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a b s t r a c t 

Early detection of lung cancer is critical for improvement of patient survival. To address the clinical need for 

efficacious treatments, genetically engineered mouse models (GEMM) have become integral in identifying and 

evaluating the molecular underpinnings of this complex disease that may be exploited as therapeutic targets. 

Assessment of GEMM tumor burden on histopathological sections performed by manual inspection is both time 

consuming and prone to subjective bias. Therefore, an interplay of needs and challenges exists for computer-aided 

diagnostic tools, for accurate and efficient analysis of these histopathology images. In this paper, we propose a 

simple machine learning approach called the graph-based sparse principal component analysis (GS-PCA) network, 

for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E). 

Our method comprises four steps: 1) cascaded graph-based sparse PCA, 2) PCA binary hashing, 3) block-wise 

histograms, and 4) support vector machine (SVM) classification. In our proposed architecture, graph-based sparse 

PCA is employed to learn the filter banks of the multiple stages of a convolutional network. This is followed by 

PCA hashing and block histograms for indexing and pooling. The meaningful features extracted from this GS- 

PCA are then fed to an SVM classifier. We evaluate the performance of the proposed algorithm on H&E slides 

obtained from an inducible K-ras 𝐺 12 𝐷 lung cancer mouse model using precision/recall rates, 𝐹 𝛽 -score, Tanimoto 

coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC) and show that our 

algorithm is efficient and provides improved detection accuracy compared to existing algorithms. 
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Lung cancer is the leading cause of cancer-related deaths worldwide,

ith an estimated 1.6 million deaths each year [1] . Development of

ovel therapies to battle lung cancer has been greatly aided by the emer-

ence of genetically engineered mouse models (GEMMs) of lung cancer,

uch as the K-ras 𝐺 12 𝐷 ; p53 Frt non-small-cell lung carcinoma (NSCLC)

odel, where the compound effect of conditional mutations in the K-

as oncogene and the p53 tumor suppressor gene leads to development

f adenocarcinomas in the mouse lung [2,3] . Since GEMMs recapitulate
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ertain aspects of the human disease associated with the stroma, vascu-

arity, and immune infiltrate better than other models, it is important

o be able to detect, identify and localize the lung tumor lesions seen on

he histopathological sections as shown in Fig. 1 . 

Manual assessment of tumor burden (the amount of tumor cells/mass

resent in a subject’s body) on histopathological mouse lung sections is

ifficult, time consuming, and a labor-intensive process. This is due to

arious reasons such as fluctuating intensities [4] , color change and

orphological variations within structures of the cancer lesions in these

mages [5] , tumor heterogeneity [6] (see Fig. 1 ), low signal-to-noise-
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Fig. 1. An example whole-slide histopathological image from our dataset con- 

sisting of many tumor lesions. The high-resolution inset images show the visual 

features that characterize the tumor (red frame) and normal (blue frame) re- 

gions. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 
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atio [7,8] , variations in illumination [9] , microscopy imaging limita-

ions [10–13] , and the large number of images and the number of le-

ions per image an expert has to demarcate. Moreover, the task of man-

al detection of cancer lesions on H&E slides can be subjective, lead-

ng to inter-observer variability. Therefore, there is a pressing need for

omputer-aided diagnostic tools for accurate and efficient quantitative

nalysis of histopathology images [14–17] . 

Tumor detection and classification tools within the commonly avail-

ble microscopy software are based on feature extraction techniques

uch as size, shape, and morphological features [8,14–16,18–20] , tex-

ure features including local binary pattern (LBP) [21–23] , local Fourier

ransform [24] , co-occurrence matrix and fractal texture features [25] ,

nd energy minimization and optimization-based techniques [26–29] .

hese techniques suffer considerably due to over-generalization and

herefore need extensive customization for the dataset at hand, limit-

ng their use to very simple images obtained/collected in a carefully

onstrained environment [8] . Tumor detection and grading using size,

hape and other morphological features does not work well when the

ell population exhibits a variety of sizes and shapes, or when the signal-

o-noise (SNR) ratio is poor [30] . Energy minimization and optimization

echniques minimize the internal energy within tumor areas for their

ccurate detection, but may lead to false detections for highly textured

nd heterogeneous tumor lesions. To overcome these limitations, exist-

ng software tools allow user-friendly interfaces to correct the results

btained. This, however, results in losing the benefits of automation

uch as speed and reproducibility. 

There has been much interest in developing algorithmic methods

hat adapt naturally to the dataset and perform feature discovery. One

uch popular class of learning or feature discovery methods includes

hose based on sparse representation-based classification (SRC) [31] .

here have been many SRC methods that have been successfully applied

o a variety of histopathological image classification problems [32–35] .

hese methods are based on finding linear representations in the data.

owever, linear representations are almost always inadequate for rep-

esenting non-linear structures of the data which arise in many practi-

al applications. A recent class of learning-based methods involve the

esign of deep neural networks that can be trained to learn relevant

eatures by themselves. There have been plenty of deep learning meth-

ds that have been developed for histopathological image classification

5,36–42] . The success of deep learning, however, has been fueled by

he availability of generous and clean training data. When the training

ata is limited and/or noisy, as is often the case in medical imaging,

hese methods tend to show a performance degradation [43] . Another

lass of learning-based approaches involve orthogonal transformation of

he data such as principal component analysis (PCA) transform to extract

elevant features for image classification [30,44–46] . These learning-
2 
ased approaches using orthogonal transformation explore the data dis-

ribution to preserve global structures in the data. 

In this paper, we present a simple machine learning approach called

he graph-based sparse principal component analysis (GS-PCA) network,

hich combines the local and global structures of all the data and is im-

lemented in a deep learning framework to learn an explicit nonlinear

apping of the data for accurate detection and classification. We use

he most basic and easy operations to emulate the processing stages in

 typical (convolutional) neural network: First, graph-based sparse PCA

lters are used as the data-adapting convolutional filter bank at each

tage of the network. Next, we perform a simple binary quantization

hashing) that serves as the nonlinear stage, followed by block-wise his-

ograms of the binary codes as the feature pooling stage to obtain the

nal output features of the network. Finally, we train a support vector

achine (SVM) classifier on the output features of the network to ob-

ain the final classification instead of the regular softmax classifier, as

he softmax classifier is known to overfit [44] . For ease of reference,

e call this data-processing network a Graph-Based Sparse PCA Network

GS-PCANet). The key contributions of this paper are as follows: 

• Feature Extraction Using Graph-Based Sparse PCA: Unlike other

histopathology image classification methods, in this work we pro-

pose a baseline neural network method called GS-PCANet, which

is different from prior methods [30,44–46] in two aspects. 1) We

include an additional sparsity promoting term in the PCA transfor-

mation so as to select more interpretable features from the image

patches. 2) We include a graph regularization term in the objec-

tive function to recover the low-dimensional manifold structure from

high-dimensional sampled data. 

• Computationally Efficient Approach: Our proposed GS-PCANet

is computationally efficient in comparison to other deep learning

methods in two aspects. 1) We show that a simple two-stage network

is good enough to extract all the relevant features for classifying the

tumor versus healthy lung regions. 2) We do not need to learn the

filter weights at each stage of the network. 

We evaluate the proposed method and seven state-of-the-art algo-

ithms developed for histopathology image classification on a dataset

f 67 images provided by the Stefanie Galban Lab, at the University

f Michigan. The dataset consists of microscopy images of murine H&E

tained lung sections and are divided into two categories: images of non-

umor-bearing control mice and images of mice with visible tumor. 

rincipal Component Analysis 

Let X denote an 𝑛 × 𝑝 matrix of 𝑛 rows and 𝑝 columns of rank 𝑞 ≤
in ( 𝑛, 𝑝 ) , where 𝑛 is the number of data samples, and 𝑝 is the number

f features/variables in each data sample. Let x 𝑖 for 𝑖 = 1 , … , 𝑛 denote

 row of the matrix X , assumed to have a zero mean. Let Σ denote the

ovariance matrix of x 𝑖 , where Σ is a positive definite matrix of size

 × 𝑝 , which can be decomposed as 

= 

𝑞 ∑
𝑖 =1 

𝜎𝑖 v 𝑖 v 
⊤
𝑖 

(1) 

here 𝜎𝑖 is the 𝑖 th largest eigenvalue of Σ and v 𝑖 = 

[
𝑣 𝑖 1 , … , 𝑣 𝑖𝑝 

]⊤
is its as-

ociated eigenvector. PCA reduces the dimensionality of the data from

 to 𝑞 by replacing the original features/variables with 𝑞 linear combi-

ations of the form X v 𝑘 , 𝑘 = 1 , … , 𝑞 known as the principal components

PCs), which are obtained by maximizing their variance: 

 𝑘 = argmax 
v 

{
Var ( Xv ) 

}
subject to v ⊤

𝑘 
v 𝑘 = 1 

nd 

 

⊤
𝑗 
v 𝑘 = 0 for 𝑗 < 𝑘 

here v 𝑘 is the 𝑘 th principal loading vector and the projection of the

ata X v 𝑘 is the 𝑘 th principal component and the operator Var ( ⋅) denotes

he (estimated) variance of a random variable. 
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Generally, PCA is computed using singular value decomposition

SVD) of X as 

 = USV 

⊤ (2)

here the columns of Z ≜ US are the PCs, and the columns of V are the

orresponding principal loading vectors (also known as basis vectors)

47] . The matrix S is a 𝑞 × 𝑞 diagonal matrix of ordered singular val-

es 𝑠 1 ≥ 𝑠 2 ≥ … ≥ 𝑠 𝑞 > 0 and the columns of U and V are orthonormal

uch that U 

⊤U = V 

⊤V = I 𝑞 . If X is low rank, it is possible to significantly

educe its dimensionality by using the 𝑞 most significant basis vectors.

he projection of the data X upon the first 𝑞 basis vectors gives the PCs.

An alternative formulation for PCA can be derived on the projection

ramework [44] , where the PC loading matrix V also known as the PCA

asis (defined as the matrix containing the principal loading vectors)

an be estimated by solving the following least squares optimization

roblem: 

in 
A 

{
∥ X − X A A 

⊤ ∥2 
𝐹 

}
subject to A 

⊤A = 𝕀 𝑞 (3)

here ∥ ⋅ ∥𝐹 is the Frobenius norm, A ∈ ℝ 

𝑝 ×𝑞 is a matrix whose columns

orm an orthonormal basis 
{
𝜶1 , 𝜶2 , … , 𝜶𝑞 

}
, and 𝕀 𝑞 is an identity ma-

rix of size 𝑞 × 𝑞. The columns of A that minimize (3) are referred to

s the PCA basis V . The minimization is solved by formulating it as a

east absolute shrinkage and selection operator (LASSO) problem [48] .

ach principal component is derived from a linear combination of all

 features, consequently making 𝜶 non-sparse. We use this alternative

ormulation for PCA feature extraction in this work. 

roposed Method 

Based on the PCA methodology, we propose a simple and efficient

achine learning method for histopathology image classification. First,

e obtain graph-based sparse PCA filters (i.e., the PCs) from the train-

ng images as the data adaptive convolutional filter bank for the various

tages of a convolutional neural network. Then we perform a simple bi-

ary quantization (hashing), which serves as a nonlinear stage. Next, we

se block-wise histograms of the binary codes obtained from the quan-

ization process to get the output features of the network. Finally, we

rain a SVM classifier using the output features to obtain the final classi-

cation. The proposed GS-PCANet model is shown in Fig. 2 , illustrating

ach of the above steps involved in our algorithm. 

raph ‐Based Sparse PCA 

From the analysis of PCA in Section II, we can obtain a sparse PCA

asis by including a regularization term in (3) . Inclusion of a sparsity

enalty reduces the number of features involved in each linear combi-

ation for obtaining the PCs. One way to extend (3) to obtain sparse

asis vectors is by imposing 𝓁 -norm and 𝓁 -norm penalty constraints
1 2 

Fig. 2. An outline of the propose

3 
pon the regression coefficients (basis vectors) [48] : 

in 
A , B 

{ 

∥X − X B A 

⊤ ∥2 
𝐹 
+ 𝜆

𝑞 ∑
𝑗=1 

∥𝜷𝑗 ∥2 2 + 

𝑞 ∑
𝑗=1 

𝜆1 ,𝑗 ∥𝜷𝑗 ∥1 

} 

(4)

ubject to A 

⊤A = 𝕀 𝑞 

here the same 𝜆 (the regularization parameter of the 𝓁 2 -norm) is used

or all 𝑞 components, different 𝜆1 ,𝑗 
′s (the regularization parameters of

he 𝓁 1 -norm) are allowed for penalizing the loadings of different PCs.

he B ∈ ℝ 

𝑝 ×𝑞 corresponds to the required sparse basis 
{
𝜷1 , 𝜷2 , … , 𝜷𝑞 

}
.

he 𝓁 1 -norm and 𝓁 2 -norm regularization terms penalize the number of

on-zero coefficients in 𝜷, whereas the loss term simultaneously mini-

izes the reconstruction error ∥X − X B A 

⊤ ∥2 
𝐹 

. If 𝜆 and the 𝜆1 ,𝑗 
′s are zero,

he problem reduces to finding the ordinary PCA basis vectors, equiva-

ent to (3) . When 𝜆, 𝜆1 ,𝑗 
′s > 0 some coefficients of 𝜷𝑗 are forced to zero,

esulting in sparsity. 

The sparse PCA defined in (4) preserves the global structures in the

ata, but does not retain intrinsic geometric structure within input data,

hereby missing mutual influences in the data. In addition to preserving

he global structures, we are interested in preserving the local struc-

ures, i.e., 𝑘 nearest neighbor ( 𝑘 NN) preservation of each data sample

 𝑖 , as they help in identifying local features in the data (See Section IV-F

or more details). The idea of a graph-Laplacian from manifold learn-

ng theory is to recover low-dimensional manifold structure from high-

imensional sampled data [49] . This provides a motivation to embed a

aplacian to PCA to help preserve the local features in the data. Let the

ertices 1 , … , 𝑛 correspond to data samples x 1 , … , x 𝑛 , respectively. We

efine a symmetric weight matrix E = 

[
𝑒 𝑙𝑚 

]𝑛 
𝑙,𝑚 =1 ∈ ℝ 

𝑛 ×𝑛 , where 𝑒 𝑙𝑚 is the

eight of the edge connecting vertices 𝑙 and 𝑚 . The value of 𝑒 𝑙𝑚 is set as

ollows: 

 𝑙𝑚 = 

{ 

1 , if x 𝑙 ∈ 𝑁 𝑘 ( x 𝑚 ) or x 𝑚 ∈ 𝑁 𝑘 ( x 𝑙 ) 
0 , otherwise 

(5) 

here the set 𝑁 𝑘 ( x 𝑙 ) is the set of 𝑘 nearest neighbors of x 𝑙 . Let us suppose

hat A 

⊤ = 

{
𝜶1 , 𝜶2 , … , 𝜶𝑝 

}
∈ ℝ 

𝑞×𝑝 is the embedding coordinates of the

ata and define C as the diagonal matrix with C 𝑙𝑙 = 

∑𝑛 

𝑚 =1 𝑒 𝑙𝑚 . Thus, with

eight matrix E , we can formulate a graph regularization term as 

1 
2 

𝑛 ∑
𝑙,𝑚 =1 

𝑒 𝑙𝑚 ∥𝜶𝑙 − 𝜶𝑚 ∥2 2 = 

𝑛 ∑
𝑘 =1 

𝜶⊤
𝑙 
𝑒 𝑚𝑚 𝜶𝑙 − 

𝑛 ∑
𝑙,𝑚 =1 

𝜶⊤
𝑙 
𝑒 𝑙𝑚 𝜶𝑙 

= Tr ( A C A 

⊤) − Tr ( A E A 

⊤) = Tr ( A L A 

⊤) (6) 

here L is the graph Laplacian matrix computed as L = C − E and Tr is
he trace of a matrix. Simply put, in the case of maintaining the local

djacency relationship of the graph, the graph can be transformed from

he high-dimensional space to a low-dimensional space. Minimizing the

raph regularization term in (6) helps to preserve the low-dimensional

anifold structure in the data [49] . Combining the sparse PCA from
d (two-stage) GS-PCANet. 
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4) and the graph regularization from (6) , we propose a graph-based

parse PCA model, 

in 
A , B 

{ 

∥X − X B A 

⊤ ∥2 
𝐹 

+ 𝜆

𝑞 ∑
𝑗=1 

∥𝜷𝑗 ∥2 2 + 

𝑞 ∑
𝑗=1 

𝜆1 ,𝑗 ∥𝜷𝑗 ∥1 + 𝜌Tr ( A L A 

⊤) 

} 

(7) 

ubject to A 

⊤A = 𝕀 𝑞 

here 𝜌 is a graph regularization parameter. To solve (7) , we perform

he following steps: first solve an ordinary PCA problem to fix A , then

ormulate an elastic net with the fixed A and solve for B , then perform

VD to update 𝜶, and repeat these steps until convergence, finally ob-

aining the solution as V = B ∕ ∥ B ∥. 

rchitecture of GS ‐PCA Network 

Suppose there are 𝑁 training images 
{
𝐼 𝑖 
}𝑁 

𝑖 =1 of size 𝑢 × 𝑣 , and assume

hat PCA filter size is 𝑡 1 × 𝑡 2 (formed by reshaping a basis vector of length

 1 × 𝑡 2 ) at all stages of the network. The sparse PCA filters are learned

rom these training images. We describe each component of the network

n detail below (see Fig. 2 ). 

) First stage (GS ‐PCA) 

For each training image 𝐼 𝑖 , around each pixel we take an image patch

f size 𝑡 1 × 𝑡 2 and denote all the overlapping image patches in the 𝑖 th im-

ge as X 𝑖 = 

[
x 𝑖, 1 , x 𝑖, 2 , … , x 𝑖, ̃𝑢 ̃𝑣 

]
, where x 𝑖,𝑗 denotes the 𝑗 th vectorized im-

ge patch in 𝐼 𝑖 , 𝑢̃ = 𝑢 − 

(
𝑡 1 − 1 

)
, 𝑣̃ = 𝑣 − 

(
𝑡 2 − 1 

)
. We then subtract the

mage patch mean from each of the image patches and obtain the cen-

ralized matrix X̄ 𝑖 of X 𝑖 as X̄ 𝑖 = 

[
x̄ 𝑖, 1 , ̄x 𝑖, 2 , … , ̄x 𝑖, ̃𝑢 ̃𝑣 

]
, where x̄ 𝑖,𝑗 = x 𝑖,𝑗 − 𝜇𝑖 

nd 𝜇𝑖 = 𝔼 
[
x 𝑖 
]
≈ ( 1 

𝑛 
) 

𝑛 ∑
𝑗=1 

x 𝑖,𝑗 . By constructing a similar centralized matrix

or each training image 𝐼 𝑖 , we obtain 

 = 

[
X̄ 1 , ̄X 2 , … , ̄X 𝑁 

]
∈ ℝ 

𝑡 1 𝑡 2 ×𝑁 ̃𝑢 ̃𝑣 . (8)

ssuming that we have 𝐿 𝑖 PCA filters in stage 𝑖 , sparse PCA minimizes

he reconstruction error within a family of orthonormal filters using (7) ,

here 𝕀 𝑞 is an identity matrix of size 𝐿 1 × 𝐿 1 . The solution to the mini-

ization problem in (7) are the 𝐿 1 principal eigenvectors of XX 

⊤ [44] .

he PCA filters can therefore be expressed as 

 

1 
𝑙 1 
≐ Mat 𝑡 1 ,𝑡 2 

[ 𝑙 1 

{
XX 

⊤
}]

∈ ℝ 

𝑡 1 ×𝑡 2 , 𝑙 1 = 1 , 2 , … , 𝐿 1 (9)

here Mat 𝑡 1 ,𝑡 2 [ 𝑑 ] is an operator that reshapes a column vector 𝑑 ∈ ℝ 

𝑡 1 𝑡 2 

o a matrix 𝑾 ∈ ℝ 

𝑡 1 ×𝑡 2 and  𝑙 1 

{
XX 

⊤
}

denotes the 𝑙 th 1 principal eigen-

ector of XX 

⊤. The 𝐿 1 principal eigenvectors capture the main variation

f the centralized image patches in the training data. Similar to a con-

olutional neural network we stack multiple stages of the sparse PCA

lters to extract higher level features. 

) Second stage (GS ‐PCA) 

We repeat the same process as in first stage. Let the 𝑙 th filter output

f first stage be 

 

1 ,𝑙 1 
𝑖 

≐ 𝐼 𝑖 ∗ 𝑾 

1 
𝑙 1 
, 𝑖 = 1 , 2 , … , 𝑁 (10)

here ∗ denotes 2D convolution and boundary of the images 𝐼 𝑖 are zero

added before convolution. Similar to the first stage we collect all the

verlapping image patches of the convolved image 𝐼 
1 ,𝑙 1 
𝑖 

, subtract the

atch mean from each patch and obtain the centralized matrix Ȳ 

𝑙 1 
𝑖 
=

ȳ 𝑖, 1 , ̄y 𝑖, 2 , … , ̄y 𝑖, ̃𝑢 ̃𝑣 
]
, where ȳ 𝑖,𝑗 is the 𝑗 th mean subtracted image patch in

 

1 ,𝑙 1 
𝑖 

. We define Y 

𝑙 1 = [ ̄Y 

𝑙 1 
1 , ̄Y 

𝑙 1 
2 , … Ȳ 

𝑙 1 
𝑁 

] as the matrix containing all the

ean subtracted patches of the 𝑙 th filter output and concatenate Y 

𝑙 for

ll filter outputs as 

 = 

[
Y 

1 , Y 

2 , ⋯ , Y 

𝐿 1 
]
∈ ( ℝ ) 𝑡 1 𝑡 2 ×𝐿 1 𝑁 ̃𝑢 ̃𝑣 (11) 
4 
nce again we solve (7) with Y as the input. The solution to the mini-

ization problem in (7) are the 𝐿 2 principal eigenvectors of YY 

⊤. The

parse PCA filters of the second stage are then obtained as 

 

2 
𝑙 2 
≐ Mat 𝑡 1 ,𝑡 2 

[ 𝑙 2 

{
YY 

⊤
}]

∈ ℝ 

𝑡 1 ×𝑡 2 , 𝑙 2 = 1 , 2 , … , 𝐿 2 . (12)

or each input image 𝐼 
1 ,𝑙 1 
𝑖 

of the second stage, there will be 𝐿 2 output

mages of size 𝑢 × 𝑣 generated as 

 

2 ,𝑙 2 
𝑖 

≐ { 

𝐼 
1 ,𝑙 1 
𝑖 

∗ 𝑾 

2 
𝑙 2 

} 𝐿 2 

𝑙 2 =1 
(13) 

fter the second stage we will obtain 𝐿 1 𝐿 2 output images. It is easy to

epeat the above process to build more (sparse PCA) stages if a deeper

rchitecture is needed. 

) Binary quantization (hashing) 

For each of the 𝐿 1 input images 𝐼 
1 ,𝑙 1 
𝑖 

presented to the second stage

e obtain 𝐿 2 real-valued output images 𝐼 
2 ,𝑙 2 
𝑖 

. We binarize these outputs

nd obtain { 𝐻 ( 𝐼 1 ,𝑙 1 
𝑖 

∗ 𝑾 

2 
𝑙 2 
)} 𝐿 2 
𝑙 2 =1 

, where 𝐻 ( ⋅) is a Heaviside step (like)

unction, which has a value of 1 for positive entries and zero otherwise.

round each pixel, we view the vector of 𝐿 2 binary bits as a decimal

umber, thus converting the 𝐿 2 outputs in 𝐼 
2 ,𝑙 2 
𝑖 

into a single integer-

alued “image ”

 

𝑙 1 
𝑖 

≐
𝐿 2 ∑
𝑙 2 =1 

2 𝑙 2 −1 𝐻 

(
𝐼 
1 ,𝑙 1 
𝑖 

∗ 𝑾 

2 
𝑙 2 

)
, (14)

hich has pixel values in the range 
[
0 , 2 𝐿 2 − 1 

]
. 

) Block ‐wise histograms 

We partition each of the 𝐿 1 “images ” 𝑇 
𝑙 1 
𝑖 
, 𝑙 1 = 1 , 2 , … , 𝐿 1 into 𝐺 dis-

inct blocks, compute the histogram (with 2 𝐿 2 bins) of the decimal val-

es in each block and concatenate all 𝐺 histograms into a single vector

enoting it as 𝐺 hist ( 𝑇 
𝑙 1 
𝑖 
) . After such an encoding process the “feature ” of

he input image 𝐼 𝑖 is then defined to be the set of block-wise histograms,

.e., 

 𝑖 ≐
[
𝐺 hist 

(
𝑇 1 
𝑖 

)
, … , 𝐺 hist 

(
𝑇 
𝐿 1 
𝑖 

)]
∈ ℝ 

(
2 𝐿 2 

)
𝐿 1 𝐺 . (15)

e use overlapping blocks to build the feature vector for each input

mage 𝐼 𝑖 as it helps in retaining most amount of the information. 

We train a linear support vector machine (SVM) classifier [50] us-

ng the feature vector 𝑓 𝑖 obtained for each input image 𝐼 𝑖 from the GS-

CANet in order to classify cancer lesions versus normal tissues on H&E

tained histological lung slides. 

lassifying Color Images 

There are several options to extend the proposed GS-PCANet method

o be able to extract features for classifying color images. In this work,

e follow the approach described in Gurcan et al. [14] , Chan et al.

44] and apply the proposed GS-PCANet to each of the red, blue, and

reen channels to obtain multichannel sparse PCA filters, that are then

sed to extract features for classifying the color images. 

xperiments and Results 

In this section we evaluate our proposed GS-PCANet image classifi-

ation algorithm with other open-source histopathology image classifi-

ation methods: SpPCANet method for image classification [46] , mul-

iple clustered instance learning (MCIL) for histopathology image clas-

ification [51] , saliency-based dictionary learning (SDL) [34] , analysis-

ynthesis learning with shared features (ASLF) [35] , patch-based convo-

utional neural network (PCNN) [36] , encoded local projections (ELP)

or histopathology image classification [20] , and weakly supervised

eep learning (WSDL) for whole slide tissue classification [40] . We eval-

ate these seven methods using commonly used detection/classification
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2

easures: precision (P), recall (R), detection accuracy, 𝐹 𝛽 -score, Tan-

moto coefficient (T), and the receiver operating characteristic (ROC)

urves along with the area under the curve (AUC). 

The Precision P and recall R (a.k.a. true positive rate or sensitivity)

re given by 

 = 

TP 

TP + FP 
, R = 

TP 

TP + FN 

(16) 

here TP is the number of true positive classifications, FP is the number

f false positive classifications, and FN is the number of false negative

lassifications. The false positive rate (a.k.a. complement of specificity)

s defined as FP ∕( FP + FN ) . An ROC curve is a plot of the true positive

ate versus the false positive rate. The detection accuracy is defined as

 TP + TN )∕( TP + FP + TN + FN ) . 
The 𝐹 𝛽 -score is defined by 

 𝛽 = 

(
1 + 𝛽2 

) P R (
𝛽2 P 

)
+ R 

(17) 

e use 𝐹 1 (i.e., 𝛽 = 1 ) as this is the most common choice for this type

f evaluation [8] . 

Tanimoto coefficient, also known as Tanimoto distance in statistics,

s defined as 

 = 

TP 

M + N − TP 
(18) 

here M is the number of detected individual tumors by an automated

lgorithm and N is the actual number of individual tumors in the image.

The AUC is the average of precision P ( R ) over the interval ( 0 ≤ R

 1 ), where P ( R ) is a function of recall R. It is given by 

UC = ∫
1 

0 
P ( R ) 𝑑 R . (19) 

he best detection algorithm among several alternatives is commonly

efined as the one that maximizes the Tanimoto coefficient, AUC, and

he 𝐹 𝛽 -score. 

ataset 

The proposed method was mainly developed with the goal of identi-

ying individual tumors in H&E stained whole slide histopathology lung
ig. 3. Detection results on a representative image containing visible tumors in our te

CNN, (g) ELP, and (h) WSDL. The true borders delineated by an expert of each indivi

y each method are shown in green and the false positives of each method are bord

ithin the blue-bordered individual tumors that are not shaded in green. Results on th

 and 3. 

5 
mages obtained from an inducible K-ras 𝐺 12 𝐷 lung cancer model. The

mages were produced using a digital slide scanner (Super COOLSCAN

000 ED Digital Slide Scanner; Nikon Corporation) with a 1× objective

ens (level-0 pixel size: 0.52 μm × 0.52 μm). In our experiments, the size

f each image acquired is approximately 3000 × 3000 pixels. Our dataset

onsists of a total of 67 whole slide histopathology lung images obtained

rom 32 non-tumor-bearing mice and 35 mice with visible tumors. All

nimals were maintained in accordance with the University of Michi-

an’s Institutional Animal Care and Use Committee guidelines approved

rotocol (UCUCA PRO00008646). A careful manual delineation of the

orders of the individual tumors within the 35 images was performed

y an expert and considered as ground truth for subsequent analysis. We

ivide each image in our dataset into non-overlapping image patches of

ize 20 × 20 pixels consisting of a total of 52,487 cancer lesion patches

nd 1,455,023 normal patches. 

xperimental Setup 

We used a total of 15 non-tumor-bearing mice images and 15 images

ith visible tumors for training the compared algorithms, consisting of

 total of 21,934 cancer lesion patches and 653,092 normal patches.

ur test dataset consists of 17 non-tumor-bearing mice images and 20

mages with visible tumors consisting of a total of 30,553 cancer lesion

atches and 801,931 normal patches. The hyper-parameters of the GS-

CANet algorithm include the filter size ( 𝑡 1 , 𝑡 2 ), the number of stages, the

umber of filters in each stage ( 𝐿 1 , 𝐿 2 ), and the block size for the local

istograms in the output stage. The optimal values for these parameters

ere automatically selected on a validation set (randomly chosen from

ithin the training data), using the ROC curves by varying one param-

ter at a time while keeping the others fixed and choosing that value of

he parameter that maximizes the AUC of the ROC curve. The param-

ters of the GS-PCANet were set to 𝑡 1 = 𝑡 2 = 5 , 𝐿 1 = 9 , 𝐿 2 = 9 , and, a

istogram block size of 8 × 8 . 

ualitative Results 

Fig. 3 shows the qualitative detection results for an example image

ontaining visible tumors from our test dataset. Fig. 3 (a) shows that the

roposed GS-PCANet method detects most of tumor regions correctly

ith very few false positives and false negatives. Fig. 3 (e) shows that the
st dataset using: (a) GS-PCANet, (b) SpPCANet, (c) MCIL, (d) SDL, (e) ASLF, (f) 

dual tumor in the image are shown in blue, the true positives patches identified 

ered in red in the color version of this paper. False negatives are those regions 

e entire image are shown in row 1, and two zoomed regions are shown in rows 



S. Ram, W. Tang, A.J. Bell et al. Neoplasia 42 (2023) 100911 

Fig. 4. ROC curve of image patch classification as cancerous or healthy for 

different methods. 
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Fig. 5. FROC curve of different methods for the individual tumor detection task 

within an entire image. 
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SLF method is also able to identify the tumor regions well, but detects

ore false positives than the GS-PCANet method. The SpPCANet, MCIL,

nd WSDL methods have many misclassifications (with blood vessels be-

ng identified as tumors) as shown in Fig. 3 (b), (c) and (h), respectively.

he ELP method splits a single tumor into three tumors (see Fig. 3 (g)

ow 3), with many false positives. The SDL, PCNN, and ELP methods

iss large parts of individual tumors, i.e., have many false negatives as

hown in Fig. 3 (d), (f), and (g), respectively. Visually it is clear that the

roposed GS-PCANet method accurately detects both large and small

ndividual tumors within the whole slide image with very few false pos-

tives and false negatives. This is of great significance for those studying

ncogenesis, progression, and metastasis because the robustness of the

lgorithm to the size of the tumor reduces the likelihood that the algo-

ithm will mislabel cases containing only small tumors. 

uantitative Results 

We compared the quantitative performance of the automated meth-

ds at the image patch level and for the task of individual tumor detec-

ion within an entire image as well. Fig. 4 shows the ROC curves of all

utomated methods at the image patch level on the test dataset. From

ig. 4 , we observe that our proposed GS-PCANet method exhibits the

ost favorable trade-off in terms of accurate detection while maintain-

ng low false positive rate in comparison to the other automated meth-

ds. Table 1 shows the quantitative performance of the compared meth-

ds for the task of individual tumor detection within the histopathology

mages in the test dataset. Table 1 shows that the detection accuracy of

he proposed GS-PCANet method is much higher than the other com-

eting algorithms. From Table 1 , we also observe that the 𝐹 𝛽 -score,

nd Tanimoto coefficient (T) of the proposed method are the highest

mong the compared algorithms. Table 1 also provides the AUC values

nd their 95% confidence intervals corresponding to the ROC curves in
Table 1 

Mean performance (and standard deviation) for various algorithms. 

Method Precision (P) Recall (R) 𝐹 𝛽 -score 

GS-PCANet 0.872 ( 0.013 ) 0.955 ( 0.019 ) 0.912 ( 0.015 ) 

SpPCANet [46] 0.841 (0.019) 0.870 (0.025) 0.855 (0.022) 

MCIL [51] 0.719 (0.022) 0.780 (0.015) 0.748 (0.031) 

SDL [34] 0.752 (0.024) 0.850 (0.031) 0.798 (0.025) 

ASLF [35] 0.811 (0.028) 0.900 (0.019) 0.853 (0.021) 

PCNN [36] 0.807 (0.039) 0.815 (0.031) 0.811 (0.032) 

ELP [20] 0.761 (0.023) 0.750 (0.018) 0.756 (0.021) 

WSDL [40] 0.798 (0.030) 0.785 (0.028) 0.823 (0.031) 

6 
ig. 4 for each method. We observe from the AUC values that the GS-

CANet method outperforms the alternatives. In addition to the metrics

n Table 1 , we also computed the free receiver operating characteristics

urves (FROC) [8] for all the compared algorithms. Fig. 5 shows that

he proposed GS-PCANet method has better tumor detection sensitivity

ompared to the other automated methods at all points along the FROC

urve. This shows that the proposed method detects the individual tu-

ors within these images better than the other compared methods. 

The confusion matrix corresponding to competing methods for our

est dataset is provided in Table 2 . From Table 2 , we observe that our

roposed GS-PCANet method outperforms competing dictionary learn-

ng methods as well as deep learning methods. This could be due to the

act that our proposed GS-PCANet method uses a complete basis repre-

entation whereas dictionary learning or deep learning methods use an

vercomplete basis to represent the features associated with both nor-

al and cancerous regions within the images. 

) Impact of the number of stages 

The impact of the number of GS-PCANet stages for our data is studied

ere. Specifically, we are interested in the impact on the performance

f GS-PCANet when we merge the two stages into one stage that has the

qual number of sparse PCA filters and receptive field size defined as

he size of the region of the input image that produces the feature. We

uilt a single-stage GS-PCANet (GS-PCANet-1) with 𝐿 1 𝐿 2 filters of size

2 𝑡 1 − 1) × (2 𝑡 2 − 1) and compare it with the two-stage GS-PCANet (GS-

CANet-2) described in Section III-B. The parameters for both networks

re set to 𝑡 1 = 𝑡 2 = 5 , 𝐿 1 = 9 , 𝐿 2 = 9 , and a histogram block size of 8 × 8 .
he detection accuracy and the AUC values of both networks for our test

ata are reported in Table 3 . From Table 3 we observe that the two-stage

S-PCANet outperforms the single-stage GS-PCANet. One explanation

ehind this could be that in comparison to the PCA filters learned by

S-PCANet-1, the PCA filters of GS-PCANet-2 essentially have a low-
Tanimoto coefficient (T) Detection accuracy AUC 

0.903 ( 0.010 ) 0.908 ( 0.008 ) 0.951 ± 0.011 

0.836 (0.014) 0.853 (0.015) 0.907 ± 0.017 

0.762 (0.019) 0.738 (0.026) 0.821 ± 0.013 

0.801 (0.017) 0.785 (0.011) 0.849 ± 0.021 

0.829 (0.030) 0.845 (0.018) 0.903 ± 0.022 

0.796 (0.023) 0.810 (0.024) 0.871 ± 0.039 

0.739 (0.027) 0.758 (0.023) 0.844 ± 0.014 

0.821 (0.035) 0.818 (0.028) 0.882 ± 0.041 
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Table 2 

Confusion matrix (%). 

Table 3 

Mean performance (and standard deviation) for various stages of GS-PCANet. 

Here 𝐿 
′

1 = 𝐿 1 𝐿 2 and 𝑡 
′

𝑖 
= 2 𝑡 𝑖 − 1 , 𝑖 = 1 , 2 . 

Method Detection accuracy AUC 

GS-PCANet-1 ( 𝐿 
′

1 = 81 , 𝑡 
′

1 = 𝑡 
′

2 = 9 ) 0.815 (0.019) 0.842 ± 0.014 

GS-PCANet-2 0.908 ( 0.008 ) 0.951 ± 0.011 
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Fig. 6. Selection bias plot showing the distribution of detection accuracy over 

ten different training choices of image patches for the compared methods. 

Fig. 7. Comparison of the proposed GS-PCANet method and other state-of- 

the-art alternatives by a two-way ANOVA. Values reported by ANOVA (using 

MATLAB function anova2 ) across the methods are 𝑆𝑆 = 0 . 2103 , 𝑑𝑓 = 7 , 𝑀𝑆 = 
0 . 0300 , 𝐹 = 36 . 27 , 𝑝 ≪ 1 e − 5 , indicating that the improved accuracy of the pro- 

posed GS-PCANet method is statistically significant. The intervals shown rep- 

resent 95% confidence intervals of the detection accuracies for the proposed 

method (blue) and the competing methods (red). (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version 

of this article.) 
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ank factorization, resulting in a lower chance of over-fitting the data.

lso, from a computational perspective, GS-PCANet-1 requires learning

lters with 𝐿 1 𝐿 2 (2 𝑡 1 − 1)(2 𝑡 2 − 1) variables, whereas GS-PCANet-2 only

earns filters with a total of ( 𝐿 1 + 𝐿 2 ) 𝑡 1 𝑡 2 variables, confirming the need

or a multiple-stage network structure. Another benefit of GS-PCANet-2

s the larger receptive field, which leads to observing image regions with

 bigger context around the objects of interest, as well as its learning

nvariance [44] which can capture more semantic information. 

tatistical Analysis 

To investigate the robustness of training or selection bias for each au-

omated method, we obtain the detection performance for 10 different

hoices of training image patches (the number of training images were

xed), using the rest of the image patches as test image patches. The de-

ection accuracy for each training run was fit to a Gaussian probability

ensity function (pdf) and plotted in Fig. 6 . From Fig. 6 , we observe that

he mean our proposed GS-PCANet curve is much higher than the com-

eting methods indicating superior average detection accuracy. Even

ore crucial is the spread/variance of our GS-PCANet curve is smaller

han its alternatives indicating highly desirable robustness to the partic-

lar choice of training image patches. 

We also performed a balanced two-way analysis of variance

ANOVA) [52] on the detection accuracies in the selection-bias experi-

ent for all the methods. Fig. 7 shows these comparisons using a post-

oc Tukey range test [52] . Fig. 7 shows that the performance of the

S-PCANet method is significantly separated from its competing alterna-

ives. 𝑝 -values of the proposed GS-PCANet method compared with other

tate-of-the-art methods are observed to be much less than 1 × 10 −5 , em-

hasizing the fact that the GS-PCANet method is more effective. 
7 
omparison of PCA, Sparse PCA, and GS ‐PCA 

It has been shown in the literature that performing a PCA or a sparse

CA analysis preserves the global structures in the data [53] , whereas

anifold learning-based feature extraction methods are effective for

ealing with high-dimensional data as they preserve the local struc-

ures in the data via manifold learning [54] . In our GS-PCANet method,

e find it reasonable to combine both types of structure-preserving ap-

roaches as they strengthen the performance of the image classifica-

ion task due to providing complementary information. For example, the

lobal structure preservation can improve generalization ability. In this

ection, we show results of constructing a neural network architecture

sing the PCA, sparse PCA, and the proposed GS-PCA method. The com-

arison of the top nine PCs (a.k.a. the filters) of the final stage of the net-

ork and the covariance matrix of the PCs for each method are shown

n Fig. 8 . Different colors in Fig. 8 (a)–(c) represent negative (blue), posi-

ive (red), and zero-valued (white) coefficients. From Fig. 8 (a) to (c), we

bserve that the GS-PCANet method has more sparse filters as compared

o SpPCANet [46] and PCANet [44] methods. Looking at the covariance



S. Ram, W. Tang, A.J. Bell et al. Neoplasia 42 (2023) 100911 

Fig. 8. Comparison of the filters of the final stage learned on our dataset. Red color are positive values, blue color are negative values, and white color is zero. (a) 

PCANet filters, (b) SpPCANet filters, (c) GS-PCANet filters. Also shown are the covariance matrix of the components. (d) PCANet covariance matrix, (e) SpPCANet 

covariance matrix, (f) GS-PCANet covariance matrix. 

Fig. 9. Scatter plots of the test image patches of our dataset based on the first three principal components by (a) PCANet method, (b) SpPCANet method, (c) 

GS-PCANet method. 

Table 4 

Performance metrics for various PCA methods. 

Method Silhouette score C–H Index D–B index 

PCANet 0.56 185.62 1.04 

SpPCANet 0.62 318.24 0.71 

GS-PCANet 0.74 362.45 0.54 
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Table 5 

Mean run time (and standard deviation). 

Method Training time (HH:MM:SS) Run time (Std. Dev.) in Sec. 

GS-PCANet 00:21:09 11.14 ( 3.09 ) 

SpPCANet [46] 00:20:53 15.21 (1.41) 

MCIL [51] 18:25:06 66.35 (14.36) 

SDL [34] 01:22:41 46.11 (4.51) 

ASLF [35] 01:49:27 19.39 (5.15) 

PCNN [36] 19:27:55 39.47 (15.22) 

ELP [20] 04:38:03 71.44 (9.40) 

WSDL [40] 21:44:17 10.31 (6.02) 
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atrices in Fig. 8 (d) to (f), we observe that the PCs for the PCANet are

ost orthogonal, and that the GS-PCANet method has PCs more orthog-

nal than those found by SpPCANet method. Additionally, for compari-

on we present the scatter plots of the top three PCs for each method on

mage patches from our test dataset in Fig. 9 . From Fig. 9 , we observe

hat the GS-PCANet method achieves better separation for the healthy

ersus the cancerous test image patches in comparison to SpPCANet and

CANet methods. In addition, we computed the mean silhouette score,

he Calinski–Harabasz (C–H) index [55] , and Davies–Bouldin (D–B) in-

ex [56] on these scatter plots and report these values in Table 4 . The

ilhouette score is calculated using the mean intra-cluster distance and

he mean nearest cluster distance for each data point. The C–H index

also known as the variance ratio criterion) is defined as the ratio be-

ween the within-cluster dispersion and the between-cluster dispersion.

he D–B index is defined as the average similarity measure of each clus-

er with its most similar cluster. The method that has the highest mean

ilhouette score and C–H index and the lowest D–B index would have

he best separation for healthy and cancerous test image patches. From

able 4 , we observe that the GS-PCANet method has the highest mean

ilhouette score and C–H index, and the lowest D–B index among the

hree methods. These results show that addition of the graph regulariza-

ion term in the GS-PCANet method leads to a better separation between

he image classes in comparison to SpPCANet and PCANet methods. 

omputational Complexity 

Here we show computational complexity of the GS-PCANet method

y considering a two stage network. For each stage in the GS-PCANet,
8 
orming the mean subtracted image patch matrix X has a computational

omplexity of  

(
𝑡 1 𝑡 2 ̃𝑢 ̃𝑣 

)
; the inner product XX 

⊤ in (9) has a complexity of

 

({
𝑡 1 𝑡 2 

}2 
𝑢̃ ̃𝑣 

)
; the computational complexity of the eigen decomposition

ith graph-regularization is  

({
𝑡 1 𝑡 2 

}3 )
. The sparse PCA filter convolu-

ion has a complexity of  

(
𝐿 𝑖 𝑡 1 𝑡 2 𝑢𝑣 

)
at stage 𝑖 . The block-wise histogram

omputation has a complexity of  

(
𝑢𝑣𝐺𝐿 2 

)
. With 𝑢̃ = 𝑢 − 

(
𝑡 1 − 1 

)
, 𝑣̃ =

 − 

(
𝑡 2 − 1 

)
, and assuming 𝑢𝑣 ≫ max 

(
𝑡 1 , 𝑡 2 , 𝐿 1 , 𝐿 2 , 𝐺 

)
, the overall com-

lexity of GS-PCANet is 

 

(
𝑢𝑣𝑡 1 𝑡 2 

{
𝐿 1 + 𝐿 2 

}
+ 𝑢𝑣 

{
𝑡 1 𝑡 2 

}2 )
. (20)

he computational complexity in (20) applies to both the training and

esting phase of GS-PCANet because the extra computation burden dur-

ng training is the eigen decomposition, which can be ignored when

𝑣 ≫ max 
(
𝑡 1 , 𝑡 2 , 𝐿 1 , 𝐿 2 , 𝐺 

)
. 

We compared the mean inference run time, namely, the time re-

uired to classify all the image patches in a single test image for each of

he competing algorithms. Table 5 shows the mean and standard devia-

ion of the run time each method takes to classify an entire image. From

able 5 , we observe that the proposed GS-PCANet method runs 0.83

econds slower than the WSDL method, but is on average faster than all

he other methods. The SDL and ASLF methods classify the test image

atch by reconstructing them from the learned dictionaries and thus take
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Fig. 10. Detection accuracy as a function of the number of training images for 

the competing methods. 
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Fig. 11. Example of detection errors produced by all algorithms on an image 

with visible tumors. The true borders delineated by an expert of each individual 

tumor in the image are shown in blue, the true positive and the false positive 

image patches are shown in green and red, respectively, in the color version of 

this paper (the image is better viewed in zoomed mode). (For interpretation of 

the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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ore time to execute at test time. The ELP algorithm finds the Radon

ransformation of each test image patch at various orientations, thereby

aking more time to classify each test image patch. The MCIL method

ntegrates the clustering of multiple subtypes of a single class into the

IL classification framework, thus requiring more run time compared

o the other methods, except for the ELP method. In Table 5 we also

eport the training time required to train each of the competing algo-

ithms. From Table 5 , we observe that the proposed GS-PCANet method

nd the SpPCANet method take roughly about 21 min to train, whereas

he other methods take about 3 to 62 times more time to train a good

odel. The small training time of the GS-PCANet method is attributed

o the low computational complexity of the method. 

mpact on Number of Training Images 

In this section, we show the practicality and applicability of the pro-

osed GS-PCANet method in medical imaging tasks where we have very

ew data to learn from. Whereas in all other experiments we trained on

5 images from each class, in this experiment we varied the number of

raining images (from 1 to 20) for all the competing methods and com-

uted detection accuracy of these methods. Fig. 10 shows the detection

ccuracy of all the competing algorithms on the test dataset of 27 im-

ges (12 non-tumor images and 15 images with visible tumors). From

ig. 10 , we observe that the proposed GS-PCANet method trained with

s few as 8 images achieves a high detection accuracy of 91%, whereas

he other methods are able to achieve a maximum detection accuracy

f only about 89% and also require as much as 20 training images. This

hows that the proposed GS-PCANet method can produce a good model

or image classification with less training data. 

iscussion and Conclusion 

Tumor burden in histopathological sections is difficult to assess by

anual evaluation, as well as by prior automated tumor detection algo-

ithms. To solve this problem, our proposed machine learning algorithm

ses a cascaded graph-based sparse PCA transform followed by PCA bi-

ary hashing and block-wise histograms to obtain features within image

atches. These features are then used to classify an image patch as can-

erous or healthy using a linear SVM classifier. Our approach differs

rom earlier learning-based methods based on deep learning [36,40] ,

nstance learning [20,51] or dictionary learning [34,35] for histopathol-

gy image classification. Like many deep learning methods, the net-

ork parameters, such as the number of stages, the filter size, and the

umber of filters, need to be optimized and fixed for our GS-PCANet

ethod. Once these parameters are fixed, training the GS-PCANet is ex-

remely simple and efficient because the filter learning in GS-PCANet
9 
oes not require regularized parameters or require numerical optimiza-

ion solvers. Moreover, the GS-PCANet consists of only linear opera-

ions at each stage with a non-linearity applied only at the output stage,

hich makes the method more interpretable than other deep learning

ethodologies. 

The GS-PCANet method was first validated with respect to detec-

ion accuracy using ROC curves and the AUC of the ROC curve. Sec-

nd, the algorithm was validated with respect to detection accuracy us-

ng the precision, recall, 𝐹 𝛽 -score, Tanimoto coefficient, FROC curves,

nd the confusion matrix. Tables 1 and 2 show that the proposed GS-

CANet method performs the best among the compared methods for

istopathology image classification. Fig. 3 shows that the proposed GS-

CANet method qualitatively performs the best in comparison to the

ther methods. Further, Fig. 6 shows that the GS-PCANet method has

uperior average detection accuracy and is more robust to the choice of

raining images compared to the other methods. We also show the low

omputational complexity of the GS-PCANet method and compare the

raining and inference run times for all the methods. Table 4 shows that

he GS-PCANet method is relatively very fast to learn a good model in

omparison to other methods. Finally, Fig. 10 shows that the proposed

ethod requires less data to learn a good model. 

Next, we present some inherent limitations of the automated meth-

ds for tumor detection. Fig. 11 shows an example case of an image

ontaining individual tumors where all algorithms including our algo-

ithm fail to produce optimum detection results. In Fig. 11 we observe

hat even though the algorithm has detected all the individual tumors,

.e., the true positive image patches shown in green color, it has also de-

ected many false positive image patches shown in red color. On close

xamination, we see that the false positive image patches within the im-

ge look very similar to cancerous image patches. This could be due to

he fact that there is not enough resolution in this image to differentiate

etween the cancerous and healthy image patches, or this histopathol-

gy section was captured when some of the underlying cells were tran-

itioning from healthy to being cancerous. 

The proposed detection algorithm uses all the image patches in

he training data for obtaining the local structures within the data

hen computing the graph-based term in (6) and (7) . This adds to

he time complexity and results in noise and outlier image patches

till being included. However, the algorithm can be modified by lin-

arly clustering the image patches into subgroups and taking these

luster centers to compute the graph regularization term in (7) . Mak-
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ng this change could further reduce detection errors and also acceler-

te the algorithm, making it more accurate and efficient at the same

ime. 
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