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Abstract

Attenuation compensation (AC) is beneficial for visual interpretation tasks in single-photon 

emission computed tomography (SPECT) myocardial perfusion imaging (MPI). However, 

traditional AC methods require the availability of a transmission scan, most often a CT scan. 

This approach has the disadvantage of increased radiation dose, increased scanner costs, and the 

possibility of inaccurate diagnosis in cases of misregistration between the SPECT and CT images. 

Further, many SPECT systems do not include a CT component. To address these issues, we 

developed a Scatter-window projection and deep Learning-based AC (SLAC) method to perform 

AC without a separate transmission scan. To investigate the clinical efficacy of this method, 

we then objectively evaluated the performance of this method on the clinical task of detecting 

perfusion defects on MPI in a retrospective study with anonymized clinical SPECT/CT stress 

MPI images. The proposed method was compared with CT-based AC (CTAC) and no-AC (NAC) 

methods. Our results showed that the SLAC method yielded an almost overlapping receiver 

operating characteristic (ROC) plot and a similar area under the ROC (AUC) to the CTAC method 

on this task. These results demonstrate the capability of the SLAC method for transmission-less 

AC in SPECT and motivate further clinical evaluation.
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1. INTRODUCTION

Attenuation of photons is a major image-degrading effect that adversely impacts image 

quality in single-photon emission computed tomography (SPECT). Multiple studies have 

shown that attenuation compensation (AC) is beneficial for clinical interpretations of 

Further author information: (Send correspondence to Abhinav K. Jha), Abhinav K. Jha: a.jha@wustl.edu. 

HHS Public Access
Author manuscript
Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 April 07.

Published in final edited form as:
Proc SPIE Int Soc Opt Eng. 2023 February ; 12463: . doi:10.1117/12.2654500.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SPECT myocardial perfusion images.1,2 Conventional AC methods typically require an 

attenuation map, now most commonly obtained from a separate CT scan. However, these 

CT-based AC (CTAC) methods have multiple disadvantages, such as increased radiation 

dose, higher scanner costs, and possible misregistration between the SPECT and CT images 

potentially leading to inaccurate diagnosis.3–6 Further, many SPECT systems often do not 

have a CT component. For example, SPECT systems in smaller community hospitals and 

physician offices, as well as mobile SPECT systems facilitating use in remote locations are 

often SPECT-only. The emerging solid-state-detector-based SPECT systems, which provide 

higher sensitivity, energy, temporal, and spatial resolution compared to conventional SPECT 

systems, often do not have CT imaging capability either.7,8 For these reasons, there is an 

important need to develop transmission-less AC (Tx-less AC) methods for SPECT.

Given this high significance, multiple Tx-less AC methods have been proposed, including 

methods that use SPECT emission data to estimate attenuation maps9–11 and methods 

that operate on the iterative inversion of the forward mathematical models of SPECT 

systems.12,13 More recently, deep learning (DL)-based methods have shown significant 

promise for Tx-less AC.14–19 Shi et al. recently reported promising performance of a 

conditional generative adversarial network for Tx-less AC for myocardial perfusion SPECT 

(MPS).18 Chen et al. developed strategies for generating attenuation maps using emission 

data for dedicated cardiac SPECT with small field-of-view and found that their strategies 

outperformed the method that directly predicts AC images from non-attenuation-corrected 

images.19 While the performance of these methods is promising, these DL-based methods 

have typically been evaluated using figures of merit (FoM) that measure the fidelity between 

the images reconstructed using the DL-based approach with a reference standard, which 

is typically the image reconstructed with the CT-based AC method. Medical images are 

acquired for specific clinical tasks. Thus, clinical translation of these Tx-less AC methods 

requires that they be evaluated in reference to the clinical task.20–23 However, studies have 

shown that evaluation using fidelity-based FoMs may not correlate with performance on 

clinical tasks in myocardial perfusion imaging (MPI).24–26 Thus, it is crucial to evaluate 

these methods on the specific clinical tasks for which the images are acquired.

We have shown that scatter-window data in SPECT contains information to estimate the 

attenuation distribution.27 Based on this premise, we had proposed a DL-based Tx-less 

AC method for SPECT.28 In this paper, we advance upon this idea to propose a Scatter-

window projection and DL-based Tx-less AC (SLAC) method for myocardial perfusion 

SPECT (MPS) that uses only SPECT emission data in photopeak and scatter windows. We 

objectively evaluate the method on the clinical task of myocardial defect detection in a 

retrospective study.

2. METHODS

2.1 Proposed method

The overall framework of the SLAC method is shown in Fig. 1. The probability of scatter 

at a certain location is proportional to the attenuation distribution at that location. It is 

expected that a reconstruction of the scatter-window projection would show the contrast 

between regions with different attenuation coefficients. A previous study has shown a 
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promising performance of a DL-based method that estimates the attenuation map from 

a reconstruction of scatter-window projection.18 Thus, the scatter-window projection was 

reconstructed using an ordered-subsets expectation maximization (OSEM)-based approach, 

yielding an initial estimate of attenuation map.29,30 Then, in this study, we used a DL-based 

technique to segment the initial estimate of attenuation maps. U-Net-based approaches 

have shown promise in biomedical image segmentation problems.31–33 Thus, we used a 

U-Net-based approach, namely, multi-channel input and multi-encoder U-Net (McEUN), 

to segment the initial estimate of attenuation maps. The McEUN was trained to segment 

the initial estimate of attenuation maps into six regions, including skin and subcutaneous 

adipose, muscles and organs, lungs, bones, patient table, and background. The McEUN 

mainly consists of two components: an encoder with muti-channel input and an assembly of 

six decoders. To stabilize the network training and leverage salient regions, skip connections 

with attention gate (AG) were implemented between the output of layers in the encoder and 

each decoder.34 Dropout was applied to prevent overfitting.35 The network was designed to 

input the whole 3-D image and maximize the amount of information learned in a global 

sense. The network was trained to minimize the cross entropy between estimated and true 

segmentation.

2.2 Evaluation

We evaluated the SLAC method on the clinical task of detecting cardiac perfusion 

defects in a retrospective Institutional Review Board-approved evaluation study with 

anonymized stress SPECT MPI data. We compared the performance of our method with 

activity maps reconstructed using a CT-based AC (CTAC) method and to images obtained 

without AC, referred to as no-AC (NAC) approach. We followed the recently proposed 

Recommendations for EvaLuation of AI in NuClear-medicinE (RELAINCE) guidelines to 

lend rigor to our evaluation.23 The description of the evaluation study consists of four 

parts, including data collection and curation, network training and method implementation, 

process to extract task-specific information, and figures of merit used.

2.2.1 Data collection and curation—The dataset used in this study consisted of N 

= 648 anonymized clinical SPECT/CT stress MPI studies scanned between January 2016 

and July 2021, with SPECT projection data and CT images along with clinical reports. 

As per the clinical reports, we categorized patients diagnosed with normal rest and stress 

myocardial perfusion function as healthy patients, while patients diagnosed with ischemia 

in a left ventricular wall as diseased patients. MPI scans were acquired on a GE Discovery 

NM/CT 670 system after the injection of 99mTc-tetrofosmin. SPECT emission data were 

collected in photopeak (126–154 keV) and scatter windows (114–126 keV). CT images were 

acquired at 120 kVp on a GE Optima CT 540 system integrated with the GE Discovery 

NM/CT 670. To avoid misalignment between CT and SPECT scans, CT images were 

registered to the SPECT space using MIM Maestro (MIM Software Inc, Cleveland, OH). 

CT-defined attenuation maps were calculated from the CT scans using a bi-linear model.36

For evaluating the SLAC method on the clinical task of detecting cardiac defects, knowledge 

of the existence and location of the defects was needed. The clinical records have limitations 

in providing this information. To address this issue, we implemented a strategy that 
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introduces synthetic cardiac defects in healthy patient images.37 We designed 27 types of 

clinically realistic defects with three radial extents, three severities, and at three locations. A 

summary of defect types is shown in Table 1.

The whole dataset was divided into the training dataset (N = 508) and the testing dataset (N 

= 140). Because we need the ground truth of defects in the test dataset for our evaluation 

study, the testing dataset only consisted of patients that were diagnosed as healthy according 

to the clinical records, and synthetic defects were introduced in 71 of these 140 healthy test 

patients, referred to as defect-present samples. The remaining 69 healthy test patients were 

referred to as defect-absent samples. We generated 27×71 = 1917 defect-present samples in 

both photopeak and scatter energy windows. We also generated 27×69 = 1863 defect-absent 

samples, although they were identical if from the same patient.

As mentioned in Sec. 2.1, the scatter-window projection was reconstructed using an OSEM-

based reconstruction method without AC, yielding the initial estimate of the attenuation 

map. Also, the photopeak-window projection was reconstructed using the same strategy, 

yielding an initial estimate of the activity map. The CT-based attenuation maps for network 

training were segmented into skin and subcutaneous adipose, muscles and organs, lungs, 

bones, patient table, and background, using a Markov random field-based method.38 The 

average attenuation coefficients of each region were calculated and served as the predefined 

attenuation coefficients.

2.2.2 Network training and method implementation—A total of N = 508 samples 

were used for the network training. The kernel weights of the McEUN were initialized 

using the Glorot normal initializer.39 Biases were initialized to a constant of 0.03. The 

McEUN was trained to minimize a weighted cross entropy loss between predicted and 

CT-based segmentations using Adam optimizer.40 We optimized the weight parameters to 

yield the best segmentation performance. Five-fold cross-validation was implemented to 

prevent overfitting. The training and validation were performed using Keras 2.2.4 on two 

TITAN RTX GPUs with 23 GB memory each.

As mentioned in Sec. 2.2.1, there were a total of 27×140 = 3780 samples in the test dataset. 

The trained McEUN yielded segmented masks of initial estimates of attenuation maps. 

Predefined attenuation coefficients were assigned to each region, yielding the final estimate 

of attenuation maps. Next, the photopeak-window projections were reconstructed using an 

OSEM-based reconstruction method, which accounts for attenuation and collimator-detector 

response.30 The final estimates of attenuation maps were used for AC. The reconstructed 

activity images had a size of 64×64×64 with a voxel size of 0.68 cm. Following the clinical 

protocols, the reconstructed activity images were reoriented into short-axis slices and filtered 

by a Butterworth filter with an order of 5 and cutoff frequency 0.44 cm−1. CTAC-based 

images and NAC-based images were obtained using the same OSEM-based reconstruction 

approach and post-processing procedures as used in the SLAC method but with different AC 

approaches.

2.2.3 Process to extract task-specific information—We objectively evaluated the 

performance of the SLAC method on the task of detecting myocardial perfusion defects 
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in an observer study. While ideally, such evaluation should be performed with human 

observers, this is time-consuming and tedious. Model observers provide an easy-to-use in 

silico approach to perform such evaluation and identify methods for evaluation with human 

observers. Thus, multiple studies use model observers to evaluate imaging systems and 

methods.21,41–43 In our evaluation study, the location of the defect was chosen to be in the 

inferior left ventricular wall in the test dataset. Then, we had a patient population where 

the defect extent and severity were varying, but the location of the defect was the same in 

the entire population in the test dataset. Therefore, there were 9×71 = 639 defect-present 

samples and 9×69 = 621 defect-absent samples in the evaluation study. Previous studies 

have shown that the channelized Hotelling observer (CHO) with rotationally symmetric 

frequency channels can emulate human-observer performance on the task of detecting 

perfusion defects from MPS images in this setting.44,45 Thus, in this study, we used this 

model observer. We extracted a 32×32 region from the middle 2-D slice of the short-axis 

images that had the defect centroid at the center and applied the CHO to this region to yield 

test statistics. These statistics were calculated for each defect-present and -absent image in 

the test set using a leave-one-out strategy.

2.2.4 Figures of merit—The test statistics generated were compared to a threshold to 

classify the image into the defect-present or defect-absent class. By varying the threshold, 

the ROC curve was plotted46,47 using LABROC4 program.48 The AUC measures the 

performance of methods on the task of defect detection. A higher AUC indicates better 

performance. We calculated the AUC with 95% confidence intervals (CIs) for SLAC, CTAC, 

and NAC methods.

To assess the performance of our method using visual fidelity-based criterion, we calculated 

root mean-square-error (RMSE) and structural similarity index (SSIM) with CIs between 

images obtained using the SLAC and the CTAC method, as well as between images obtained 

using the NAC and the CTAC method.

3. RESULTS

3.1 Comparing to other AC methods

Fig. 2 shows ROC curves obtained by SLAC, CTAC, and NAC methods, along with the 

corresponding 95% CIs. The ROC curve obtained by the SLAC method almost overlapped 

those obtained by the CTAC method and outperformed the NAC method. Fig. 3 shows the 

AUC values with CIs obtained by three methods. We observed that the AUC obtained by 

SLAC was similar to that obtained by the CTAC method and significantly outperformed (p < 
0.05) the NAC method.

3.2 Representative examples

Fig. 4 shows examples of SPECT images and corresponding attenuation maps estimated by 

SLAC, compared with those from CTAC. We found that the attenuation maps obtained using 

SLAC method were close to those obtained from CT images. Further, the short-axis SPECT 

images obtained using SLAC methods were similar to those obtained using CTAC methods. 

Fig. 4.b shows the same defect was shown in CTAC and SLAC-based images.
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3.3 Evaluation using fidelity-based figures of merit

Table 2 shows RMSE and SSIM between images obtained using the SLAC and the CTAC 

method, as well as between the NAC and the CTAC method. We found that the SLAC 

method significantly outperformed the NAC method based on these metrics.

4. DISCUSSIONS AND CONCLUSIONS

This study represents a step along the pathway for developing a method for AC in SPECT 

without requiring a transmission scan. Our results demonstrate that the proposed SLAC 

method did not just yield activity images that were visually similar to those yielded by 

the CTAC method (as evaluated using the RMSE and SSIM metrics) (Table 2 and Fig. 

4), but also yielded a similar performance to the CTAC method on the clinical task of 

detecting perfusion defects from MPI images (Fig. 3). More specifically, the proposed 

method yielded an almost overlapping ROC and similar AUC to the CTAC method and 

significantly outperformed the NAC method. Further, evaluation using fidelity-based FoMs 

showed that the SLAC method significantly outperformed the NAC method (Table 2). These 

results demonstrate that the SLAC method has the capability of performing AC using only 

emission data for SPECT.

Our evaluation results motivate evaluation of the SLAC method with data from different 

scanners and from different institutions to assess for generalizability. Another area of 

future research is advancing the method to use list-mode data instead of sinogram data 

to reconstruct the attenuation map. Previous studies have shown that processing data in 

list-mode format in SPECT can yield improved performance on clinical tasks compared to 

processing data in binned format.49–53 More specifically, it has been quantitatively shown 

that list-mode data contains more information compared to binned data for the task of 

estimating attenuation coefficients.27 Thus, advancing the method to process data in list-

mode format directly may lead to even more improved performance.

There are some limitations to this study. First, the performance of the SLAC method is 

dependent on the quality of training data, including the segmentation of CT images. We used 

a Markov random field-based method to segment the CT images. However, there are other 

methods, including DL-based methods, which may yield segmented low-dose CT images 

with better segmentation performance.54,55 Integrating a more advanced segmentation 

method is a future direction for improving the performance of the SLAC method. Second, 

we used a model observer study to evaluate the defect detection performance of the 

SLAC method. While the observer we used has been shown to mimic human observer 

performance, ideally this study should be conducted using human observers, such as 

experienced radiologists. The results from the model observer study motivate the evaluation 

of the method using human observers. Furthermore, the test dataset only consisted of defects 

located in the inferior LV wall. A future research direction is to incorporate defects at 

multiple locations in the test dataset while performing the observer study.

In conclusion, a scatter window projection and deep learning-based transmission-less AC 

method for SPECT yielded similar performance compared to the standard CTAC method, 

Yu et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



as evaluated on the clinically relevant task of detecting myocardial perfusion defects with a 

model observer in a retrospective evaluation study.
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Figure 1. 
The overall framework of the SLAC method.
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Figure 2. 
ROC curves obtained by CTAC, SLAC, and NAC methods. Shadows indicate 95% 

confidence intervals.
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Figure 3. 
AUC obtained by CTAC, SLAC, and NAC methods.
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Figure 4. 
Examples of SPECT images and attenuation maps obtained by SLAC and CTAC method: (a) 

a defect-absent example, (b) a defect-present example, where the yellow arrow indicates the 

detect.
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Table 1.

Defect parameters

Parameter

Extent 30, 60, and 90 degrees around the left ventricular (LV) wall

Severity 10%, 25%, and 50% less activity than the normal myocardium

Location Anterior, inferior, and lateral LV walls
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Table 2.

Evaluation using fidelity-based FoMs

Method RMSE (95% CIs) SSIM (95% CIs)

SLAC 0.013 (0.011, 0.014) 0.96 (0.95,0.97)

NAC 0.036 (0.032,0.040) 0.66 (0.65,0.68)
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