In comparison, the model-assisted designs, such as BOIN and waterfall 
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designs, have competitive and balanced performance in the accuracy of MTD identification 

and patient safety, and are also simple to implement, thus offering an attractive approach to 

designing phase I drug-combination trials. By taking into consideration the design’s operating 

characteristics, ease of implementation and regulation, the need for advanced infrastructures, as 

well as the risk of regulatory acceptance, our paper offers practical guidance on the selection of a 

suitable dose-finding approach for designing future combination trials.
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Introduction

In the era of precision medicine, drug combinations have been widely used to enhance 

treatment efficacy and overcome the resistance of monotherapy1,2, especially in oncology. 

Notable drug-combination trials include the combination of trastuzumab with chemotherapy 

for HER2-positive metastatic breast cancer3, BRAF plus MEK inhibitors for melanoma 

with BRAF V600 mutations4, and the combination of neratinib and temsirolimus for 

multiple solid tumors5, among others. In the past decades, the rapid development of 

immuno-oncology leads to immunotherapy becoming a backbone option for combination 

in many cancer treatments and in the year of 2019 alone, there are 592 active combination 

dose-finding studies registered in clinicaltrials.gov. Due to drug–drug interaction, the 

combination of multiple drugs often demonstrates different toxicity profiles from that of 

each individual drug. Phase I trial is critically important to assess and ensure the safety of 

drug combinations. The primary objective of phase I combination trials is to identify the 

maximum tolerated dose (MTD) or MTDs, defined as the dose combination with the joint 

dose-limiting toxicity (DLT) probability that is closest to a pre-specified target level, from a 

range of possible dose combinations of the considered agents6.

Because of unknown drug–drug interaction effects, dose-finding trials for combined drugs 

should be conducted with more caution and care than monotherapy6–8. In contrast to single-

agent phase I trials, which usually assume a monotone dose-toxicity relationship and only 

perform one-dimensional searching, drug-combination trials typically need to test multiple 

doses of each of the combined drugs to establish the MTD9, leading to a multi-dimensional 

dose-searching space. As a result, the number of dose combinations to be explored in a 

combination trial is much larger than that of a single-agent trial. In addition, due to unknown 

drug–drug interactions, the toxicity order among dose combinations is only partially known 

(see the left panel of Figure S1 of Supplementary Materials), making the determination 

of dose escalation/de-escalation complicated8. For example, to escalate the dose, there are 

three options, including increasing the dose of one drug while fixing the dose of the other 

drug, increasing the dose of one drug while decreasing the dose of the other drug, or 

simultaneously increasing the dose of each drug, and we must determine which option is 

the most appropriate. Another important aspect of combination trials is the existence of 

the MTD contour (i.e., multiple MTDs) in the two-dimensional dose-searching space, as 

shown in the right panel of Figure S1 of Supplementary Materials. Thus, unlike single-agent 
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trials, the objective of combination trials can be to find a single MTD or to find the MTD 

contour. Identification of the MTD contour is more challenging than identification of a 

single MTD as the former requires a more thorough exploration and learning of the whole 

dose combination space, thus demanding additional design considerations.

Industry’s experiences with combination trial designs

Our working group consists of biostatisticians from pharmaceutical companies, ranging 

from large international companies to small regional startups, regulatory agencies, and 

academia. Although experiences with combination trial designs have varied across different 

pharmaceutical companies, the consensus of the working group is that, (i) compared to 

single-agent trials, biostatistical and clinical teams are substantially less familiar with 

designing combination trials that have desirable properties (for example, modeling entire 

dose-DLT relationship in multiple dimensions followed by appropriately guided dose 

decisions), and (ii) the lack of clear guidance on the pros and cons of existing combination 

designs further limits research team’s ability to choose a proper design for combination 

trials. As a result, pharmaceutical companies often rely on an oversimplified approach, 

which involves only varying the dose levels of one drug while fixing the other drug’s dose. 

When the latter is a marketed drug, its dose is often fixed at the dose recommended on 

the label, or the MTD identified from a previous monotherapy study, or one dose level 

lower. Therefore, the combination trial reduces to a one-dimensional dose escalation study. 

This approach is simple and allows the use of the conventional single-agent dose-finding 

methods (e.g., the 3+3 design) to find an MTD, but it restricts the dose finding to a 

small subset of possible combinations, thus increasing the chance of missing the MTD 

and failing to establish a clinically meaningful recommended phase II dose (RP2D). In 

addition, the approach of fixing the dose of one drug also largely limits the ability to 

estimate the potential synergistic effect between drugs. Another commonly used approach 

is to pre-select a subset of combinations, where the doses of both drugs vary, and makes 

strong assumptions that they follow a specific known toxicity order. This approach also 

allows the use of single-agent trial designs, but suffers from the same drawback. In addition, 

it is often challenging, if possible, to pre-specify the toxicity order of different combinations 

due to unknown drug–drug interactions. The members of the working group are aware 

of the limitation of these oversimplified approaches and the availability of novel designs 

that are capable of finding the MTD without restricting to a subset of combinations10–35, 

but few pharmaceutical companies have consistently applied these novel designs in their 

trials due to lack of guidance on the operating characteristics of these designs. Some 

of our working group members had experiences in some designs, such as the extension 

of the model-based Bayesian logistic regression method (BLRM)32,36, an ad hoc design 

based on the two-dimensional pool-adjacent-violators algorithm37, and Bayesian optimal 

interval (BOIN) drug-combination design25,38. While some designs (e.g., BLRM) have 

some clear advantages that the model can readily be extended for multiple (two or more) 

drug combinations and the mathematical construct allows formal incorporation of historical 

and emerging data (from single agent studies as well as combination studies), it is also 

recognized that the use of these methods in real trials is rather limited to only a few 
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organizations due to the unawareness of benefits of such designs over simple-to-use designs, 

in addition to lack of experience in delineating model parameters.

The objective of this paper is to remove these barriers and provide practical guidance 

for choosing appropriate designs for drug-combination dose-finding trials where more 

than one dose level for each single drug is planned. We review seven existing drug-

combination designs and conduct a comprehensive Monte Carlo study (i.e., simulations) 

to compare these designs’ relative performance in accuracy and safety. In the literature, 

there are some existing studies on comparisons of drug-combination designs, however, 

most are based on limited fixed scenarios and only consider designs for finding a single 

MTD39,40. Different from these publications, we cover algorithm-based, model-based, and 

model-assisted methods, and further distinguish them to methods finding a single MTD 

and methods finding multiple MTDs. To ensure the practical applicability and generality 

of our results, we compare the designs under both a set of representative scenarios and 

a large number of randomly generated scenarios. The set of representative scenarios is 

elicited from working group members who have extensive practical experience in the 

pharmaceutical industry to represent what may occur in practice. To avoid scenario selection 

bias, the working group members who conduct the simulation are excluded and “blinded” 

from the scenario elicitation. The operating characteristics of the designs are assessed and 

compared using a comprehensive set of performance metrics, including accuracy and safety. 

To confirm the generality of our finding, we further perform simulation studies using a large 

number of scenarios randomly generated based on a novel random scenario generator. All 

the simulation studies conducted in this paper are independently validated by the group 

members. To the best of our knowledge, this is the first drug-combination comparable study 

that uses random scenarios, and separates scenario elicitation from simulation comparison, 

and validates the results using random scenarios. To promote the use of innovative designs 

in real trials, we summarize available software applications for implementing the drug-

combination designs.

Review of existing combination designs

Because of the existence of the MTD contour, when designing a drug-combination trial, the 

first important question requiring careful consideration is

Are we interested in finding a single MTD or multiple MTDs?

The answer to this question determines the choice of different design strategies for 

combination trials (see Figure 1). This important question, unfortunately, is largely 

ignored by many designs. Deciding whether to find one or multiple MTDs requires close 

collaboration between statisticians and clinical investigators so that the need for current 

study and prospective of future studies can be accurately reflected. In general, if the 

investigators are interested in only one potential dose combination for subsequent phase 

II trials, it is reasonable to find a single MTD. On the other hand, if the investigators 

are interested in identifying the most promising combination with the highest synergistic 

effect, among the MTDs, as the RP2D, then finding multiple MTDs is more suitable. In 

contrast to finding a single MTD, where the trial can be stopped as long as only one MTD 

is identified, finding multiple MTDS requires a larger sample size to perform a complete 

Liu et al. Page 4

Stat Biopharm Res. Author manuscript; available in PMC 2023 August 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



search of the entire dose space to ensure that no MTD will be missed. Thus, setting the 

objective as finding one or multiple MTDs also needs to take the trial budget and duration 

into consideration. In this paper, we review study designs for finding one MTD, followed by 

the designs for finding multiple MTDs.

Finding one MTD

Over the last decade, numerous designs have been proposed for finding one MTD in phase 

I combination trials. Similar to the single-agent designs41, drug-combination designs also 

can be generally classified into three categories: algorithm-based, model-based, and model-

assisted designs. In this section, we will review some key features of each type of design 

and introduce some representative examples, while delegating the technical details of each 

design to Supplementary Materials.

(1) Algorithm-based designs

Algorithm-based designs use simple, prespecified rules to guide the dose escalation/de-

escalation process. Typical examples include the 3+3 and the two-dimensional up and down 

designs31. To implement the 3+3 design in combination trials, a subset of doses should first 

be selected from the two-dimensional dose-searching space, and then the standard 3+3 rule 

is applied to the selected dose subset. The algorithm-based designs are generally easy to 

understand and simple to implement. However, they adopt ad hoc and not well statistically 

justified rules for dose finding, usually leading to inferior MTD identification accuracy and 

poor patient allocation.

(2) Model-based designs

The model-based designs employ statistically sound models to quantify the dose-toxicity 

relationship, and they use all available data for model estimation and dose recommendation 

at each decision point. Most of the model-based drug-combination designs are extensions 

of some well-known single-agent designs, such as the continual reassessment method 

(CRM)42, in the sense that the drug-combination designs reduce to their monotherapy 

counterparts when only one drug is considered marginally. Albeit different in modeling, 

the following dose-finding strategy is usually adopted for model-based combination trial 

designs:

1. Posit a parametric/non-parametric probability model to quantify the dose-toxicity 

relationship.

2. Based on the observed data accumulated from the treated patients, continuously 

update the model estimate using either a Bayesian or frequentist approach, and 

assign the incoming new patients to the dose combination according to some 

predetermined criteria, such as the dose combination for which the estimated 

DLT rate is closest to the target, or the combination that maximizes the 

probability in a target interval while employing the escalation with overdose 

control principle.

3. Upon the end of the trial, identify the MTD based on the estimated toxicity 

probabilities of the dose combinations.
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Most of the existing designs for combination trials are model-based (see Figure 1). In 

our paper, we particularly focus on three representative model-based designs that are 

widely cited in the combination design literature, including the copula method34, the 

partial ordering CRM (POCRM)20, and the two-dimensional Bayesian logistic regression 

method (BLRM)32. The copula method models the joint toxicity probability of the combined 

drug by linking the marginal toxicity probabilities of each individual drug based on the 

copula regression model; the POCRM prespecifies several complete toxicity orders (or 

models) for all the dose combinations, using the observed data to select the best one and 

making the corresponding dose-assignment decisions based on the single-agent CRM; the 

BLRM first uses logistic regression models to quantify the marginal toxicity probabilities 

of each drug, and then links these two marginal models based on an association parameter. 

Both Copula and BLRM characterize drug-drug interaction effects by a model parameter, 

therefore prior information on drug-drug interaction can be explicitly incorporated. The 

statistical details of the three designs are provided in Supplementary Materials. Model-based 

designs often require a rule-based start-up phase to collect more data to ensure reliable 

and stable dose assignment at the beginning of the trial when data are very sparse. 

We implement the same start-up phase for the three considered model-based designs by 

randomly escalating one dose level of one drug for cases of no DLT. The model-based drug-

combination designs are more statistically justified, and thus generally offer more favorable 

performance than the algorithm-based methods. When both drugs are previously marketed, 

each drug has been thoroughly studied when administered alone prior to the combination 

trial, which provides valuable prior information on the marginal toxicity rates. Many model-

based designs can naturally incorporate the prior information in the model, which is an 

important advantage. On the other hand, the model-based designs need complex statistical 

modelling and computationally intensive model re-estimation at each decision making, and 

are often viewed as “black-box” by clinicians. In addition, to obtain appropriate operating 

characteristics, these methods for drug-combination trials require extensive model and prior 

calibration, which can be challenging even for biostatisticians. Of note, for single-agent 

model-based designs, simulation-free methods to check the operating characteristics have 

been developed43. However, as far as we are aware, there are no simulation-free approaches 

for drug-combination designs.

(3) Model-assisted designs

Recently, a novel class of trial designs, known as model-assisted designs, is getting more and 

more attention in practice due to their simplicity and desirable performance41,44,45. Model-

assisted designs can be considered as a middle ground between model-based and algorithm-

based designs. Similar to the model-based designs, model-assisted designs use simple 

probability models for efficient decision making. Before trial initiation, the dose escalation/

de-escalation rules of model-assisted designs can be pretabulated in a similar fashion as the 

algorithm-based designs. For single-agent dose finding, examples of model-assisted designs 

include the Bayesian optimal interval (BOIN) design38 and the keyboard design46, among 

others44. Extensive simulation studies have shown that single-agent model-assisted designs 

yield performance comparable to model-based designs, but they are simpler to implement 

and free of possible irrational decision issues caused by model misspecification41,44.
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Both the BOIN and keyboard designs have been extended to drug-combination trials25,35. In 

this paper, we only consider the BOIN combination design25, because the performance of 

the keyboard combination design is similar to that of BOIN. Since BOIN makes decisions 

based on the data observed from the current dose only, the escalation/de-escalation rule 

of single-agent BOIN can be directly used for combination trials. To decide the next dose 

combination, suppose that the current dose is j, k  and when escalation/de-escalation is 

needed, the BOIN combination design chooses the next dose from an admissible escalation 

set j + 1, k , j, k + 1  (or an admissible de-escalation set j − 1, k , j, k − 1 ), whichever 

has the highest posterior probability that the true DLT rate is located within the “stay” 

interval of BOIN. A prominent feature of the BOIN combination design is that its dose-

assignment rule, based on the Bayesian posterior probabilities, can be equivalently translated 

into a rule based on a so-called desirability score. Technically speaking, given specific DLT 

data, the desirability score is defined as the rank of that outcome among all possible DLT 

outcomes in terms of the posterior probability that the true DLT rate is located within the 

stay interval. Thus, choosing a combination with the highest desirability score is equivalent 

to choosing a combination with the highest posterior probability of stay. In other words, 

the phase I combination trials based on BOIN can be conducted solely based on a dose 

escalation/de-escalation decision table and a desirability score table (see an example in 

Table S1 of Supplementary Materials), which makes the implementation much simpler, as 

compared to model-based designs in the setting of combination trials.

Finding multiple MTDs

Due to the existence of the MTD contour and the fact that the drug–drug interactions 

may cause varying efficacy effects among the multiple MTDs, it is also of interest to find 

multiple MTDs for many combination trials. In this case, the efficacy of the multiple MTDs 

can be further evaluated in cohort expansion studies to determine a good RP2D. Although 

some of the model-based designs for finding a single MTD are capable of estimating the 

combination space, they tend to have a high misidentification rate of the MTD contour. This 

is because the designs for finding a single MTD tend to yield restricted exploration within 

the neighborhood of a certain MTD, thus fewer patients would be allocated to other areas 

and the estimation of the true dose-toxicity surface suffers from high variability due to the 

sparse data.

To avoid missing MTDs, it is desirable to explore the entire dose matrix in a trial with 

limited sample size. Finding multiple MTDs is substantially more challenging than finding 

a single MTD. Research on finding multiple MTDs is particularly limited. To the best of 

our knowledge, we can only identify five relevant designs24,27,28,30,33 from the literature 

(see Figure 1). We choose the product of independent beta probabilities escalation (PIPE) 

design24 and the waterfall design27 in our study. The PIPE design is a curve-free approach, 

where a Bayesian independent beta model is devised for each dose combination. At each 

decision time, a product of independent beta tail probabilities is calculated to choose the 

next dose combination amongst the admissible doses. Developed from another perspective, 

the waterfall design implements a divide- and-conquer strategy for finding multiple MTDs. 

Specifically, the waterfall design first partitions the two-dimensional dose-finding study into 

a series of simpler one-dimensional dose-finding subtrials so that the single-agent BOIN 
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design can be applied to each subtrial. The starting dose level of each subtrial is informed by 

its preceding subtrial. At the end of the trial, the waterfall design collects all observed data 

from dose combinations that have been tested to estimate the MTD contour.

Incorporating Historical Data

Before conducting a drug-combination trial, each individual drug under investigation has 

been extensively studied, leading to rich historical information. Both the model-based and 

model-assisted designs can incorporate such prior data into the trial. In general, there are 

two main approaches to borrowing historical information. The first approach is to directly 

integrate the marginal information for each individual drug, which is the proposal of the 

BLRM and copula designs. This is because these two designs model the joint toxicity 

probabilities by linking the marginal toxicity probabilities of individual drugs. On the other 

hand, an indirect approach is to first use some joint modeling approaches to obtain joint 

prior probabilities based on the marginal data and then indirectly integrate the derived prior 

distributions for the joint toxicity probabilities into the designs. This approach can be used 

in the POCRM, BOIN, PIPE, and waterfall designs. For fair comparisons, we only consider 

the situation where no prior information from historical trials is incorporated, and we 

will investigate the performance of different designs (combined with different information 

borrowing approaches) in another paper.

Software to Implement the Combination Trial Designs

Several software applications have been developed to implement the aforementioned drug-

combination trial designs. A glimpse of these available applications can be found in Table 

1. Most of the software applications are freely available. For example, R packages have 

been developed for some designs such as BLRM, POCRM, and BOIN. Implementation of 

these R packages, however, requires prior R programming skills. User-friendly software 

applications with graphical interfaces, such as web-based R shiny and desktop applications 

for BOIN, POCRM, and waterfall designs, are also available to facilitate and simplify the 

design implementation among non-statisticians or non-R users, see Figures S2 (for BOIN) 

and S3 (for POCRM) in Supplementary Materials for more details. Some designs, such as 

BLRM and PIPE, are also included in the commercial software “EAST” developed by Cytel. 

Additionally, some applications also can generate design protocol templates (e.g., the BOIN 

web and desktop applications), which provides further convenience in design preparation 

and regulatory review.

Monte Carlo experiment

Simulation setting

We conducted a Monte Carlo experiment to compare the operating characteristics of the 

3+3, Copula, POCRM, BLRM, and BOIN designs for finding a single MTD, and another 

study to compare the PIPE and waterfall designs for finding multiple MTDs, based on the 

target DLT probability of 25%. The performance of each design was evaluated using either 

fixed or random scenarios for trials combing two drugs. For fixed-scenario simulation, 

nine different dose-toxicity scenarios with 2 × 3 and 2 × 4 dose combinations were 
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considered, as shown in Figure 2. These fixed scenarios were specified by experienced 

biostatisticians among us, and they reflected many practical dose-toxicity situations that 

might be encountered in real combination trials. To avoid cherry-picked scenarios that may 

incur selection bias, we also performed the simulation study by randomly generating 3000 

scenarios for each of the 2 × 4, 3 × 5 and 4 × 4 dose spaces, respectively. The details of 

the random-scenario generating algorithm can be found in the Supplementary Materials. We 

uniformly assumed one, two, or three MTDs (only for the 3 × 5 and 4 × 4 space) may 

exist in each scenario. The maximum sample size for fixed scenarios was 36, while that for 

random scenarios varied from 27 to 48. All designs started at the lowest dose combination, 

and made dose-assignment decisions after each cohort of three patients had been treated. 

Each trial would not stop until exhaustion of the sample size, unless early termination 

due to excessive toxicity at the lowest dose combination was needed. The parameters of 

each design were well-calibrated with the details given in the Supplementary Materials. To 

ensure a fair comparison, no historical data were incorporated into the model-based and 

model-assisted designs. For the model-based designs, the prior distributions were specified 

such that the prior toxicity probabilities of each dose combination are comparable, i.e., 

similar. More details about the prior calibration process can be found in Section F of 

Supplementary Materials. For the 3+3 design, the selected dose levels are displayed in 

Figure 2, and cohort expansion was conducted at the estimated MTD to match the sample 

size of other designs. The results of all designs were computed using R. To ensure unbiased 

comparison, the simulation study was initially performed by XY (fixed scenarios) and HZ 

(random scenarios), and then the results were further validated by RL.

Performance metrics

To fully characterize the operating characteristics of each design, the following metrics were 

computed based on 5000 simulated trials under each fixed scenario, respectively, and 500 

simulated trials under each random scenario.

(A) Accuracy—A1. To evaluate the designs aimed at finding one MTD, we report the 

percentage of correct selection, which is defined as the percentage of simulated trials in 

which one of the target doses is correctly selected as the MTD. For designs aimed at finding 

multiple MTDs, we report the percentage of trials selecting at least one MTD, as well as 

the percentage of trials selecting all correct MTDs (i.e., the selected dose combinations are 

identical to the true MTDs). When all the dose levels are above the MTD (i.e., the DLT 

probability of the lowest dose ≥ 33%), the correct selection percentage is defined as the 

percentage of early terminated trials.

A2. The percentage of patients treated at the MTDs across the simulated trials. When all the 

dose levels are above the MTD (i.e., the DLT probability of the lowest dose ≥ 33%), we use 

the percentage of remaining patients who are not enrolled in the trial for this metric.

(B) Safety—B1. The percentage of simulated trials in which a toxic dose with the true 

DLT probability ≥ 33% is selected as the MTD.

B2. The percentage of patients treated at the toxic doses with true DLT probabilities ≥ 33%.
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(C) Computation time—D1. The average time needed for simulating 2000 trials.

Results

The simulation results based on fixed scenarios of the designs finding one MTD and 

multiple MTDs are displayed in Figures 3 and 4, respectively. In terms of random scenarios, 

we considered four settings: (i) the combination space with 27 patients; (ii) the combination 

space with 36 patients; (iii) the combination space with 48 patients; and (iv) the combination 

space with 48 patients. The operating characteristics for each design under random scenarios 

were summarized in boxplots, see Figure 5 for the designs finding one MTD, and Figure 

6 for the designs finding multiple MTDs. The detailed simulation results stratified by the 

number of MTDs presenting in the dose space are reported in Supplementary Materials.

Finding one MTD

(A) Accuracy—Figure 3 panels (a) and (b) show that, under the nine fixed scenarios, the 

widely-used 3+3 design is outperformed by the other four designs in terms of the accuracy 

of correctly identifying the MTD. The performance of the 3+3 design heavily relies on the 

subset of selected doses: when the subset does not contain any MTD (e.g., scenario 7), the 

MTD selection percentage of the 3+3 design is 0. The performance of the model-based 

designs such as BLRM and POCRM is sensitive to the scenarios, and they may achieve low 

selection percentages in some specific situations such as in scenarios 2 and 8.

In addition to fixed scenarios, random scenarios contain more objective, yet still reasonable 

situations. Figure 5 panels (a) and (b) as well as Figure S5 of Supplementary Materials 

demonstrate that the accuracy of designs increases with the number of MTDs presenting 

in the combination space and the sample size. Overall, BOIN stands out as possessing the 

highest MTD identification accuracy among the considered designs. In terms of patient 

assignment, the BLRM and POCRM designs allocate slightly more patients to the MTDs 

than BOIN and Copula.

(B) Safety—Panels (c) and (d) in Figures 3 and 5 show that the 3+3 design is least likely 

to select dose combinations with the toxicity probabilities ≥ 33% as the MTD, while also 

allocating much fewer patients to overdoses. However, such a safety benefit comes at a 

price of inferior MTD identification accuracy. Among the model-based and model-assisted 

designs, BLRM is relatively safer in terms of overdose selection and patient allocation, 

POCRM is the most aggressive design, and BOIN is in between.

Early termination

In Supplementary Materials, we present an additional simulation study, for the designs 

aimed at one MTD, by allowing for early termination if 15 patients have been treated in 

the 2 combination trial and more than six patients have been assigned to a certain dose. 

According to Figure S9 of Supplementary Materials, BOIN achieves the highest correct 

selection percentage with comparably small sample size. The trial efficiency index, defined 

as the ratio of the correct MTD selection percentage divided by the average sample size, 
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shows that both the BLRM and BOIN are more efficient than the other designs in MTD 

identification.

Finding multiple MTDs

To evaluate the performance of the designs for finding multiple MTDs, we considered 

five metrics including the percentage of trials selecting one MTD, the percentage of trials 

selecting all MTDs, the percentage of patients at MTD, the percentage of patients at 

overdoses, and the percentage of trials selecting at least one overdose. As shown in Figure 4, 

where nine fixed scenarios are considered, the waterfall design outperforms the PIPE design 

in terms of MTD selection accuracy. The waterfall design treats slightly more patients at the 

MTDs (as well as the overdoses) than the PIPE design. Furthermore, according to Figure 

S10 in the Supplementary Materials, the two designs have similar percentages of selecting 

overdoses as the MTDs. The results based on the random scenarios reveal similar patterns 

for these two designs in terms of accuracy, as displayed in Figure 6. A partial reason why the 

waterfall design performs better than PIPE is that the divide-and-conquer strategy employed 

by the waterfall design leads to more thorough exploration of the drug-combination space, 

and thus increases the MTD identification accuracy. In terms of safety, the waterfall design 

treats fewer patients at overdoses, however, it has a higher percentage of trials selecting 

overly toxic doses as the MTDs than the PIPE design. This is because the waterfall design 

tends to select more doses (i.e., for each row in the drug-combination space) than the PIPE 

design. Such a property is a double-edged sword: on one hand, it yields a higher percentage 

of selecting all correct MTDs; on the other hand, when some rows only have overly toxic 

doses, the waterfall design sometimes would select a lower, but still toxic dose as the 

row-specific MTD for each of those rows.

Computation time

We reported the average time needed to simulate 2000 trials for each design in Table 2. 

It shows that the algorithm-based 3+3 design, and the model-assisted BOIN and waterfall 

designs only needed a few seconds for running 2000 simulated trials, which indicates 

that they can save more time in the simulation for trial preparation. On the other hand, 

the model-based designs needed repeated model fitting at each decision-making time. For 

example, it took on average more than two hours for the BLRM and Copula designs to 

generate the operating characteristics based on 36 patients with 11 interim analyses for a 

total of 12 cohorts of patients. Hence, these designs took much more time and effort for 

simulating trials.

Discussion

In terms of finding one MTD, our simulation results show that the 3+3 design is excessively 

conservative and has poor accuracy in identifying the MTD and patient allocation at the 

MTD. On the other hand, the performance of the model-based design is mixed: The POCRM 

design has high MTD identification accuracy, but is more likely to overdose the patients. 

The BLRM and Copula methods have good safety profiles, but perform relatively poorly in 

the accuracy of finding the MTD. For POCRM, BLRM and Copula methods, their respective 

safety or accuracy issues can be avoided by further tunning the corresponding parameters, 
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however, might at the price of deterioration of other design properties, as there is always 

a tradeoff between accuracy, efficiency, and safety. We have replicated the same simulation 

studies based on other noninformative priors for the model-based designs, and found that 

the results are nearly unchanged given that the prior distributions are non-informative, 

comparable between designs, and carefully calibrated. The model-assisted BOIN design 

generally yields well-balanced operating characteristics in terms of accuracy and safety.

For finding multiple MTDs, the waterfall design on average performs better than PIPE in 

finding the multiple MTDs and is relatively safer in terms of patient allocation. However, 

it also generally yields a higher chance of selecting an overly toxic dose. In terms 

of implementation, the model-assisted BOIN and waterfall designs are simple, virtually 

calibration-free, and require minimal computational effort and infrastructure to implement. 

In contrast, the model-based designs are more complicated and require highly specialized 

statistical skills and extensive, computation-intensive simulation to choose and calibrate the 

model structure and prior.

There are several limitations of our present paper. First of all, for the purpose of 

ensuring a fair comparison, we do not consider informative priors for the model-based 

and model-assisted designs. Therefore, our conclusions in terms of the accuracy and safety 

of the designs only apply to the situation where no prior data are limited or are not 

incorporated into the combination trial. We intend to investigate the design performance 

under informative priors in a separate paper. However, our conclusions in terms of the 

robustness and easiness of implementation of the considered designs will be still valid in 

these situations. Another limitation of the paper is that we only consider trials combing two 

drugs. Some designs, such as the BLRM and BOIN designs, are also applicable to trials 

combining more than two drugs. Based on our extensive experience, our findings in this 

paper still hold for trials investigating more than two drugs.

Our simulation study assumes that the DLT outcomes can be quickly observed before 

decision making for the new cohort. There are some occasions, such as radiation therapy 

or immunotherapy trials, that need prolonged time to observe the DLT outcomes, causing 

delayed toxicities. Furthermore, our simulation focuses on the combination of two drugs. 

In some indications, there may be a need to combine more than two drugs. Although it 

is not common for pharmaceutical companies to vary dose levels of more than two drugs 

due to resource limitations and other practical considerations, most methods evaluated in 

this paper can be extended to this. Investigation of the performance of the combination 

trial designs under the aforementioned settings can be a direction of future study. These 

dose-escalation methods presented in this manuscript consider toxicity data only. In some 

situations, such as trials with CAR-T therapy, it will be beneficial to jointly incorporate 

toxicity and efficacy data to determine the acceptable dose level. Several methods have 

been developed for monotherapy with model-based designs47–49 as well as model-assisted 

designs50,51. Extension of these methods to combination trials will be of future interest.
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Conclusions

In this paper, we have conducted a comprehensive comparison study of several well-known 

designs for dose finding in drug-combination trials, and studied their unique features. For 

each of the designs reviewed, the extensive simulation studies based on various scenarios 

provide a detailed overview of its operating characteristics and robustness; and the software 

applications and computation times we summarized shed light on the efficiency and ease 

of implementation. Due to the limited sample size in early-phase trials, dose finding for 

drug combinations is vital, and the design of drug-combination trials needs a more intensive 

infrastructural effort as well as a closer collaboration between statisticians and trialists. We 

have shown that the choice of a combination design critically depends on whether the trial’s 

primary objective is to identify one MTD or multiple MTDs.

The pros and cons of methods are discussed throughout the paper. In general, the 3+3 rule 

is not recommended due to its poor performance and a high failure rate to find the MTD. 

The model-based designs provide a nice way to incorporate historical data via model prior 

specification, and can be considered when data is available on marginal toxicity of each drug 

or when potential drug-drug interaction effects are known. The model-based designs enjoy 

reasonably good performance, but its implementation requires careful model specification 

and calibration upfront. Based on noninformative priors, the model-assisted designs provide 

competitive and balanced performance in terms of MTD identification accuracy and patient 

safety, and they are simple to implement, thus offering an attractive approach to designing 

phase I drug-combination trials. However, this paper does not investigate whether the 

performance of model-assisted designs is still competitive, compared to the model-based 

designs, when prior information is available.

By taking into consideration the design’s operating characteristics, ease of implementation 

and regulation, the need for advanced infrastructures, as well as the risk of regulatory 

acceptance, our paper offers practical guidance on the selection of a suitable dose-finding 

approach for designing future combination trials. In real trials, there are many more practical 

or logistical details that are not considered by our paper. Therefore, clinical investigators and 

biostatisticians must thoroughly discuss the purpose and challenges of the dose-finding trial 

for combination therapies, and carefully choose suitable design strategies. Biostatisticians 

also have to evaluate the design operating characteristics by realistic simulations for 

the upcoming study before recommending the design for practical use. Therefore, closer 

collaborations between clinical investigators and biostatisticians are required.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A collection of existing drug-combination designs classified based on the number of MTDs 

to be identified.
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Figure 2. 
Nine fixed dose-toxicity scenarios considered in the simulation study. The selected dose 

combinations for the 3+3 design are highlighted by the dotted arrow line.
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Figure 3. 
Simulation results summarized based on 5000 simulated trials under 9 fixed scenarios for 

each combination trial designs for finding one MTD, including the 3+3 design, the two-

dimensional Bayesian logistic regression method (BLRM)32, the partial ordering continual 

reassessment method (POCRM)20, the copula regression method34, and the Bayesian 

optimal interval (BOIN) combination design25. Four performance metrics are reported: (a) 

percentage of correct MTD selection; (b) percentage of patients allocated to MTDs; (c) 

percentage of overdose selection; and (d) percentage of patients allocated to overdoses, 

where the overdose is defined as the dose combination that has a DLT probability greater 

than 33%.
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Figure 4. 
Simulation results summarized based on 5000 simulated trials under 9 fixed scenarios for 

each combination designs for finding multiple MTDs, including the product of independent 

beta probabilities escalation (PIPE) design24 and the waterfall design27. Four performance 

metrics are reported: (a) percentage of trials selecting at least one MTD; (b) percentage 

of trials selecting all MTDs; (c) percentage of patients allocated to the MTD; and (d) 

percentage of patients allocated to overdoses, where the overdose is defined as the dose 

combination that has a DLT probability greater than 33%. The percentage of selecting at 

least one overdose is provided in Figure S10 of Supplementary Materials.
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Figure 5. 
Simulation results of designs for finding one MTD, based on 3000 random scenarios of 

the (i) 2 × 4 combination trial with 27 patients; (ii) 2 × 4 combination trial with 36 

patients; (iii) 3 × 5 combination trial with 48 patients; and (iv) 4 × 4 combination trial 

with 48 patients. Five designs were included: the 3+3 design, the two-dimensional Bayesian 

logistic regression method (BLRM)32, the partial ordering continual reassessment method 

(POCRM)20, the copula regression method34, and the Bayesian optimal interval (BOIN) 

combination design25. The target DLT rate was 0.25, and the overdoses were defined as the 

dose combinations with DLT rates greater than 0.33. The boxplot displays the minimum, 

the maximum, the sample median, and the 1st and 3rd quartiles. The number indicates the 

sample mean.
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Figure 6. 
Simulation results of designs for finding multiple MTDs, based on 3000 random scenarios 

of the (i) 2 × 4 combination trial with 27 patients; (ii) 2 × 4 combination trial with 36 

patients; (iii) 3 × 5 combination trial with 48 patients; and (iv) 4 × 4 combination trial 

with 48 patients. Two designs were included: the product of independent beta probabilities 

escalation (PIPE) design24 and the waterfall design27. The target DLT rate was 0.25, and 

the overdoses were defined as the dose combinations with DLT rates greater than 0.33. 

The boxplot displays the minimum, the maximum, the sample median, and the 1st and 3rd 

quartiles. The number indicates the sample mean.
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Table 1.

Available software applications to implement the existing phase I drug-combination trial designs.

Designs Software Next dose recommendation* Protocol template included Ease of implementation

3+3 No

Copula Executable No No Easy

POCRM R package Yes No Need R skills

Web app No Yes Easy

BLRM R package Yes No Need R skills

EAST appa Yes No Easy

BOIN R package Yes No Need R skills

Web app Yes Yes Easy

Desktop app Yes Yes Easy

Waterfall R package Yes No Need R skills

Web app Yes Yes Easy

Desktop app Yes Yes Easy

PIPE R package Yes No Need R skills

EAST appa Yes No Easy

Note:

*
The function to obtain the dose assignment for the next new patient when conducting the trial.

a
A commercial software developed by Cytel, other applications are freely available. All the listed software applications can obtain the design 

operating characteristics via simulations. Website URLs for the software applications are provided in Table S2 of Supplementary Materials.
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Table 2.

Average computation time needed for each design to simulate 2000 trials.

Design 3+3 BLRM POCRN Copula BOIN PIPE Waterfall

2 × 4combination trials with 27 patients

Time (min) 0.01 131.4 8.1 92.7 0.05 1.9 0.9

2 × 4combination trials with 36 patients

Time (min) 0.01 192.7 12.2 140.0 0.06 2.4 0.9

3 × 5combination trials with 48 patients

Time (min) 0.02 456.7 16.2 302.0 0.07 9.5 0.9

4 × 4combination trials with 48 patients

Time (min) 0.02 498.6 16.9 352.1 0.08 11.8 1.0

Note: Dose-assignment decisions for each design were updated after three patients have been treated. The average computation time is recorded 
using 2000 different jobs (i.e., scenarios) based on Red Hat Enterprise Linux high-throughput computing cluster with the processor speed ranging 
from 2.00 GHz to 2.67 GHz. Each job requires one node, one processor core, and one gigabyte memory per node.
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