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Abstract

It remains unknown to what extent gene-gene interactions contribute to complex traits. Here,

we introduce a new approach using predicted gene expression to perform exhaustive tran-

scriptome-wide interaction studies (TWISs) for multiple traits across all pairs of genes

expressed in several tissue types. Using imputed transcriptomes, we simultaneously reduce

the computational challenge and improve interpretability and statistical power. We discover

(in the UK Biobank) and replicate (in independent cohorts) several interaction associations,

and find several hub genes with numerous interactions. We also demonstrate that TWIS can

identify novel associated genes because genes with many or strong interactions have smaller

single-locus model effect sizes. Finally, we develop a method to test gene set enrichment of

TWIS associations (E-TWIS), finding numerous pathways and networks enriched in interac-

tion associations. Epistasis is may be widespread, and our procedure represents a tractable

framework for beginning to explore gene interactions and identify novel genomic targets.

Author summary

We developed a new method to comprehensively test associations of all pairwise gene-

gene interactions with complex traits using imputed expression. We applied the method

to 12 complex traits in humans across four tissues or cross-tissue expression measures.

We found widespread evidence that gene-gene interactions influence traits, and that

accounting for interactions identifies loci not previously identified in traditional single-

locus association tests, because the interactions mask the main effects when tested in isola-

tion. We next introduced a gene set analysis to test enrichment of interaction associations

in pathways and cell types and identify several gene sets within which gene interactions

are enriched in the associations with complex traits. Our analyses identify core hub genes

that appear to integrate signals across multiple pathways, providing new biological insight

into the genetic influences on these traits. Our findings also confirm the role of gene inter-

actions in complex traits, which has long been hypothesized but never before
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comprehensively tested due to the computational burden required, but which our new

approach can efficiently and effectively deal with.

Introduction

Genome-wide association studies (GWASs) have identified numerous individual loci that

affect complex traits [1,2]. Recent developments in transcriptome imputation and transcrip-

tome-wide association studies (TWASs) have enhanced our understanding of complex traits

by providing biologically plausible mechanisms of action for associated genes and improving

power by aggregating small individual variant effects on gene expression to identify associa-

tions [3–5]. The overwhelming majority of these identified loci have been detected using an

additive model of alleles at individual loci [1,2,6].

While GWAS and TWAS have expanded our understanding of the genetic architecture

underlying complex traits, a fundamental, unresolved question is to what extent non-addi-

tive effects contribute. Specifically, epistasis, defined as the statistical dependence of the alle-

lic effects at one locus on the genotype at another locus [7], may influence quantitative traits

[7–10]. It is increasingly clear that complex traits are exceedingly polygenic, with influences

from many complex regulatory and molecular pathways, and even chromosomal three-

dimensional structure [11–13]. Such complexity makes gene interactions likely to exist and

these interactions have been demonstrated using several model systems and organisms [7–

9,14,15]. While there has been debate over whether non-additive genetic variance is a major

contributor to heritability [6,16–20], non-additive gene action contributes to additive as well

as non-additive variance components [21,22], and thus epistatic gene action could still play

a role in the underlying genetic architecture of complex traits, even for traits of largely addi-

tive genetic variance. Identifying gene-gene interactions and the pathways and networks in

which they occur will provide a critical context for understanding the biology of complex

traits [7,10]. Ascertaining the prevalence and magnitude of epistasis would also clarify inter-

pretation of family-based, and specifically twin-based, estimates of heritability, which may

be inflated by non-additive variance in combination with maternal or environmental effects

[16,20].

Despite the likely importance of epistasis, genome-wide interaction tests remain rare.

Computational burden, correlation among predictors (leading to false positive epistatic

associations [23,24]), and interpretability are key challenges to genome-wide, exhaustive

tests of epistasis [7,25–27]. Perhaps the greatest challenge is that the sheer number of vari-

ants available in imputation panels (10M+) leads to tens of billions of pairwise tests, which

despite recent methodological advances [28,29] remains prohibitive. Many address this

through two-stage approaches, in which the predictors are filtered in some way prior to test-

ing epistasis among the retained predictors [26,30]. Often, interactions are only tested

between loci that are significant in single-locus GWAS or phenotypic variance test effects or

are based on hypothesized pathways or networks. While such methods improve feasibility

by reducing the number of tests, they constrain the ability to detect novel epistatic effects or

new pathways and networks involved in complex traits [8], and in some cases, do not indi-

cate whether the interactor effect is an environment or a second gene [30,31]. Similarly, if a

strong interaction between two loci exists, the main effects estimated in a single-variant

GWAS could be muted [7], reducing the likelihood of identifying such interactions in two-

stage approaches. Thus, exhaustive approaches are preferable to two-stage or filtered

approaches.
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Here, we report an innovative approach using imputed transcriptomes to perform

exhaustive transcriptome-wide interaction studies (TWISs) for multiple traits across all

pairs of genes expressed in several tissue types (Fig 1). Using imputed transcriptomes, we

provide an approach to simultaneously reduce the computational challenge and improve

interpretability, while also aggregating small interaction effects of individual variants via

gene expression to improve statistical power to detect interaction associations. We begin by

performing extensive simulations to validate the TWIS approach and develop standardized

analytic procedures, including power analyses, multiple test correction thresholds, and

pruning on LD that can lead to false positives. Importantly, we find that unmodeled interac-

tions can also produce false negatives for main effects such that TWIS both identifies epi-

static effects and identifies previously unassociated loci. Finally, we develop and validate

Enrichment TWIS (E-TWIS), a novel method for aggregating genome-wide gene-gene

interactions with respect to a priori-defined gene sets to understand the specific functional

networks enriched for epistatic effects. In an empirical application, we identify several repli-

cated, significant interactions and numerous functional gene sets and brain cell types that

are enriched in interaction associations. Epistasis is likely a major source of phenotypic vari-

ation in complex traits, and the analytic procedures and results presented here reflect a com-

putationally and statistically tractable framework for beginning to unpack these interactive

effects.

Fig 1. Overview of TWIS approach.

https://doi.org/10.1371/journal.pgen.1010693.g001
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Results

TWIS Approach—Simulation and validation

Fig 1 is a diagram of our overall transcriptome-wide interaction study (TWIS) approach. We

leveraged a total of five cohorts to perform discovery and replication TWIS of 12 complex traits,

including biometric, substance use, and psychiatric traits (defined in S1 Table and S1 Note). We

used the UK Biobank as the discovery cohort to identify significant interactions (N = 53,880–

329,705) and used the remaining 2–3 cohorts (depending on the trait) as an independent repli-

cation sample (N = 8,718–61,531). Following standard quality control (see Methods and S1

Note), we imputed gene expression in each cohort for the prefrontal cortex (PFC, m = 14,729

genes) using FUSION [3,4]-generated TWAS weights from the PsychENCODE consortium

[32]. The PFC was chosen because of the importance of neurocognitive functions in many of the

traits we examined (e.g., psychiatric and substance use traits) and because it is currently the larg-

est available brain reference panel with expression TWAS weights. Because of the large number

of possible tissues relevant to complex traits, we also used cross-tissue expression weights from

the first three sparse canonical correlation axes (sCCA1-3) of Feng et al.[33] (m = 13,242;

12,521; and 12,032). Here, we include tests using all tissues in all traits for completeness, but a

reasonable approach to reduce the overall number of tests would be to perform TWIS using

only expression in biologically relevant tissues, cross-tissue expression measures, or in those tis-

sues with, for example, significant LDSC h2SNP enrichment [34,35] for the trait of interest.

Correctly accounting for covariates and possible confounding effects in interaction associa-

tions requires including all covariate-by-main effect interactions [36], which quickly increases

computational time with numerous covariates and categorical factor levels. Therefore, follow-

ing QC and expression imputation, we residualized phenotype and imputed expression on

covariates prior to performing the gene-gene interaction associations (see Methods). This resi-

dualization does not affect the false positive rate of the interaction test relative to a full model

(S2 Table). The cohorts differed in the specific measures available, but included measures of

age, sex, educational attainment, income or socioeconomic status, genotyping batch (where

available), and the first 10 genomic principal components. When performing 10s of millions

of tests, this residualization step substantially decreased the total computation time while esti-

mating unbiased gene-gene interaction effects. Following this step, we used a parallelization

procedure to divide all
m

2

 !

pairwise interactions across multiple compute nodes for each

trait and each tissue, testing the simplified model,

yresid ¼ mþ b1T1resid þ b2T2resid þ bintT1resid∗T2resid þ ε ð1Þ

where yresid is the phenotype residualized on the covariates; T1resid and T2resid are the imputed

expression of genes 1 and 2, respectively, residualized on the covariates; μ is the intercept; β1
and β2 are the main effects of T1resid and T2resid; βint is the gene expression interaction effect on

the phenotype; and ε~N(0,σ2) is the error. We emphasize that this model does not require

physical interaction of gene products, only that the association of expression of one gene is

affected by that of another. Such interactions could include physical interaction, but also other

mechanisms, such as stoichiometric relationships within molecular pathways.

Power and Significance Thresholds

We performed a series of simulations to estimate power to detect interactions in the context of

imperfect expression imputation (where imputation r2<expression heritability, the maximum

accuracy of the genetic prediction) across a range of epistasis effect sizes, define the
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appropriate α for genome-wide multiple test correction in the context of many millions of

individual tests, and assess the role of LD in influencing interaction tests (see Methods and S1–

S8 Figs). Consistent with prior findings [23,24], we find that pairs of genes with imputed

expression correlations (|r|> 0.1) or those physically nearby produce inflated type I error for

identifying interaction effects. True, nearby interacting loci do exist, such as HLA region vari-

ant interactions influencing multiple sclerosis [37,38], and linked interacting loci have been

hypothesized as a source of genetic variance [39,40]. We note that gene pair correlated expres-

sion may result from LD between causal eQTLs for each gene, as well as shared eQTLs affect-

ing both genes directly [41]. Given the drastic increase in false positive rates due to correlated

predictors, we view excluding these nearby or genes with correlated expression as a reasonable

tradeoff.

Within each phenotype, we applied a significance threshold of p<5.86e-10 (see Methods)

while also excluding from further analysis any pairs of genes whose imputed expression |r|>
0.05 (more conservative than the |r|>0.1 suggested by simulations) at the discovery stage (UK

Biobank sample) or those within 1MB of each other. In independent replication, we applied,

first, this correction within each phenotype and tissue to interactions identified within the dis-

covery cohort, and second, a nominal p<0.05 as suggestive evidence of replication. Finally, we

meta-analyzed [42] all cohorts together (discovery + replication) for use in functional and

pathway enrichment analyses. See S3 Table for a list of all thresholds applied and notes about

their context.

TWIS Associations—Empirical Results

We applied TWIS to 12 traits (height, BMI, cigarette smoking initiation [SI], smoking cessa-

tion [SC], heavy vs. light cigarettes per day [CPD], major depressive disorder [MDD], general-

ized anxiety disorder [GAD], neuroticism, cross-trait psychiatric disorders [PSYCH],

problematic alcohol use [pAUDIT], alcohol consumption [cAUDIT], and drinks per week

[DPW]; see S1 Note for full phenotype and cohort descriptions). Across all traits and tissues,

16 pairwise interactions were significant (p<5.86e-10) at the discovery stage, only one of

which replicated (p<0.05) in independent replication datasets in the same direction. Of these

16, four remained significant (p<5.86e-10) in the final (discovery + replication) meta-analysis

(Table 1 and Figs 2 and S9–S20). One additional interaction was significant when all cohorts

were meta-analyzed, but not in discovery or replication. S21–S25 Figs for figures of the raw

phenotype plotted against imputed expression of both genes, and S4 Table for all pairs that

were significant at any stage.

We subsequently tested additive-by-additive SNPxSNP interactions, using a similar resi-

dualization approach, of all pairs of SNPs within 500KB of each gene, for the five gene pairs in

Table 1 that were significant in the final meta-analysis. No interaction, in individual cohorts or

meta-analyzed across all cohorts for each trait, reached our multiple testing threshold of

p<5.86e-10, but several pairs approached this (p<5e-8), suggesting that with sufficient sample

size and power, TWIS is a reasonable approach to identify a restricted set of genes around

which all SNPxSNP interactions can be tested, perhaps including multiple forms of interaction

(additive x additive, dominance x dominance, etc.), likely in part by aggregating individual

additive expression effects of SNPs together.

Of the four interactions significantly associated with pAUDIT in the final meta-analysis

(Table 1), three involved PRKCG imputed prefrontal cortex expression, interacting with

WNT6, MAP7, and SEZ6L2. Higher levels of imputed PRKCG expression were associated with

stronger (more positive) effects of the interacting gene (S22–S24 Figs), consistent with the pos-

itive interaction term. Notably, WNT is known to modulate PKC localization and activity via
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G-protein- and Ca2+-dependent mechanisms [43,44]. MAP7 is known to directly interact

with PKC signaling [45] and has a role in axon collateral branching [46,47]. SEZ6L2 is a cell-

surface protein that regulates neurogenesis and differentiation through adducin signal trans-

duction [48], which is a substrate for PKC.[49] The fourth interaction associated with pAUDIT

was TFCP2L1xCENPN, which was found to have a negative interaction term, consistent with a

reduced effect (less positive slope) of CENPN expression at higher levels of imputed TFCP2L1
expression (Table 1 and S25 Fig). TFCP2L1, which is down regulated in cells exposed to alco-

hol [50], regulates transcription involved in pluripotency and cell renewal and is also involved

in the WNT pathway [51]. CENPN is a histone that forms a complex with other histones in the

presence of DNA and locates at the centromere, forming kinetochores [52]; their interaction

may reflect effects on neurogenesis or neural cell types from a brain stem cell.

MTMR10xSEPHS1 was significantly associated with GAD in the final meta-analysis (Table 1

and S21 Fig), in which a stronger effect of imputed MTMR10 was associated with higher

SEPHS1. Both expressed in glial cells, MTMR10 is in a locus associated with schizophrenia and

dendritic growth deficiency [53,54], substance use disorders and related behavioral traits [55],

while SEPHS1 deregulation has been reported in rats under chronic stress [56]. SEPHS1 influ-

ences selenium metabolism pathways, deficiencies in which lead to oxidative stress [57] and

increased inflammation and degradation of extracellular matrix [58]. MTMR10 plays a role in

the extracellular matrix, including in neurons and protects dendrites in response to oxidative

stress [59]; their interaction may relate to regulation of inflammation and stress response.

The limited number of significant interaction associations was not surprising given the low

power to detect small effect sizes, particularly when expression imputation is imperfect and

with stringent multiple test correction (S1–S4 Figs). As in single-locus GWAS, we anticipate

additional, replicated loci to be identified with larger GWAS and expression reference panels,

because imperfect expression imputation sharply reduces power.

For genes involved in at least one suggestive (p�1e-5) interaction association, we found

that across all traits, the number of interactions per gene followed a power-law distribution,

with the majority of genes participating in only one or two interactions, but a few involved in

many (S26–S37 Figs and S5 Table). These “hub” genes (examples in Fig 3) are highly con-

nected genes that represent logical targets for functional follow-up and characterization as

hubs of interactions with many genes, integrating signals throughout pathways. While they

may be poor drug targets as critical bottlenecks that impact multiple traits, identifying the

Table 1. Interaction associations of pairs that reached p�5.86e-10 in the final combined meta-analysis. Replication and final combined results indicate the meta-ana-

lyzed Z scores. See S4 Table for all pairs that were significant at any stage.

Trait & Expression Tissue

Gene Name, ENSGID, chromosome and midpoint bp location

Discovery Replication Final Combined

Gene 1 Gene 2 Expression ρ β SE p Z p Z p Direction

pAUDIT, Prefrontal Cortex Expression
PRKCG (ENSG00000126583,

19:54296675)

WNT6 (ENSG00000115596,

2:219731750)

0.000 0.068 0.011 2.86E-

10

1.884 0.060 6.483 9.01E-

11

+++

PRKCG (ENSG00000126583,

19:54296675)

MAP7 (ENSG00000135525,

6:136767916)

-8.39E-05 0.040 0.006 1.51E-

10

2.432 0.015 6.816 9.36E-

12

+++

CENPN (ENSG00000166451,

2:122008473)

TFCP2L1 (ENSG00000115112,

16:81053411)

0.003 -0.157 0.022 4.14E-

13

-1.535 0.125 -7.171 7.43E-

13

-+-

PRKCG (ENSG00000126583,

19:54296675)

SEZ6L2 (ENSG00000174938,

16:29896674)

-0.002 0.105 0.017 1.89E-

10

1.82 0.069 6.511 7.45E-

11

+++

GAD, Cross-Tissue Expression, sCCA3
MTMR10 (ENSG00000166912, 15:

30965284)

SEPHS1 (ENSG00000086475, 10:

13332863)

0.0004 0.0123 0.002 5.79E-

09

6.359 2.03E-

10

6.359 2.03E-

10

+++

https://doi.org/10.1371/journal.pgen.1010693.t001
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genes they interact with could be a useful approach to find specific targets to modulate in

developing therapeutics. The gene with the most interactions was, with pAUDIT using PFC

expression, FOLH1B, an untranslated pseudogene previously associated with psychiatric disor-

ders [60] and BMI [61]. PRKCG, noted above, was the second most interacting gene, again

with pAUDIT using PFC expression. The glutamate receptor GRIK1 had the most interactions

associated with CPD but was not identified in single-locus GWAS by the GSCAN study [62],

despite GSCAN’s much larger sample size and higher statistical power, demonstrating that

novel associated genes can be found using TWIS, and the possible role of glutamate and excit-

atory neurotransmitters in smoking [63]. RRAGA, which regulates [64] the mTOR signaling

cascade [65] that may have a role in the antidepressant effects of NMDA antagonists [66], was

Fig 2. Boulder plot of pAUDIT (top) and GAD (bottom) interaction association p-values using imputed transcription. Shown are the results from

the final meta-analysis of all data. In these plots, each interaction test is indicated by two points, located at their physical chromosomal positions. Pairs

with significant interactions are connected by lines. Peaks, such as the peak on Chromosome 19 in the top figure, indicate strong interactions with

many other genes, i.e., a hub gene (see Fig 3 as well). Black lines connect pairs that surpassed p<5.86e-10 in the discovery cohort (UKB), green and blue

lines connect pairs of loci with FDR q<0.05 or nominally significant interaction (p<0.05) in the replication cohort, and gray lines connect pairs of

genes with p<2.5e-10 in the final meta-analysis. For clarity, only interaction associations with p<1e-5 are shown. Numerical results of genes reaching

significance are presented in Table 1.

https://doi.org/10.1371/journal.pgen.1010693.g002
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the most interacting gene associated with GAD, highlighting the possible role of the mTOR

pathway for internalizing disorder treatment. From a genetic architecture perspective, these

findings support a long-standing hypothesis that while epistasis is common, most genes will

interact with a limited number of other genes [7]. They also support an omnigenic model [67]

of architecture, where core or hub genes interact with and incorporate the regulatory effects of

many peripheral genes. TWIS may identify such core or hub genes more directly than single

gene association models.

Given our exhaustive, all-pairs TWIS for multiple traits, we were also able to test whether

genes with evidence of interaction association would have been identified in a single gene

TWAS, as it is hypothesized the effect sizes of a locus could be diminished when analyzed indi-

vidually if the gene’s effect depends on an interaction with another [7]. For example, GRIK1,

noted above as the gene with the most interactions associated with CPD, would not have been

identified in a single locus TWAS using the same dataset (p = 0.35), nor was it identified in the

largest CPD GWAS to date [62]. Using pairs of suggestive (p<1e-5) interaction associations in

the combined meta-analysis, we estimated that, on average, only 3% (SD = 6.8%) of the unique

Fig 3. Networks of TWIS associations for selected traits and gene expression in specific tissues, either based on all pairs with p<1e-6 from the

exhaustive, genome-wide TWIS (top), or within specific gene sets applying a nominal p<1e-3 threshold (bottom). P-value thresholds were chosen

to best visualize clusters. Genes with degree�5 are labeled, and size of points is proportional to node degree.

https://doi.org/10.1371/journal.pgen.1010693.g003
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genes identified in TWIS would have been identified using a single gene TWAS (Fig 4a and S6

Table). As an example, of the 1106 unique genes in 655 pairs identified with GAD TWIS asso-

ciations using PFC expression, none would have been associated in single locus models. Simi-

larly, of the 981 unique genes in 547 interacting pairs associated with BMI using PFC

expression, only 25 would have been identified in single-gene TWAS (S6 Table). This results

from reduced effect sizes in the single gene TWAS for genes with the largest interaction effects

(Fig 4b). This is consistent with the hypothesis that when a gene interacts with many others, its

estimated effect in a single locus model may not be strong [7], and it highlights the fact that

novel loci may be identified using an exhaustive, all-pairs TWIS relative to single-locus TWAS

or GWAS, with GRIK1, noted above, an example.

Functional and pathway interaction enrichment

We developed Enrichment-TWIS (E-TWIS) to assess the strength of interaction associations

among genes within a priori defined gene sets of interest, rather than individual pairs of genes,

including multiple functional pathways and networks. We first used a measure similar to net-

work connectivity [68] to use χ2 tests to efficiently test enrichment of approximately 8,000

gene sets. This was anti-conservative for large (n>150 genes) gene sets, where we used a ran-

dom resampling approach to confirm enrichment (S38–S40 Figs). The resampling represents a

competitive test (sensu [69]) of enrichment relative to background epistatic interactions, and

in practice produced qualitatively similar results. We advocate an approach of efficiently test-

ing many gene sets via χ2 tests and using resampling to confirm significant gene set enrich-

ment or to test sets of particular interest.

Gene sets we tested (~8,000) included the weighted gene coexpression network analysis

(WGCNA) modules in PFC expression data [32,70], many sets defined in the Molecular

Fig 4. (a) Proportion of genes identified within suggestive interaction associations (p�1e-5) that would have been identified using the same threshold

in a single gene TWAS. Data in S3 Table. (b) Relationships of TWIS interaction effect sizes and main effect sizes of the same genes from TWAS (single

locus model). Estimates of effects from all genes identified in TWIS included across traits and tissues, but each TWIS-identified gene is included only

once per trait and tissue combination, even if a gene interacted with multiple other genes.

https://doi.org/10.1371/journal.pgen.1010693.g004
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Signatures Database (MsigDB) [71], and genes specifically expressed within individual cell

types within multiple brain regions and subsets intolerant to protein-truncating mutations

[72]. These represent a wide range of types of gene sets, across a wide variety of functional

pathways, tissue expression specificity, and possible interactions (e.g., WGCNA modules), for

an exploratory analysis of interaction enrichment.

We identified 50 significantly associated (FDR<5%) gene sets across all traits and expres-

sion tissues (Figs 3 and 5 and S7–S8 Tables). Among the associated gene sets, a common

theme for several traits, notably GAD, PSYCH, neuroticism, CPD, and alcohol use, was enrich-

ment of sets related to immune system and inflammation pathways. For neuroticism, we iden-

tified STAT1 transcription factor binding sites as enriched, which regulates cellular responses

to interferons, cytokines, and other growth factors, and plays a role in immune response.

Genes involved in immune system function (upregulated in T cells relative to B cells) were

enriched in GAD, together suggesting the importance of immune system and inflammatory

pathways for anxiety-related traits. Genes with expression influenced by FOXP3, which regu-

lates immune system response including IL2, were enriched in psychiatric case epistatic

interactions.

Evidence of cell signaling pathway enrichment was also found, such as glutamate receptor

genes for GAD (S8 Table). G-protein mediated event genes were enriched for pAUDIT, which

includes signal transduction at the synapse, and is consistent with the WNT6-PRKCG interac-

tion noted above (and possible immune function). Gene interactions within the deubiquitina-

tion REACTOME pathway were associated with pAUDIT, suggesting the importance of post-

Fig 5. Gene set enrichment across all tissues and traits for those sets with at least one significant test (FDR<5%). Black indicates that the gene set

association was not evaluated for that tissue and trait combination. X-axis shows the trait and tissue, where C indicates PFC and 1–3 represent the

cross-tissue sparse canonical correlation axes 1–3. Phenotype details are in the S1 Note and S1 Table.

https://doi.org/10.1371/journal.pgen.1010693.g005
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translational modification in alcohol use as has been hypothesized [73], and highlighting the

need for additional ‘omics integration into such analyses. Notably, three of the coexpression

network modules identified by Gandal et al.[32,70] were associated with BMI or pAUDIT. The

gene M2 network (associated with pAUDIT) was found to be downregulated in oligodendro-

cytes in bipolar and schizophrenia cases [32], while the CD3 module (also associated with

pAUDIT) was found to be enriched in oligodendrocytes [70], suggesting a role for glia.

Among gene sets specifically expressed in individual cell types [72], we found enrichment

of many traits for interactions in both excitatory and inhibitory neurons, with a number of

GABAergic neuron enrichments (Figs 3 and 6 and S9–S10 Tables). Notably, excitatory neu-

rons were strongly enriched in CPD, supporting the individual strong interactions of GRIK1
noted above. Oligodendrocytes and/or their precursor cells were enriched in BMI, CPD,

height, MDD, and pAUDIT, highlighting a role of non-neuronal cells in several traits.

Discussion

Here, we present the first, to our knowledge, fully exhaustive transcriptome-wide interaction

study of all pairwise gene interaction associations. We confirmed several long-standing expec-

tations of quantitative genetics, including that most genes have only a few interactions while a

few ‘hub’ genes contain many, and that for genes with strong gene-gene interactions, estimated

effects from a single-locus models are weaker. These two findings imply that epistasis may be

frequent, and key hub genes may yet be identified. These results also suggest that exhaustive

Fig 6. Neuronal cell type [72] gene set interaction association enrichment across all tissues and traits. X-axis shows the trait and tissue, where C

indicates PFC and 1–3 represent the cross-tissue sparse canonical correlation axes 1–3.

https://doi.org/10.1371/journal.pgen.1010693.g006
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interaction studies are needed rather than two-stage or variance models, which are efficient

but may fail to detect real interactions. TWIS is an efficient way to both reduce the overall

number of tests (on the order of 1e8 rather than 1e12 SNPxSNP tests) and improve power by

integrating small individual SNP effects on expression. Although other approaches have been

proposed [30,74,75], we have built upon previous findings suggesting epistasis is important for

complex traits and provide a novel framework in which to exhaustively search all pairwise

gene-gene interactions.

We also present findings of power analyses and type-I error, which verify both low power,

as expected in interaction tests, as well as a need for stringent control of false positives. We

confirmed that linkage disequilibrium (LD) and imperfect expression imputation and pheno-

type measurement can lead to false positive epistasis [23,24]. However, across extensive simu-

lations, we were only able to inflate the type I error rate in the presence of LD; therefore, we

apply a relatively simple yet robust approach to remove findings likely enriched for false posi-

tive interaction associations by excluding from analyses pairs of nearby genes and those with

correlated imputed expression.

Despite these challenges, we identify genome-wide significant gene-gene interaction associ-

ations with problematic alcohol use and generalized anxiety disorder. This is proof-of-princi-

ple that the approach will identify novel interactions that can extend our biological

understanding of complex traits, and as larger datasets and consortia become available, we

anticipate additional epistatic associations will emerge.

Furthermore, when adopting a self-contained gene set-level approach [69], we identified

several significantly associated gene sets (Figs 4–5 and S7–S10 Tables). We note that as a self-

contained gene set analysis, this is testing a null hypothesis of no pairwise interaction associa-

tion of genes within the gene set, rather than an enrichment of association signal relative to the

background level of interaction associations (competitive gene set analysis [69]); computa-

tional constraints currently limit widespread E-TWIS competitive set analyses, but our follow-

up resampling procedure performs such a competitive test, and we found qualitatively similar

results, providing a way to verify enrichment of any sets of interest. Identified gene sets of

interest include inflammatory and immune system pathways as relating to smoking, alcohol

use, GAD and neuroticism; deubiquitination related to alcohol use suggesting the importance

of epistasis for posttranslational modification; and multiple, notably glutamatergic, cell signal-

ing pathways. Of particular interest, specific relevant cell populations can be identified using

E-TWIS, and these include individual neuronal cells as well as glia.

Limitations

Our exhaustive TWIS study has several notable limitations. First, we applied a linear regres-

sion-based statistical definition of epistasis, based on additive SNP effects on expression. This

is an additive-by-additive (AxA) definition of epistasis. While computationally efficient, other

models of epistasis can affect complex traits [25,26], such as non-linear interactions among

gene expression, dominance (D) effects (DxD, AxD), or higher order interactions [21], which

are not tested in our framework.

Second, LD leads to correlated tests and correlated predictors, which leads to complications

in error control in interaction studies, increasing type I error and false associations of epistasis

[23,24]. While standards for type I error correction have been generally accepted in single-

SNP GWAS, there is no previous analogous standard for application to interactions. We have

addressed this via extensive analyses of power and bias and have taken a conservative

approach, removing any nearby pairs of loci and those with correlated imputed gene expres-

sion (|r|>0.05). This has likely removed true epistatic interactions, in which nearby, linked
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genes or intragenic loci interact [10,27,39]. While this prevents identification of physically

proximate interactions, it removes a major source of LD-driven false positives [23,24] which

we view as necessary.

Third, expression can be influenced by environments and traits themselves. The use of

genetically predicted expression reduces the possibility of this kind of confounding [5], but

our framework is fundamentally distinct from a traditional SNP-SNP interaction test. TWIS is

based on the TWAS framework, and therefore, all limitations of TWAS [41] also apply. For

example, related to the second point above, gene pair expression correlation can result from

LD between functional variants of each gene, as well as shared functional variants affecting

both genes, possibly leading to spurious (non-causal) associations between genes and traits. A

second issue in TWAS is heterogeneity among expression reference panels, for instance due to

cell type heterogeneity [41]. This is typically assessed using an omnibus test to account for

among reference panel heterogeneity [3]. We have limited our analyses to using a single refer-

ence panel due to the number of traits and tissues and the number of pairwise tests involved,

but incorporating the heterogeneity of reference panels would be a useful avenue of future

research.

Fourth, the replication rate for epistasis tests is expected to be substantially lower than for

additive tests, due to ascertainment of markers in LD with the causal variants and their chance

resampling in independent datasets [10]. Nonetheless, we have applied rigorous replication

thresholds, which we acknowledge likely result in higher rates of false negative replication.

Combined with the stringent thresholds to remove LD-driven false positives, we are likely

underestimating the extent of epistasis throughout the genome in complex traits; larger sample

sizes will improve epistasis discovery.

Furthermore, scaling phenotypes in different ways (e.g., logarithmic) will impact the inter-

action estimates [9,76]. We residualized phenotypes and imputed expression, but the statistical

epistasis identified here may be scale-dependent, and further mechanistic studies are required

to determine the biological interactions at individual loci. Our analysis represents a computa-

tionally demanding, yet initial assessment of interactions throughout the genome.

Finally, assortative mating is expected to lead to correlation (i.e., LD) at functional loci even

if they are physically separated [21,77]. We removed correlated loci, those in which assortative

mating would be expected to lead to false positives. In this way, we expect assortative mating

to not be a large driver of results here, but it is an area of future work worth exploring.

Conclusions

Epistasis is likely widespread, but the computational challenges of so many pairwise tests have

prevented its extensive examination. Here, we present a way forward using predicted gene

expression, finding several significant interaction associations and multiple cell types and

functional annotations enriched in epistasis affecting complex traits. We anticipate more to be

identified as GWAS and expression reference panels continue to grow.

Methods

Description of TWIS Approach

We tested all pairs of gene-gene interactions using imputed gene expression after residualizing

both the phenotype and expression on multiple covariates. This approach improved computa-

tion time while leading to unbiased estimates of the interaction effect. Details of each step are

described below.

Scripts to perform TWIS and E-TWIS using publicly available data are available at https://

github.com/evanslm/TWIS.
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Gene expression imputation in the prefrontal cortex (PFC) and three

orthogonal cross-tissue expression measures

We imputed expression of genes in the PFC using the weights generated by PsychENCODE

[32] (14,729 genes) as well as three cross-tissue measures of expression [33] (13,242; 12,521;

and 12,032 genes for the three measures). We included the cross-tissue measures of expression

(sparse canonical correlation analysis axes [sCCA] 1–3), as integration of data across multiple

tissues increases reference sample sizes and improves power [33].

TWAS weights were downloaded from the FUSION website for the PFC and cross-tissue

expression measures (http://gusevlab.org/projects/fusion/). For each gene in each tissue, we

first created score files of the best performing model weights using the make_score.R script

(as outlined and available at the FUSION github site: https://github.com/gusevlab/fusion_

twas). Following standard genotype QC (described below), we next extracted all SNPs in

each cohort with non-zero expression weights using plink2 [78], followed by creating the

individual-level expression prediction (plink2--score command) for each gene’s expression.

Residualization of imputed expression and phenotypes

In interaction studies, proper control of covariates requires inclusion of all covariate-by-main

effect terms [36]. This is critical when possible confounding variables exist. Therefore, we first

examined a model for phenotype y in which, for imputed gene expression of two genes, T1 &

T2, all main gene expression, expression interaction and covariate-by-gene expression terms

were included:

y ¼ mþ b1T1 þ b2T2 þ bintT1T2 þ
Xm

k¼1
akcovk þ

Xm

k¼1
ak1covkT1 þ

Xm

k¼1
ak2covkT2 þ ε ð2Þ

where μ is the intercept, β1 is the effect of expression of gene 1 (T1), β2 is the effect of expres-

sion of gene 2 (T2), βint is their interaction effect, αk is the effect of the kth covariate (covk), αk1

and αk2 are the interaction effects of the kth covariate with T1 and T2, respectively, and ε is the

error term.

Covariates include, depending on availability within each cohort (see Methods), age, sex,

genotyping batch, assessment center, socioeconomic variables such as income or education,

and the first 10 genome-wide principal component axes. When many covariates are included,

such as the large numbers of genotyping batches (106) and assessment centers (22) in the UK

Biobank, all m covariates and their interactions with the main gene expression terms rapidly

increases to hundreds of additional terms to estimate in the model for each pair of genes. This

drastically increased computation time across many pairwise tests, particularly in samples of

hundreds of thousands (e.g., the UK Biobank). Even with the reduced number of predictors

(at the gene expression level) used here compared to all individual SNPs, all pairwise compari-

sons reach tens of millions of tests, e.g., ~14,000 genes imputed using the PsychENCODE cor-

tex expression weights [32] results in ~108M pairwise comparisons.

To improve speed, we therefore first residualized both the phenotype and genetically pre-

dicted gene expression on all covariates. This approach allowed us to remove covariate effects

first, rather than repeatedly estimating them and their interactions for each pairwise test. Resi-

dualizing both predictor and response variables leads to unbiased estimates of the gene-gene

interaction effect. We extracted the residuals from the following model:

x ¼ mþ
Xm

k¼1
akcovk þ ε ð3Þ

where μ, αk, covk, and ε are as above, and x is either the phenotype (e.g., height) or the imputed

gene expression (e.g., predicted T1). We used fastLm in the RcppArmadillo [79] R package to
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fit the model efficiently for each imputed gene’s expression and continuously distributed phe-

notype, and the glm function to fit logistic regressions for each dichotomous phenotype. Resi-

dualized imputed expression and phenotype data were then merged into a single data frame.

Exhaustive, all pairs gene-gene interaction TWIS

Within each cohort, we then performed an exhaustive (all pairs) TWIS within each tissue for

each trait using the following model:

yresid ¼ mþ b1T1resid þ b2T2resid þ bintT1resid∗T2resid þ ε ð4Þ

where yresid indicates the residuals of phenotype y and T1resid and T2resid are the residuals of

predicted gene expression of T1 and T2, respectively, from eq 3. We estimated μ, β1, β2, and βint
using fastLm in R. For each tissue and trait within each cohort, this amounted to

gp = 108,464,356; 87,668,661; 78,381,460; and 72,379,496 pairwise tests in the PFC and three

cross-tissue expression measures, respectively, or 346,892,973 total pairwise tests for each trait

in each cohort.

To expedite this step, we parallelized these tests across multiple compute nodes using the

RMACC Summit Supercomputer at CU Boulder. For each combination of tissue, trait, and

cohort, we split the total tests into 1000 chunks, each of which was distributed to independent

compute nodes. Each chunk therefore performed gp/1000 pairwise tests, which were indexed

as the tests between pair (a[k], a[i+k+d*(d+1)/2-m]), where n = number of total genes, m = n*
(n-1)/2, y = m-i, i is the ith chunk out of 1000, d = 1+floor(((8*y+1)^0.5–1) / 2), and k = n-d.

This uniquely tested each pair only once, while distributing the computation to as many com-

pute nodes as available on the supercomputer. Within each chunk, we further parallelized eq 4

to multiple available CPUs using the foreach R library [80].

Discovery, replication, and meta-analysis

We treated the UK Biobank as the discovery sample, and meta-analyzed results from the

remaining cohorts for each phenotype as an independent replication sample. For meta-analy-

sis, we applied the sample-size weighted approach of METAL [42]. We applied this rather than

a traditional inverse-variance weighted meta-analysis because in several cases, the phenotypes

in each cohort were approximate comparisons (e.g., “psychiatric disorder” based on ICD-9 &

-10 codes (GERA, UK Biobank) vs. self-reported and DSM-V diagnoses of multiple disorders

(ARIC, NESARC-III) and because the predictors and phenotypes were residualized on covari-

ates prior to our TWIS, making SE-based meta-analysis inappropriate.

A full description of power and type-I error rates is in Determining Alpha and Tests of
Power and Biases below. Based on those findings, we applied a significance threshold of α =

5.86e-10. When pairs of genes are unlinked, this is the approximate 5th percentile of minimum

p-values from exhaustive genome-wide gene-gene tests under the null (see below). This is also

very close to the Bonferroni correction threshold for all pairs of genes across the genome (i.e.,

~0.05/choose(20000,2)). Based on those findings and tests of biases described below, we

restrict all subsequent analyses to pairs of genes whose physical position midpoints are greater

than 1Mb apart and whose imputed expression is uncorrelated (|r| < 0.05), because linked and

correlated pairs of genes lead to high rates of false positives. In our independent replication

dataset, at pairs passing discovery significance, we applied a nominal p<0.05 as evidence of

replication. Finally, we meta-analyzed all cohorts together (UKB+ replication cohorts). The

complete meta-analysis results were utilized in subsequent gene set enrichment tests.
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Sample QC, stratification, PCA and relatedness

All cohorts (S1 Note) included SNP array and/or imputed genome-wide SNP data. Genotype

quality control (QC) of the array data included genotype missingness, Hardy-Weinberg Equi-

librium tests, and minor allele frequency (MAF) using plink2 (command:—geno 0.05—hwe

0.00000001—maf 0.01). For cohorts without imputed data, we utilized the Michigan Imputa-

tion Server to impute array data to the Haplotype Reference Panel [81,82] after QC. Following

imputation, then applied additional QC imputation metrics using plink2 (command:--extract-

if-info R2 ’> = ’ 0.9--maf 0.0001--hwe 0.00000001--geno 0.01--mind 0.01).

Within each cohort, we identified a set of unrelated and relatively unstratified individuals

matching (in terms of principal components analysis [PCA] axes) the expression reference

panels, which are primarily European ancestry individuals. To reduce stratification effects and

because expression imputation relies on sufficient matching of LD patterns between the target

and reference panels [83], we restricted our analyses to individuals of European ancestry, as

that was both the largest relatively genetically homogeneous sample available across all cohorts

and because the expression reference data were primarily derived from European ancestry

individuals. We first used HapMap3 positions in the 1000 Genomes (1KGv3) [84] reference

panel to generate PCA loadings of the first 10 axes using flashpca [85]. We then extracted these

same HapMap3 positions from each study cohort and projected them onto the 1KGv3 PC axes

using flashpca. We then identified all individuals within +/-5 standard deviations of the

1KGv3 EUR population mean on each of the first four PCs, matching the approach applied by

GSCAN [62] across many cohorts, thus identifying a relatively unstratified set of individuals

with LD patterns roughly matching those of the expression reference panels available.

We retained unrelated individuals using GCTA [86] within each cohort after applying a

pairwise relatedness cutoff of 0.05 using MAF- and LD-pruned SNPs (plink2--maf 0.01--

indep-pairwise 50 5 0.2). See S1 Table for final sample sizes for each cohort and each

phenotype.

Tests of power and biases

We performed a series of simulations to estimate power to detect interactions in the context of

imperfect expression imputation across a range of epistasis effect sizes, define the appropriate

alpha for genome-wide multiple test correction in the context of many millions of individual

tests, and assess the role of LD in influencing interaction tests.

Assessment of power in the context of expression prediction error

Genetically based expression prediction is imperfect (i.e., prediction r2<expression h2SNP<1

S1 Fig). This is a function both of the heritability of the trait [87] as well as sampling variance

from finite (often small) expression reference panels [3–5]. To assess how such imperfect

expression prediction impacted the power to detect gene-gene (GxG) expression interactions,

we performed a set of Monte Carlo simulations (each 5,000 replicates) while varying the sam-

ple size (N = 5000, 10000, 15000, 25000, 40000, 50000, 75000, 100000, 150000, 200000, 250000,

500000), the proportion of the phenotypic variance truly explained (PVE) by the interaction

(PVE = 0, 0.0001, 0.00025, 0.0005, 0.001, 0.005), and incorporating prediction error of the

gene expression values by drawing randomly from the observed distribution of imputation

accuracy (S1 Fig). We simulated gene expression values (the predictors in our model) from

standard normal distributions, then generated phenotypes as a function of main and interac-

tion expression effects and random noise, based on the set PVE. We then added error to the

predictor expression values by drawing random noise from a ~N(0, σ2
resid), where σ2

resid was

equal to one minus the observed prediction accuracy of a value randomly drawn from the
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distribution in S1 Fig. We performed these simulations with and without the added prediction

error to assess its influence on bias and power.

As expected, decreased PVE and added expression error both decreased the power to detect

significant interactions (S2 Fig). Note that when PVE = 0, roughly 5% of tests were significant

when using alpha = 0.05 (and 0% with more stringent thresholds), indicating a well-calibrated

interaction test statistic under these simulated conditions.

Assessment of power using actual predicted gene expression

We next used UK Biobank data, with genome-wide predicted gene expression, to incorporate

real predicted expression data into our simulations. We used predicted sCCA1 expression data,

and excluded individuals with relatedness > 0.05 (e.g., a sample similar to that used when test-

ing epistasis effects on height). We randomly selected 5,000 pairs of genes from throughout the

genome, and from the imputed expression data, simulated phenotypes as described above. We

then added random noise to the imputed expression predictors, based on the estimated predic-

tion accuracy (S1 Fig) for each gene in each pair. Again, power declined when error (due to

imperfect expression prediction models) was added to the expression values used in the regres-

sions (S3 Fig). Power was also decreased relative to the simulations described above (S2 Fig).

Note that when PVE = 0, roughly 5% of tests were significant when using alpha = 0.05 (and 0%

with other thresholds), indicating a well-calibrated interaction test statistic when incorporating

data derived from real imputed expression data within a large biobank sample.

Assessment of power using pairs of physically proximate genes when local

SNPs are in LD

In the presence of imputation error, LD leads to an inflated false positive rate. We confirmed

that, similar to recent reports [23,24], this is due to binomially distributed predictors (i.e., true

expression abundance when genetically based) with normally distributed error added (either

from imperfect expression imputation or from random error) through a series of simulations

varying LD, physical proximity and the distribution of the predictors (binomially distributed

or normally distributed gene expression levels). We found evidence for this inflation only in

the presence of LD. We next describe the two analyses we performed to conclude this.

Variation within nearby genes is expected to be correlated due to LD of SNPs, and we

expected that this could inflate test statistics, leading to false positives when comparing physically

proximate genes based on other studies [23,24]. To understand how LD impacts the test statis-

tics, we therefore performed tests identical to those described above, but randomly chose only

pairs of genes that were physically, immediately next to one another, thereby building into the

simulations the desired physical proximity and underlying LD among causal variants. In these

simulations (S4 Fig), power to detect true effects was slightly reduced relative to when pairs were

randomly selected throughout the genome, but when prediction error was added to the expres-

sion values, we observed inflation of the Type I Error rate. When PVE = 0, at the largest samples

simulated, ~40%, 7.5%, and 5.5% of tests were significant at alpha = 0.05, 5e-8, and 2.5e-10.

To confirm LD as the cause of this, we simulated pairs of gene expression data from either a

standard normal distribution (~N(0,1)) or from a simple PGS (the sum of the minor alleles) of

varying polygenicity (2, 10, 20, 50 or 100 SNPs per gene) derived from binomially distributed

genotype data. We then generated phenotypes from the main effects of the simulated gene

expression but without a true interaction. For each simulation, we tested the regression model

interaction term, either using the simulated PGS (representing the simulated expression of

each gene) or simulating imperfect expression prediction by adding normally distributed

noise to the PGS (S5 Fig). When using the true PGS as the predictor (no predictor error), the
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interaction tests are well calibrated (Type I error rate ~0.05 when applying alpha = 0.05)

regardless of trait architecture or LD. When SNPs affecting gene expression are not in linkage

disequilibrium, the interaction tests are also well calibrated. However, if the SNPs affecting

expression are in LD (such as would occur for perfectly correlated PGSs of nearby genes), type

I error rates can become strongly inflated in the presence of imperfect expression. When using

expression with added error (to mimic imperfectly predicted expression data), the false posi-

tive rate becomes much greater if the expression is predicted from a PGS generated from simu-

lated, binomially distributed SNPs. The effect is greatest for a PGS derived from a few SNPs

with poor prediction accuracy (high error variance added to the predictor), and declines as the

expression polygenicity increases or the prediction accuracy improves. When estimated

expression was derived from a standard normal distribution, the type I error rates were never

inflated. This appears to be due to the combination of a binomially distributed predictor with

added error variance, a situation that has been observed previously [23,24].

These results suggest that tests of nearby genes (those with SNPs as predictors in LD) have

inflated type I error rate and should be treated with caution. Gene pairs physically or with

unlinked SNPs affecting them are unaffected, and the type I error rate is well calibrated.

Assessment of expression-based interaction tests when causal variant

effects do not operate via expression

We assessed the impact of true genetic interactions that are not mediated via expression effects

on the phenotypes. Predicted cross-tissue or tissue-specific expression data are essentially local

PGSs, built from SNPs within localized physical windows. If there are true causal variants

(CVs) that impact the phenotype directly (not through effects on gene expression) and are

linked to SNPs that predict gene expression, it is possible that one could identify significant

GxG expression PGS-based associations due to LD, when in fact no expression-based interac-

tions truly influence the phenotype.

We tested this by simulating SNP-by-SNP interaction effects on phenotypes, then testing

models of either SNP-SNP interactions or expression PGS gene-gene interactions. In these

simulations, there is a true genetic interaction effect via SNPs, but the phenotype is unaffected

by genetic-based expression. We included two different scenarios to confirm that LD between

the truly functional SNPs and the rest of the SNPs that contribute to the genetically predicted

expression is what drives the TWIS associations, using either the SNPs with the locally maxi-

mal LD score or the SNPs with the locally minimal LD score as the truly interacting SNPs.

Consistent with expectations, we found this results in false positive associations of gene

expression epistasis, which reflects the expression PGS tagging of true causal interactions (S6

Fig). Furthermore, the larger the LD scores of the interacting SNPs, the higher the false positive

rate of TWIS associations. We note that this is a false positive in the sense that there are no

expression-mediated interactions, but there is a true genetic interaction in these scenarios, so

such false positives may still be of interest.

Determining alpha

The study-wide alpha based on a Bonferroni correction is approximately 0.05/C20;000
2 ffi 2.5e-10

for a single trait and tissue expression combination assuming 20,000 genes in the genome, but

these tests are not independent due to LD and their pairwise nature. Furthermore, the influ-

ence of LD, described above, clearly leads to inflated false positive rates. We estimated an

appropriate genome-wide multiple test correction threshold by applying a similar simulation-

based approach as has been used for univariate GWAS [88]. We simulated 100 independent

genome-wide TWIS studies, each with 13,224 genes and 87,430,476 pairwise tests of epistasis
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(8,743,047,600 total tests) using the imputed sCCA1 expression in unrelated individuals from

the UK Biobank, matching the sample size with height data (N = 328,745). In each of the 100

datasets, we simulated phenotypes for each pair of gene-gene interaction tests, in which the

genes had true main effects but no interaction effects, then estimated the interaction effect p-

value using the approach described above. We identified in each of the 100 simulated TWIS

studies the minimum p-value, then identified the 5th percentile of these 100 minimum p-values

as the appropriate genome-wide alpha. However, because LD varies throughout the genome

and is expected to inflate false positive rates, we split this analysis into tests in which both

genes are found on the same vs. different chromosomes, as a proxy for pairs in which SNPs are

possibly in LD vs. those not in LD. For 60 of these simulated TWIS studies, we further assessed

whether the distribution of interaction p-values are drawn from an approximate cumulative t
distribution across a range of pairwise expression correlations using Kolmogorov-Smirnov

(K-S) tests, implemented in R. We found that the 5th percentile of minimum p-values across

the 100 simulated TWIS datasets from gene pairs on the same chromosome is 1.22e-20, reflect-

ing the test statistic inflation due to LD between SNPs nearby the genes noted above, while the

5th percentile of minimum p-values from gene pairs on different chromosome is 5.86e-10, very

similar to the alpha when using a Bonferroni correction (S7 Fig). While predicted expression

of all pairs of genes on different chromosomes were generally uncorrelated (most |r|<0.1) and

the p-value distribution was not different from the expected cumulative t distribution, pairs on

the same chromosomes had a range of pairwise expression correlation, and the distribution of

p-values was increasingly dissimilar from expected at stronger pairwise expression correlations

(S8 Fig). Notably, across the 60 simulated datasets, the K-S test was not significant (almost all

p>0.05) when, on the same chromosome, pairwise gene expression |r|<0.1, giving a threshold

of pairwise expression correlation due to local LD, above which false positives are likely, but

below which test statistics are reasonably well-calibrated. We therefore use a genome-wide,

exhaustive TWIS corrected significance threshold of p<5.86e-10, while conservatively also

excluding any pairs of genes whose imputed expression |r|>0.05 in the discovery sample (UK

Biobank sample) and those pairs within 1MB.

Enrichment-TWIS (E-TWIS)

We estimated enrichment of interaction associations within gene sets, rather than individual

pairs of genes. We assessed the strength of interaction associations among genes within gene

sets using a network analysis approach to determine the connectedness of all pairs of genes

within a priori defined gene sets of interest, including multiple functional pathways and net-

works. Similar to network connectivity [68], our measure summed the squared, meta-ana-

lyzed, pairwise interaction association Z-scores of all m pairs of n genes within each pathway

or gene set, which was χ2
df = m-distributed. To confirm that this approach produces appropri-

ate p-values of gene set TWIS association enrichment, we performed simulations to estimate

the distribution of gene set χ2 statistics under the null of no interaction association for several

gene sets of varying size. These confirmed that our test statistic was roughly χ2
df = m-distrib-

uted for small (n<150) gene sets but was anti-conservative for very large gene sets (S38 Fig). In

these cases, we employed a secondary strategy, in which we randomly resampled n genes 1000

times, approximating the length and number of variants per gene in the target dataset, and

averaged their m pairwise, squared TWIS Z-scores to estimate an empirical enrichment p-

value. We confirmed similar findings to the χ2
m test (S39–S40 Figs), noting that resampling

represents a competitive test (sensu [69]) accounting for background heritability throughout

the genome via resampling random genes; therefore, annotated gene sets identified via ran-

dom resampling are concluded to be enriched relative to background epistatic interactions.
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We advocate an approach of efficiently testing many gene sets via χ2 tests and resampling to

confirm large gene set enrichment or to test sets of particular interest.

We tested a broad range of gene sets, including the weighted gene coexpression network

analysis (WGCNA) modules in the PFC identified by Gandal et al.[32,70] and multiple sets

from the Molecular Signatures Database (MsigDB) [71]. The latter included hallmark gene

sets; c2 canonical curated genesets from Biocarta, KEGG, and Reactome pathways; c3 regula-

tory target gene sets; c7 ImmuneSigDB gene sets; and c8 cell type signature gene sets. After

excluding sets with fewer than 10 genes, we tested a total of 7,911–8,012 sets per trait and

expression tissue and applied FDR�0.05 multiple test correction. We then used the same

approach to assess interaction association enrichment in genes specifically expressed within

individual cell types within multiple brain regions and subsets of those genes that are intoler-

ant to protein-truncating mutations (defined in [72]).

Number of interactions per gene

To examine the distribution of interaction frequency per gene, we applied a nominal signifi-

cance threshold of interaction p�1e-5. We then evaluated the number of interactions each

gene was involved in by plotting the distribution. As demonstrated by our power simulations,

we are underpowered to detect strict Bonferroni-significant interactions, but as demonstrated

by our gene set enrichment analyses, there is a signal of interaction associations within tests

that do not reach strict significance, which is why we used a nominal p�1e-5 threshold.

TWIS vs. TWAS comparison using UK Biobank data

We assessed whether genes identified in TWIS would have been identified using single gene

TWAS [3], as it has been hypothesized the effect sizes of a locus could be muted when analyzed

individually if the gene’s effect depends on an interaction with another gene [7]. We restricted

our analysis to genes within pairs of suggestive (p�1e-5) interaction associations in the com-

bined meta-analysis, across any phenotype and trait combination. We used the residualized

UK Biobank data and applied a p�1e-5 suggestive significance criteria. Using these results, we

compared the interaction effect sizes from TWIS for each gene with its TWAS-estimated effect

size to test whether genes with larger interactions have smaller effect sizes estimated in a sin-

gle-locus model.

SNPxSNP Interactions Follow-up analyses

Five pairs of gene interactions were significantly associated in the final meta-analysis (Table 1).

We therefore followed up these TWIS associations with all pairwise SNPxSNP interaction

associations with the same set of traits. We extracted all SNPs +/- 500KB of the gene transcrip-

tion start site (matching the FUSION TWAS weight calculation windows [4]), residualized the

phenotype and SNP genotypes on the same covariates as in TWIS and performed all SNPxSNP

interaction tests for each pair of genes found in Table 1. We performed these analyses in all

cohorts with trait data, then meta-analyzed the interaction associations as described above.

Full results of all SNPxSNP interaction tests as well as the full meta-analyzed TWIS results are

available on Dryad [89].

Dryad DOI. https://doi.org/10.5061/dryad.866t1g1tw
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S1 Fig. Histogram of the best model (i.e., lowest p-value) from FUSION output of the

cross-tissue expression prediction models (first sCCA axis).

(TIFF)

S2 Fig. Power to detect significant interactions at two significance thresholds across vary-

ing sample sizes and true proportions of phenotypic variance explained (PVE) by the inter-

action. Left, without incorporating expression prediction error into the simulation. Right,

incorporating random error for each predicted gene expression based on the distribution of

observed prediction accuracies of the best model in S1 Fig. Main effect sizes for the two expres-

sion predictors (T1 & T2) are shown above each plot; varying these had minimal effect on the

interaction test power.

(TIFF)

S3 Fig. Power to detect significant interactions at two significance thresholds across vary-

ing sample sizes and true proportions of phenotypic variance explained (PVE) by the inter-

action when using predicted sCCA1 expression within the UK Biobank in unrelated

individuals using pairs of genes randomly selected throughout the genome. Left, without

incorporating expression prediction error into the simulation. Right, incorporating random

error for each predicted gene expression based on the observed prediction accuracies of the

best model in S1 Fig. Main effect sizes for the two expression predictors (T1 & T2) are shown

above each plot; varying these had minimal effect on the interaction test power.

(TIFF)

S4 Fig. Power to detect significant interactions at two significance thresholds across vary-

ing sample sizes and true proportions of phenotypic variance explained (PVE) by the inter-

action when using predicted sCCA1 expression within the UK Biobank in unrelated

individuals using pairs of genes that were immediately next to one another in the genome.

Left, without incorporating expression prediction error into the simulation. Right, incorporat-

ing random error for each predicted gene expression based on the observed prediction accura-

cies of the best model in S1 Fig.

(TIFF)

S5 Fig. The proportion of significant tests (alpha = 0.05) when simulating gene expres-

sion from linked (correlation of expression or gene LD = 1) or unlinked (= 0) data, either

from a standard normal distribution (~N(0,1)) or from a simple PRS of varying polygeni-

city. Simulated phenotypes included main effects of gene expression (based on varying poly-

genicity), but did not include gene expression interaction effects. When using truly normally

distributed gene expression values in the regression (top), the test statistic is well calibrated

(i.e., Type I error rate ~alpha), regardless of whether additional variance is added and

whether estimated (i.e., imperfectly predicted) expression data are used. However, when the

true expression data is generated from binomially distributed SNPs, using an imperfectly

predicted PGS results in inflation of the Type I error rate, proportional to how poorly the

PGS predicts expression, i.e., with increasing error variance added to the predictor. Note

that this does not occur when the true observed expression is used, even if binomially distrib-

uted. The effect is greatest for a PGS using a single SNP, and weakens as the expression

becomes more polygenic.

(TIFF)

S6 Fig. Simulations of causal SNPxSNP effects on the phenotype, tested either using

SNPxSNP interactions (top) or imputed expression gene-gene interactions (bottom), when

varying the LD (based on the LD score) of the causal SNPs. False positives increase when the
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SNPxSNP CVs have high LD scores than low LD scores, to the extent that the true effect is

driven by SNP-SNP interactions, not expression-expression interactions. This results from LD

between the causal SNPs and those used in the expression imputation.

(TIFF)

S7 Fig. Distribution of the minimum interaction p-value for each of 100 simulated TWIS

studies (each observation represents the minimum p-value of ~87M pairwise interaction

tests across the genome), separated by whether the pair of genes is on the same (top) or dif-

ferent chromosomes (bottom). Red dashed line represents the 5th percentile of the minimum

p-values. Note the x-axis scale differs between the two panels.

(TIFF)

S8 Fig. Violin plots of K-S test p-value testing whether the distribution of interaction test

statistics is t-distributed across 40 whole genome TWIS study replications, depending on

the pairwise imputed expression correlation between the gene pairs, and separated by

whether the pair of genes is on the same (top) or different chromosomes (bottom). NA

indicates no pairs of genes were found within that bin of pairwise imputed expression correla-

tion. Blue dots are the (jittered) individual K-S test p-values for an entire simulated TWIS study.

(TIFF)

S9 Fig. Boulder plot of BMI interaction association p-values using imputed transcription.

Shown are the results from the final meta-analysis of all data. Black lines connect pairs that sur-

passed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci with nomi-

nally significant interaction (p<0.05) in the replication cohort, and gray lines connect pairs of

genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S10 Fig. Boulder plot of cAUDIT interaction association p-values using imputed transcrip-

tion. Shown are the results from the final meta-analysis of all data. Black lines connect pairs

that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci with

nominally significant interaction (p<0.05) in the replication cohort, and gray lines connect

pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S11 Fig. Boulder plot of CPD (heavy CPD> = 20 vs light CPD< = 10) interaction associa-

tion p-values using imputed transcription. Shown are the results from the final meta-analy-

sis of all data. Black lines connect pairs that surpassed p<2.5e-10 in the discovery cohort

(UKB), blue lines connect pairs of loci with nominally significant interaction (p<0.05) in

the replication cohort, and gray lines connect pairs of genes with p<2.5e-10 in the final

meta-analysis.

(TIFF)

S12 Fig. Boulder plot of DPW interaction association p-values using imputed transcrip-

tion. Shown are the results from the final meta-analysis of all data. Black lines connect pairs

that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci with

nominally significant interaction (p<0.05) in the replication cohort, and gray lines connect

pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S13 Fig. Boulder plot of GAD interaction association p-values using imputed transcrip-

tion. Shown are the results from the final meta-analysis of all data. Black lines connect pairs

that surpassed p<2.5e-10 in the discovery cohort (UKB), green lines connect pairs of loci with
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significant (q<0.05) in the replication cohort, and gray lines connect pairs of genes with

p<2.5e-10 in the final meta-analysis.

(TIFF)

S14 Fig. Boulder plot of height interaction association p-values using imputed transcrip-

tion. Shown are the results from the final meta-analysis of all data. Black lines connect pairs

that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci with

nominally significant interaction (p<0.05) in the replication cohort, and gray lines connect

pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S15 Fig. Boulder plot of MDD interaction association p-values using imputed transcrip-

tion. Shown are the results from the final meta-analysis of all data. Black lines connect pairs

that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci with

nominally significant interaction (p<0.05) in the replication cohort, and gray lines connect

pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S16 Fig. Boulder plot of neuroticism interaction association p-values using imputed tran-

scription. Shown are the results from the final meta-analysis of all data. Black lines connect

pairs that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci

with nominally significant interaction (p<0.05) in the replication cohort, and gray lines con-

nect pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S17 Fig. Boulder plot of pAUDIT interaction association p-values using imputed tran-

scription. Shown are the results from the final meta-analysis of all data. Black lines connect

pairs that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci

with nominally significant interaction (p<0.05) in the replication cohort, and gray lines con-

nect pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S18 Fig. Boulder plot of psychiatric interaction association p-values using imputed tran-

scription. Shown are the results from the final meta-analysis of all data. Black lines connect

pairs that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect pairs of loci

with nominally significant interaction (p<0.05) in the replication cohort, and gray lines con-

nect pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S19 Fig. Boulder plot of smoking cessation (SC) interaction association p-values using

imputed transcription. Shown are the results from the final meta-analysis of all data. Black

lines connect pairs that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect

pairs of loci with nominally significant interaction (p<0.05) in the replication cohort, and gray

lines connect pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

S20 Fig. Boulder plot of smoking interaction (SI) interaction association p-values using

imputed transcription. Shown are the results from the final meta-analysis of all data. Black

lines connect pairs that surpassed p<2.5e-10 in the discovery cohort (UKB), blue lines connect

pairs of loci with nominally significant interaction (p<0.05) in the replication cohort, and gray

lines connect pairs of genes with p<2.5e-10 in the final meta-analysis.

(TIFF)

PLOS GENETICS Epistasis in complex traits

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1010693 May 22, 2023 23 / 32

http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s015
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s016
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s017
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s018
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s019
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s020
http://journals.plos.org/plosgenetics/article/asset?unique&id=info:doi/10.1371/journal.pgen.1010693.s021
https://doi.org/10.1371/journal.pgen.1010693


S21 Fig. GAD (case = 1, control = 0, jittered for visualization) plotted against imputed

expression of x ENSG00000086475.14 for values of ENSG00000166912.16 either above or

below the median (high or low, respectively), imputed using sCCA3 cross tissue weights.

Studies are indicated in title of each panel. Fitted logistic regressions are shown by dashed line.

(TIFF)

S22 Fig. pAUDIT plotted (1 or 0, jittered) against imputed expression of

ENSG00000115596 for values of ENSG00000126583 either above or below the median

(high or low, respectively), imputed using PFC expression weights. Studies are indicated in

title of each panel. Fitted logistic regressions are shown by dashed line.

(TIFF)

S23 Fig. pAUDIT plotted (1 or 0, jittered) against imputed expression of

ENSG00000135525 for values of ENSG00000126583 either above or below the median

(high or low, respectively), imputed using PFC expression weights. Studies are indicated in

title of each panel. Fitted logistic regressions are shown by dashed line.

(TIFF)

S24 Fig. pAUDIT plotted (1 or 0, jittered) against imputed expression of

ENSG00000174938 for values of ENSG00000126583 either above or below the median

(high or low, respectively), imputed using PFC expression weights. Studies are indicated in

title of each panel. Fitted logistic regressions are shown by dashed line.

(TIFF)

S25 Fig. pAUDIT plotted (1 or 0, jittered) against imputed expression of

ENSG00000115112 for values of ENSG00000166451 either above or below the median

(high or low, respectively), imputed using PFC expression weights. Studies are indicated in

title of each panel. Fitted logistic regressions are shown by dashed line.

(TIFF)

S26 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with BMI.

(TIFF)

S27 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with cAUDIT.

(TIFF)

S28 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with CPD (high vs. low use).

(TIFF)

S29 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with DPW.

(TIFF)

S30 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with GAD.

(TIFF)

S31 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with height.

(TIFF)
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S32 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with MDD.

(TIFF)

S33 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with neuroticism.

(TIFF)

S34 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with pAUDIT.

(TIFF)

S35 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with psychiatric.

(TIFF)

S36 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with smoking cessation (SC).

(TIFF)

S37 Fig. Distribution of number of interaction associations for each gene with at least one

suggestive (p<1e-5) interaction with smoking initiation (SI).

(TIFF)

S38 Fig. Distribution of summed, squared interaction Z-scores for 1000 simulated pheno-

types under a null of no epistasis but including main effects for pAUDIT using cortex

imputed expression for 6 different gene sets of varying size. Observed value shown by blue

line, while the red line represents the X2 density for the same df. These simulations show that

for most gene sets, a standard X2 test is appropriate, but can be anti-conservative for large gene

sets, likely when there is a true signal (e.g., gandal_wgcna_CD3 set).
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S39 Fig. Distribution of mean squared interaction Z-scores for 1000 resampled gene sets

for pAUDIT using cortex imputed expression for the same 6 different gene sets of varying

size in S32 Fig. Observed value shown by blue line. These simulations show that for most gene

sets, a random resampling approach recapitulates the results of a standard X2 test.
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S40 Fig. Comparison of p-values from a standard X2m test vs. 1000 randomly resampled

gene sets of the same size across a range of observed X2
m p-values. Note that in the bottom

panel, all cases where the resampled p-value was <1/1000 (i.e., none of the resampled sets had

larger mean Z2 than the observed), -log10(p) was set to 4.
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covariate information. UK Biobank used as discovery dataset. All others meta-analyzed as an
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S2 Table. Simulation results of rates of false positives (a = 0.05) under different trait & pre-

dictor residualization approaches, compared to a full model, under a null in which there is

no gene-gene interaction effect. Compared models include the approach used in the main

analyses, ‘Residualize Expression’, in which the imputed expression and trait values were
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residualized on all covariates prior to running the test (yresid = T1resid + T2resid + T1resid*-
T2resid), and the “Residualize Expression and GxG Term”, in which the trait, imputed expres-
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and the imputed expression never leads to systematically higher rates of false positives than the

full model, but residualizing the T1*T2 term separately leads to high rates of false positives

when covariates and imputed gene expression values are correlated.
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