Skip to main content
. 2023 Jun 2;13:8989. doi: 10.1038/s41598-023-36172-7

Table 6.

Results for all users (downsampled), including standard deviation.

All Users down
Accuracy F1-score AUC Precision Sensitivity Specificity
DT 0.643 (+/− 0.012) 0.645 (+/− 0.015) 0.648 (+/− 0.013) 0.641 (+/− 0.012) 0.651 (+/− 0.026) 0.635 (+/− 0.023)
RFC 0.665 (+/− 0.013) 0.668 (+/− 0.013) 0.731 (+/− 0.013) 0.662 (+/− 0.014) 0.674 (+/− 0.014) 0.655 (+/− 0.017)
SVM 0.618 (+/− 0.007) 0.604 (+/− 0.007) 0.663 (+/− 0.009) 0.627 (+/− 0.008) 0.582 (+/− 0.011) 0.653 (+/− 0.014)
CNB 0.580 (+/− 0.006) 0.539 (+/− 0.007) 0.635 (+/− 0.006) 0.598 (+/− 0.008) 0.490 (+/− 0.009) 0.671 (+/− 0.013)
KNC 0.646 (+/− 0.013) 0.646 (+/− 0.014) 0.698 (+/− 0.013) 0.646 (+/− 0.013) 0.645 (+/− 0.015) 0.646 (+/− 0.014)
LRC 0.607 (+/− 0.006) 0.589 (+/− 0.009) 0.650 (+/− 0.008) 0.616 (+/− 0.007) 0.564 (+/− 0.015) 0.649 (+/− 0.013)
MLP 0.644 (+/− 0.010) 0.631 (+/− 0.014) 0.700 (+/− 0.010) 0.656 (+/− 0.013) 0.608 (+/− 0.026) 0.680 (+/− 0.026)
XGB 0.667 (+/− 0.011) 0.658 (+/− 0.011) 0.732 (+/− 0.009) 0.676 (+/− 0.013) 0.642 (+/− 0.011) 0.692 (+/− 0.017)

Decision Tree (DT), Random Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB)

Highest values are in bold.