Skip to main content
. 2023 Jun 2;13:8989. doi: 10.1038/s41598-023-36172-7

Table 1.

Results for all users, including standard deviation.

All Users
Accuracy F1-score AUC Precision Sensitivity Specificity
DT 0.629 (+/− 0.035) 0.645 (+/− 0.027) 0.525 (+/− 0.023) 0.788 (+/− 0.012) 0.713 (+/− 0.050) 0.336 (+/− 0.046)
RFC 0.678 (+/− 0.036) 0.674 (+/− 0.026) 0.560 (+/− 0.049) 0.788 (+/− 0.011) 0.799 (+/− 0.052) 0.257 (+/− 0.050)
SVM 0.585 (+/− 0.066) 0.615 (+/− 0.063) 0.625 (+/− 0.040) 0.833 (+/− 0.023) 0.582 (+/− 0.104) 0.596 (+/− 0.102)
CNB 0.527 (+/− 0.103) 0.555 (+/− 0.108) 0.623 (+/− 0.068) 0.826 (+/− 0.050) 0.488 (+/− 0.146) 0.661 (+/− 0.108)
KNC 0.733 (+/− 0.034) 0.683 (+/− 0.022) 0.588 (+/− 0.053) 0.777 (+/− 0.009) 0.919 (+/− 0.045) 0.091 (+/− 0.027)
LRC 0.575 (+/− 0.092) 0.604 (+/− 0.089) 0.634 (+/− 0.047) 0.834 (+/− 0.036) 0.561 (+/− 0.128) 0.624 (+/− 0.089)
MLP 0.754 (+/− 0.024) 0.683 (+/− 0.012) 0.618 (+/− 0.055) 0.777 (+/− 0.005) 0.959 (+/− 0.035) 0.048 (+/− 0.025)
XGB 0.678 (+/− 0.047) 0.678 (+/− 0.034) 0.597 (+/− 0.048) 0.795 (+/− 0.013) 0.787 (+/− 0.071) 0.300 (+/− 0.062)

Decision Tree (DT), Random Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB)

Highest values are in bold.