Skip to main content
. 2023 Jun 2;13:8989. doi: 10.1038/s41598-023-36172-7

Table 8.

Results for Normal Users (downsampled), including standard deviation.

Normal Users down
Accuracy F1-score AUC Precision Sensitivity Specificity
DT 0.633 (+/− 0.010) 0.636 (+/− 0.010) 0.638 (+/− 0.011) 0.630 (+/− 0.011) 0.642 (+/− 0.013) 0.623 (+/− 0.016)
RFC 0.662 (+/− 0.010) 0.668 (+/− 0.010) 0.723 (+/− 0.009) 0.656 (+/− 0.012) 0.681 (+/− 0.014) 0.643 (+/− 0.018)
SVM 0.627 (+/− 0.011) 0.647 (+/− 0.012) 0.669 (+/− 0.011) 0.614 (+/− 0.010) 0.683 (+/− 0.021) 0.571 (+/− 0.018)
CNB 0.588 (+/− 0.010) 0.553 (+/− 0.011) 0.636 (+/− 0.010) 0.605 (+/− 0.013) 0.510 (+/− 0.014) 0.666 (+/− 0.018)
KNC 0.627 (+/− 0.011) 0.632 (+/− 0.012) 0.670 (+/− 0.010) 0.623 (+/− 0.011) 0.642 (+/− 0.015) 0.611 (+/− 0.014)
LRC 0.629 (+/− 0.010) 0.634 (+/− 0.012) 0.668 (+/− 0.011) 0.627 (+/− 0.010) 0.641 (+/− 0.021) 0.618 (+/− 0.019)
MLP 0.641 (+/− 0.014) 0.640 (+/− 0.015) 0.688 (+/− 0.014) 0.641 (+/− 0.017) 0.639 (+/− 0.025) 0.642 (+/− 0.028)
XGB 0.654 (+/− 0.011) 0.654 (+/− 0.014) 0.712 (+/− 0.011) 0.655 (+/− 0.010) 0.653 (+/− 0.021) 0.656 (+/− 0.013)

Decision Tree (DT), Random Forest (RFC), Support Vector Machine (SVM), Complement Naive Bayes (CNB), k-nearest neighbors (KNC), Logistic Regression (LRC), Multi-layer Perceptron (MLP), Extreme Gradient Boosting (XGB)

Highest values are in bold.