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Deletion of the autism-related gene Chd8 alters
activity-dependent transcriptional responses in
mouse postmitotic neurons
Atsuki Kawamura1 & Masaaki Nishiyama 1✉

CHD8 encodes chromodomain helicase DNA-binding protein 8 and its mutation is a highly

penetrant risk factor for autism spectrum disorder (ASD). CHD8 serves as a key transcriptional

regulator on the basis of its chromatin-remodeling activity and thereby controls the proliferation

and differentiation of neural progenitor cells. However, the function of CHD8 in postmitotic

neurons and the adult brain has remained unclear. Here we show that Chd8 homozygous

deletion in mouse postmitotic neurons results in downregulation of the expression of neuronal

genes as well as alters the expression of activity-dependent genes induced by KCl-mediated

neuronal depolarization. Furthermore, homozygous ablation of CHD8 in adult mice was

associated with attenuation of activity-dependent transcriptional responses in the hippocampus

to kainic acid–induced seizures. Our findings implicate CHD8 in transcriptional regulation in

postmitotic neurons and the adult brain, and they suggest that disruption of this function might

contribute to ASD pathogenesis associated with CHD8 haploinsufficiency.
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Autism spectrum disorder (ASD) is a heterogeneous con-
dition defined by deficits in social interaction and com-
munication as well as by restricted and repetitive

behaviors. Individuals with ASD often manifest additional
symptoms such as seizures, anxiety, and intellectual disability1.
Synaptic dysfunction is a key feature of ASD pathology and is also
apparent in the brain of various mouse models of the disease2–4.
Neuronal activity triggered by experiences contributes to the
regulation of synaptic development and function in neural cir-
cuits by inducing the transcription of multiple genes5,6, suggest-
ing that dysfunction of such activity-dependent transcriptional
regulation may contribute to the development of ASD.

Mutations in the gene encoding chromodomain helicase DNA-
binding protein 8 (CHD8) constitute a highly penetrant risk factor
for ASD7,8. CHD8 is an ATP-dependent chromatin-remodeling
factor that targets the promoter regions of many genes, including
those of other genes associated with ASD, and thereby regulates
their transcription9–11. Chd8 heterozygous mutant mice have been
found to manifest macrocephaly, increased anxiety-like behavior,
altered social behavior, and cognitive deficits, but the behavioral
phenotypes of different Chd8 mutant mouse lines generated by
different groups overlap only partially12–17. Loss of CHD8 also
results in impaired proliferation and differentiation of precursor
cells for excitatory neurons of the forebrain and for cerebellar
granule cells during cortical and cerebellar development18,19. Fur-
thermore, CHD8 plays a key role in oligodendrocyte differentiation
and myelination, and its ablation in oligodendrocyte precursor cells
of mice results in the development of some of the behavioral
phenotypes characteristic of Chd8 heterozygous mutant mice20–22.
Although these various observations implicate CHD8 as a central
regulator of the proliferation and differentiation of progenitor cells
in the brain, whether CHD8 also plays an important role in post-
mitotic neurons and the adult brain has been unknown.

We have now examined the consequences of Chd8 deletion in
mouse postmitotic neurons both in vitro and in the adult brain
in vivo with the use of a Cre recombination system inducible by
tamoxifen. We found that CHD8 regulates the expression of
neuronal genes and activity-dependent genes in cultured neurons.
We also found that deletion of Chd8 in the adult brain results in
downregulation of activity-dependent gene expression associated
with kainic acid (KA)–induced seizures. Our results indicate that
CHD8 serves as a transcriptional regulator not only in neural
progenitor cells but also in postmitotic neurons.

Results
Activity-dependent gene expression is attenuated by Chd8
ablation in postmitotic neurons in vitro. To investigate the role
of CHD8 in postmitotic neurons, we cultured primary hippo-
campal neurons derived from Cre recombinase–mediated Chd8
knockout (CAG-CreER/Chd8F/F) and control (Chd8F/F) mice at
embryonic day (E) 18.5 (Fig. 1a). The cultures were treated with
cytosine β-D-arabinofuranoside (Ara-C) to eliminate dividing
cells and were then exposed to 4-hydroxytamoxifen (4-OHT) to
generate Chd8 conditional knockout (Chd8 CKO) neurons. The
abundance of Chd8 mRNA in Chd8 CKO cultures was greatly
reduced compared with that in control cultures (Fig. 1b). The
cultured cells comprised ~17% astrocytes and ~1% oligoden-
drocytes in addition to neurons, but the proportion of each cell
type and cell viability were similar for Chd8 CKO and control
cultures (Fig. 1c, Supplementary Fig. 1). We performed RNA-
sequencing (RNA-seq) analysis with these Chd8 CKO and control
neurons (Supplementary Table 1). The expression of 509 genes
was downregulated and that of 360 genes was upregulated in
Chd8 CKO neurons compared with control neurons (false dis-
covery rate (FDR)–adjusted P value of <0.05) (Fig. 1d). Gene

ontology (GO) analysis revealed that the 509 downregulated
genes in Chd8 CKO neurons were enriched in genes related to
“translation,” “transcription, DNA-templated,” “nervous system
development,” and “positive regulation of synapse assembly,”
whereas the 360 upregulated genes showed significant enrichment
for genes related to “cellular amino acid metabolic process”
and “transport” (Fig. 1e). SynGO analysis revealed that the
downregulated genes in Chd8 CKO neurons were enriched in
genes related to pre- and postsynaptic function, whereas the
upregulated genes showed no significant enrichment (Fig. 1f,
Supplementary Fig. 2). Furthermore, gene set enrichment analysis
(GSEA) for Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways showed that ribosomal genes were significantly down-
regulated in Chd8 CKO neurons (Fig. 1g).

Neuronal depolarization mediated by an increase in the
extracellular KCl concentration induces the expression of activity-
dependent genes23. We therefore next examined whether the
induction of gene expression in response to neuronal activity is
altered by Chd8 ablation in cultured postmitotic neurons. Control
neurons treated with 55mM KCl for 2 h showed a significant
increase in the expression of activity-dependent genes such as Arc,
Egr1, Fos, Fosb, Npas4, andNr4a1 compared with those treated with
5mM KCl (Fig. 2a, Supplementary Table 2). The peak mRNA
abundance occurred at ~1 h for Egr1 and at ~2 h for Fosb and
Nr4a1, with the amounts of these mRNAs declining gradually
thereafter (Supplementary Fig. 3a–c). For neurons treated with
55mM KCl, the expression of 775 genes was downregulated and
that of 404 genes was upregulated by Chd8 ablation (FDR-adjusted
P < 0.05) (Fig. 2b, Supplementary Table 3). Among these differen-
tially expressed genes, the expression of activity-dependent genes—
including Egr1, Fosb, and Nr4a1—was significantly downregulated
in Chd8 CKO neurons (Fig. 2b, c). Immunoblot analysis confirmed
that the activity-dependent expression of FOSB at the protein level
was significantly attenuated in Chd8 CKO neurons compared with
control neurons (Supplementary Fig. 3d–f). We also examined our
RNA-seq data for the 190 KCl-induced genes with a log2(fold
change) of >2.0 associated with an FDR-adjusted P value of <0.01 in
control neurons treated with 55mM KCl compared with those
treated with 5mMKCl (Fig. 2a). GSEA revealed that the expression
of these KCl-induced genes was downregulated inChd8 CKO versus
control neurons under the 55mM KCl condition (Fig. 2d).
In addition, SynGO analysis and GSEA for KEGG pathways
revealed that genes with significantly downregulated expression in
Chd8 CKO neurons versus control neurons under this condition
included those related to synapses and ribosomes (Supplementary
Fig. 4a–c). Comparison of differentially expressed genes (FDR-
adjusted P < 0.05) between Chd8 CKO and control neurons under
the 5 and 55mM KCl conditions showed that 227 upregulated and
426 downregulated genes were specifically identified by 55mM
KCl treatment (Fig. 2e, Supplementary Fig. 4d–f, Supplementary
Table 4). GO analysis revealed that these downregulated genes were
enriched in genes related to “transcription, DNA-templated,”
“mRNA processing,” “nervous system development,” and “cellular
response to calcium ion” (Fig. 2f).

Chromatin accessibility profiling at CHD8 binding sites for
neurons activated by KCl-induced depolarization. Given the
role of CHD8 as a chromatin-remodeling factor, we performed
assay for transposase-accessible chromatin (ATAC)-seq analysis to
assess genome-wide chromatin accessibility in Chd8 CKO and
control neurons after treatment with 5 or 55mMKCl for 2 h. Most
of the ATAC-seq peaks (50.2 to 78.2% of total peaks) were shared
among these four conditions (Fig. 3a). Heat map and density
profiles around high-confidence CHD8 chromatin immunopreci-
pitation (ChIP)–seq peaks of previously published data12 revealed
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similar distribution patterns of ATAC-seq signal intensity between
Chd8 CKO and control neurons (Fig. 3b, Supplementary Fig. 5a).
We also examined chromatin accessibility at loci of several activity-
dependent genes including Fosb, Nr4a1, Homer1, and Egr3, all of
which were downregulated in Chd8 CKO neurons compared with
control neurons under the 55mMKCl condition. CHD8 peaks that
overlapped with accessible chromatin sites were detected at or near

these genomic loci (Fig. 3c). Although the signal intensity of several
ATAC-seq peaks in these regions increased in response to neuronal
activity, the signal distribution patterns were similar for the two
genotypes (Fig. 3c, Supplementary Fig. 5b). In addition, we per-
formed ChIP-quantitative polymerase chain reaction (qPCR)
analysis to examine the effects of Chd8 deletion on trimethylated
Lys4 of histone H3 (H3K4me3) abundance and RNA polymerase II
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recruitment. The extent of H3K4me3 or RNA polymerase II
enrichment around the transcription start site (TSS) of several
activity-dependent genes tended to be higher in Chd8 CKO neu-
rons than in control neurons under the 55mM KCl condition, but
these differences did not achieve statistical significance (Fig. 3d, e).

Activity-dependent gene expression is attenuated by Chd8
ablation in the adult brain in vivo. We next generated mice with
CHD8 deficiency in adulthood (hereafter referred to as Chd8
CKO mice) by administering tamoxifen to 8- to 12-week-old
CAG-CreER/Chd8F/F mice intraperitoneally for five consecutive
days. We confirmed that the floxed (F) alleles of Chd8 were
efficiently deleted in the hippocampus of Chd8 CKO mice as
reflected by the loss of Chd8 expression at the mRNA and protein
levels (Fig. 4a, Supplementary Fig. 6a, b). To examine whether
CHD8 regulates the expression of activity-dependent genes
in vivo, we induced widespread neuronal activity in the brain of
Chd8 CKO and control mice by injection of the glutamate
receptor agonist KA. Although we did not detect a significant
difference in seizure severity between Chd8 CKO and control
mice after KA treatment (Fig. 4b), the expression of activity-
dependent genes including Fosb, Nr4a1, and Egr1 in the hippo-
campus was significantly downregulated in Chd8 CKO mice
relative to control mice with a similar seizure stage at 60 min after
KA treatment (Fig. 4c). The abundance of FOSB protein was also
significantly reduced in the hippocampus of Chd8 CKO mice
compared with that of control mice after KA treatment (Sup-
plementary Fig. 6a, c). To examine whether Chd8 ablation alters
chromatin accessibility in vivo, we performed ATAC-seq analysis
for the hippocampus of Chd8 CKO and control mice after vehicle
treatment or of those with a similar seizure stage at 60 min after
KA treatment. Most ATAC-seq peaks (51.6 to 74.0% of total
peaks) were shared among these four conditions (Fig. 4d). Heat
map and density profiles around high-confidence CHD8 ChIP-
seq peaks revealed a small decrease in ATAC-seq signal intensity
in the hippocampus of Chd8 CKO mice compared with that of
control mice after KA or vehicle treatment (Fig. 4e, Supplemen-
tary Fig. 7a). Chromatin accessibility at the gene body of several
activity-dependent genes including Fosb, Nr4a1, and Egr1 was
increased by KA treatment in both the control and Chd8 CKO
hippocampus (Fig. 4f, Supplementary Fig. 7b). Furthermore,
ATAC-seq signal intensity at these loci was decreased in the
hippocampus of Chd8 CKO mice compared with that of control
mice after KA treatment (Fig. 4f, Supplementary Fig. 7b). These
results thus indicated that CHD8 is essential for the transcription
of and chromatin accessibility at activity-dependent genes in
activated neurons in vivo.

Behavioral phenotypes of mice with induced CHD8 deficiency in
adulthood. Given that dysregulation of activity-dependent gene
expression is associated with memory-formation and psychiatric

disorders5,6, we performed several behavioral tests with Chd8 CKO
and control male and female mice. In the Morris water-maze test,
the visible and hidden platform trials over five consecutive days
revealed that escape latency was similar in Chd8 CKO and control
mice (Fig. 5a). After training in the visible and hidden platform
trials, we performed a probe trial in which the hidden platform was
removed from the water maze. The number of target platform
crossings did not differ between Chd8 CKO and control male or
female mice (Fig. 5b). The time spent in the target quadrant was
significantly increased relative to that in each of the other quad-
rants for both Chd8 CKO and control mice (Fig. 5c), suggestive of
normal learning and memory formation in Chd8 CKO mice.

We next examined anxiety-like behavior and abnormal social
behavior typical of ASD model mice, including CHD8-
haploinsufficient mice12–15. Total distance traveled in the open-
field test did not differ between genotypes, suggestive of normal
locomotor activity in Chd8 CKO mice (Fig. 6a). Whereas the time
spent in the center of the open field was decreased for male Chd8
CKO mice compared with control mice, that for female Chd8
CKO mice was similar to that for control mice (Fig. 6b). We did
not detect a difference between genotypes for time spent in the
open arms during the elevated plus-maze test or for that spent in
the light room during the light-dark transition test (Fig. 6c, d).
Male and female Chd8 CKO mice also showed normal self-
grooming behavior (Fig. 6e). Female, but not male, Chd8 CKO
mice showed an increase in total contact time during the
reciprocal social-interaction test (Fig. 6f). The number of social
contacts during this test did not differ between Chd8 CKO and
control mice (Fig. 6g). In the three-chamber sociability test, both
Chd8 CKO and control animals showed a significant preference
for a novel mouse (stranger 1) (Fig. 6h, i). In the social-novelty
preference test, both Chd8 CKO and control male mice also
showed a significant preference for a novel mouse (stranger 2)
over a familiar mouse (stranger 1), whereas female mice of either
genotype did not show such a preference (Fig. 6j, k). These results
thus suggested that Chd8 ablation in the adult brain has selective
effects on behavioral characteristics.

Discussion
We have here shown that homozygous deletion of Chd8 in mouse
postmitotic neurons alters the expression of activity-dependent
genes. We also found that Chd8 expression in the adult brain is
not essential for seizure susceptibility or for memory formation in
the Morris water-maze test, but is required for the transcription
of activity-dependent genes associated with KA-induced seizures.
Our data thus provide insight into the role of CHD8 in activity-
dependent transcriptional responses in postmitotic neurons.

CHD8 has previously been shown to regulate the proliferation
and differentiation of many types of stem and precursor cells
through transcriptional control18–21,24–26. Although the expression
of Chd8 persists in the adult brain27, the functional role of CHD8 in
postmitotic neurons has been unclear. Our results now show that

Fig. 1 Translation- and neuron-related gene expression is downregulated by Chd8 ablation in postmitotic neurons. a Schematic representation of the
experimental procedure for culture of primary neurons, deletion of Chd8 by Cre-mediated recombination, and KCl-induced neuronal depolarization (see
Methods for details). The Na+-channel blocker tetrodotoxin (TTX) and N-methyl-D-aspartate (NMDA) receptor antagonist D-AP5 were added to neurons
in order to reduce neuronal activity before KCl-induced depolarization. b Reverse transcription (RT) and real-time polymerase chain reaction (PCR)
analysis of Chd8 mRNA in control and Chd8 CKO neurons treated with 5 or 55mM KCl. Data are means ± s.e.m. (n= 3 mice of each genotype). **P < 0.01,
****P < 0.0001 (one-way ANOVA with Tukey’s post hoc test). c Phase-contrast micrographs of primary neurons cultured for 10 days. Scale bars, 50 µm.
d Volcano plot for differentially expressed genes in Chd8 CKO neurons compared with control neurons under the 5mM KCl condition as determined by
RNA-seq analysis (n= 3 mice of each genotype, 1 male and 2 females for Chd8 CKO mice and 2 males and 1 female for control mice). Differentially
expressed genes (FDR-adjusted P value of <0.05) are highlighted in red. e GO analysis of genes whose expression was upregulated (360 genes) or
downregulated (509 genes) in Chd8 CKO neurons. f SynGO analysis of genes whose expression was downregulated (509 genes) in Chd8 CKO neurons.
g GSEA for KEGG pathways in Chd8 CKO neurons compared with control neurons under the 5 mM KCl condition. NES, normalized enrichment score.
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CHD8 contributes to transcriptional regulation in response to
neuronal activity. Activity-dependent gene expression mediates
synaptic development and plasticity underlying learning and
memory6, and its disruption is related to neuropsychiatric dis-
orders such as ASD5. Whereas we detected selective behavioral
abnormalities including increased anxiety-like behavior in the
open-field test in male Chd8 CKO mice and abnormal social

behavior in female Chd8 CKO mice in this study, Chd8 hetero-
zygous knockout mice manifest alterations in synaptic transmis-
sion, ASD-like behavioral phenotypes, and learning and memory
deficits12–15,28. Our observations thus suggest that defective
activity-dependent transcriptional regulation by CHD8 may con-
tribute to the neurological phenotypes of individuals with ASD
associated with CHD8 mutations. In addition to the changes in the
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expression of activity-dependent genes, we found that genes related
to translation were highly enriched among downregulated genes in
Chd8 CKO neurons. Local translation in neurons supplies proteins
to axons and synapses that are required for synaptic plasticity and
neuronal function29. Dysregulation of translation has previously
been implicated in ASD-like phenotypes30. CHD8 thus contributes
to transcriptional regulation related to multiple processes including
transcription, translation, and nervous system development, and
defective regulation of these processes associated with CHD8
mutation might underlie ASD pathogenesis.

Neuronal activity dynamically modifies the accessible chro-
matin landscape in association with activity-dependent gene
expression in the adult brain31. In contrast, our ATAC-seq ana-
lysis revealed only small changes in chromatin accessibility in
cultured neurons exposed to an elevated extracellular con-
centration of KCl, similar to previous findings32. These differ-
ences in the effects of neuronal activity on chromatin accessibility
may be due to differences in experimental conditions between
neurons in vivo and those in culture. Indeed, our ATAC-seq
analysis of the hippocampus of KA-treated mice revealed an
increase in chromatin accessibility at the gene body of activity-
dependent genes. Consistent with previous findings that CHD8
promotes the adoption of open chromatin structures in several
cell types19,20,33, we found that Chd8 ablation in the adult brain
reduced chromatin accessibility at the loci of activity-dependent
genes. Although we did not detect chromatin accessibility changes
in response to Chd8 deletion in vitro, likely as a result of technical
limitations, it is possible that CHD8 also affects chromatin
accessibility in cultured neurons to some extent, a possibility that
warrants further investigation. Given that CHD8 binds to the
promoter region of activity-dependent genes, it may promote
chromatin accessibility at the regulatory elements of these genes
and thereby facilitate their activity-dependent transcription.
Further studies will be needed to clarify the detailed mechanisms
of transcriptional regulation by CHD8.

CHD8 haploinsufficiency is a highly penetrant risk factor for
ASD, and Chd8 heterozygous mutation confers ASD-like beha-
vioral phenotypes in mice7,12–17. Some individuals with ASD
associated with CHD8 mutation experience seizures7, whereas we
did not detect a change in seizure susceptibility in Chd8 CKO
mice. Abnormal social behavior, such as an increased total con-
tact time during the reciprocal social-interaction test, is one of the
reproducible behavioral features of Chd8mutant mice12,13,16,17,21.
Female, but not male, Chd8 CKO mice in the present study
showed altered social behavior, suggestive of a sexually dimorphic
phenotype15. Furthermore, Chd8 CKO male mice manifested
increased anxiety-like behavior in the open-field test, but not in
the elevated plus-maze test and the light-dark transition test.
Anxiety is one of the symptoms of individuals with ASD1,7, and
Chd8 heterozygous mutant mice also manifest anxiety-like

behavior12,13. Our results suggest that CHD8 in the adult brain
may contribute to the control of social behavior and anxiety-like
behavior.

Sexually dimorphic behavioral phenotypes have previously been
observed in ASDmodel mice including Chd8mutant mice15. Given
that sex hormones and sex chromosomes are implicated in sex
differences in behavior34, it is possible that Chd8 deletion alters the
levels of sex hormones or the expression of their receptors. Genetic
background, age, and mutation differences may also influence
sexually dimorphic behavioral outcomes35,36.

We used the CAG-CreER mouse line to achieve tamoxifen-
inducible Chd8 deletion in mouse postmitotic neurons in vitro
and in the adult brain in vivo. Given that this line drives
recombination in all cell types, rather than showing cell type
specificity, Chd8 deletion not only in postmitotic neurons but in
glial cells and other cell populations might influence tran-
scriptomic, epigenetic, and behavioral changes observed in this
study. Further studies are warranted to determine whether these
changes are attributable to alterations in postmitotic neurons.

CHD8 was previously shown to have dosage-sensitive roles in
transcriptional regulation and behavioral phenotypes33,37. Given
that homozygous deletion of Chd8 in the adult brain resulted in
transcriptional alterations and some behavioral deficits in the
present study, it is also possible that Chd8 heterozygous mutation
might confer similar but less pronounced effects. Collectively, the
present findings reveal a role for CHD8 in activity-dependent
transcriptional regulation in postmitotic neurons and the adult
brain, and they therefore provide potentially important insight
into the molecular mechanisms underlying the pathogenesis
of ASD.

Methods
Mice. Generation of Chd8F/F mice was described previously12. Chd8F/F mice were
crossed with CAG-CreER heterozygous mice to produce CAG-CreER/Chd8F/F

mice24. For induction of Cre-mediated recombination in vivo, CAG-CreER/Chd8F/F

mice at 8 to 12 weeks of age were injected intraperitoneally for five consecutive
days with tamoxifen (2 mg per mouse) dissolved in corn oil. Multiple treatment
with tamoxifen results in more efficient deletion of floxed alleles compared with a
single treatment38. Mice were genotyped by PCR-based analysis of genomic DNA
with primers for Chd8 (5′-CCCAAAAGACCAAATCAAACAAAC-3′, 5′-CCATA
GGCTGAAGAACCGTAATTG-3′, and 5′-AGGCTTAGAAACCCGTCGAG-3′)
and Cre (5′-AGGTTCGTTCACTCATGGA-3′ and 5′-TCGACCAGTTTAGTTA
CCC-3′). All experiments were approved by the Animal Ethics Committee of
Kanazawa University.

Primary neuronal culture. Primary neurons were isolated from the hippocampus
of male and female mice at E18.5 as previously described, but with minor
modifications23,39. The generation of pyramidal neurons is almost complete at this
stage, and isolation of neurons from embryonic tissue has the advantages that the
tissue is more readily dissociated and that contamination with glial cells and
fibroblasts is minimized. In brief, the tissue was incubated for 20 min at 37 °C with
0.25% trypsin–EDTA and DNase (047-26771, Wako) at 25 µg/ml, and it was
subjected to gentle dissociation by repeated passage through a Pasteur pipette after

Fig. 2 Activity-dependent gene expression is attenuated by Chd8 ablation in postmitotic neurons in vitro. a Volcano plot for differentially expressed
genes in neurons isolated from control mice and treated with 55mM KCl versus 5mM KCl (n= 3 mice per condition). Differentially expressed genes
(FDR-adjusted P value of <0.05) are highlighted in red. b Volcano plot for differentially expressed genes in Chd8 CKO neurons compared with control
neurons under the 55mM KCl condition (n= 3 mice of each genotype, 1 male and 2 females for Chd8 CKO mice and 2 males and 1 female for control
mice). Differentially expressed genes (FDR-adjusted P value of <0.05) are highlighted in red. c Heat map representing the expression of activity-dependent
genes in Chd8 CKO and control neurons under the 5 and 55mM KCl conditions (n= 3 mice for each condition). Differentially expressed genes in Chd8
CKO neurons compared with control neurons under the 55mM KCl condition are indicated by asterisks. d GSEA plot of differentially expressed genes
among genes induced by KCl (upregulated genes with a log2(fold change) of >2 associated with an FDR-adjusted P value of <0.01 in neurons of
control mice treated with 55mM KCl compared with those treated with 5mM KCl in a) for Chd8 CKO neurons compared with control neurons under the
55mM KCl condition. NES, normalized enrichment score. e Venn diagrams showing the overlap between genes whose expression was upregulated or
downregulated in Chd8 CKO neurons compared with control neurons under the 5 and 55mM KCl conditions. f GO analysis of genes whose expression was
specifically upregulated (227 genes) or downregulated (426 genes) in Chd8 CKO neurons treated with 55mM KCl as indicated in e. The significance levels
for the values of P and FDR q are indicated by * for <0.05, ** for <0.01, *** for <0.001, and **** for <0.0001.
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the addition of Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum and DNase (10 µg/ml). Dissociated cells were passed
through a 40-μm cell strainer, collected by centrifugation, and transferred to a plate
coated with poly-D-lysine (P6407, Sigma-Aldrich) for culture at 37 °C in neurobasal
medium supplemented with MACS NeuroBrew-21 supplement (130-097-263,
Miltenyi Biotec) at 20 ml/l, 2 mM L-glutamine (25030081, Thermo Fisher Scien-
tific), and penicillin-streptomycin (15140122, Thermo Fisher Scientific) at 10 ml/l.
After 2 days in vitro (DIV), the cultures were treated with 1 µM Ara-C for 24 h to

eliminate all dividing cells. For the induction of Cre-mediated recombination
in vitro, neurons were incubated for 24 h in the presence of 500 µM 4-OHT at
4 DIV. For KCl-induced neuronal depolarization, 1 µM tetrodotoxin (Wako) and
100 µM D-AP5 (Tocris Bioscience) were added to the culture medium at 9 DIV to
reduce neuronal activity and the neurons were then treated with 5 or 55 mM KCl
for 2 h by adding control buffer (5 mM KCl, 165 mM NaCl, 1.8 mM CaCl2, 0.8 mM
MgCl2, 11 mM HEPES) or depolarization buffer (170 mM KCl, 1.8 mM CaCl2,
0.8 mM MgCl2, 11 mM HEPES) to a final dilution of 32.4% at 10 DIV.
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Antibodies. Rabbit polyclonal antibodies to CHD8 were generated in-house and
used for immunoblot analysis. Other antibodies included those to TUBB3
(ab78078, Abcam, 1:500), to GFAP (IR524, DAKO, 1:500), and to Olig2 (AB9610,
Millipore, 1:500) for immunofluorescence staining, those to FOSB (ab184938,
Abcam, 1:2000) and to HSP90 (610419, BD Biosciences, 1:2000) for immunoblot
analysis, and those to H3K4me3 (ab8580, Abcam, 2 µg per sample) and to RNA
polymerase II (91151, Active Motif, 2 µg per sample) for ChIP.

Immunofluorescence staining. Immunofluorescence staining was performed as
described previously21. The cultured cells were fixed overnight at 4 °C with 4%
paraformaldehyde in phosphate-buffered saline (PBS), exposed to 2% bovine serum
albumin and 0.3% Triton X-100 in PBS, and then incubated overnight at 4 °C with
primary antibodies. Immune complexes were detected with Alexa Fluor 488– or
Alexa Fluor 546–conjugated goat secondary antibodies (Thermo Fisher Scientific).
The TUNEL (terminal deoxynucleotidyl transferase dUTP nick-end labeling) assay
was performed with the use of a MEBSTAIN Apoptosis TUNEL Kit Direct (8445,
MBL). All cells were counterstained with 4′,6-diamidino-2-phenylindole (DAPI), and
images were acquired with a BZ-X800 microscope (Keyence). ImageJ software was
applied to count the numbers of each cell type or apoptotic cells.

RT and real-time PCR analysis. Total RNA (500 ng) isolated from cultured
neurons or the hippocampus with the use of the TRIzol reagent (Thermo Fisher
Scientific) was subjected to RT with ReverTra Ace RT mix with gDNA remover
(Toyobo). The resulting cDNA was subjected to real-time PCR analysis with the
use of Luna Universal qPCR Master Mix (M3003, New England Biolabs) and
specific primers in a Thermal Cycler Dice Real Time System III (Takara Bio). Data
were normalized by the abundance of Rplp0 or Gapdh mRNA. The PCR primers
(sense and antisense, respectively) were as follows: Rplp0, 5′-GGACCCGAGAAGA
CCTCCTT-3′ and 5′-GCACATCACTCAGAATTTCAATGG-3′; Gapdh, 5′-GCCT
GGAGAAACCTGCCAAGTATG-3′ and 5′-GAGTGGGAGTTGCTGTTGAAGTC
G-3′; Chd8L, 5′-TCCCTTTTTGGTCATTGCTC-3′ and 5′-TTCAGCCTATGGGC
TTCATC-3′; Fosb, 5′-TTTTCCCGGAGACTACGACTC-3′ and 5′-GTGATTGCG
GTGACCGTTG-3′; Nr4a1, 5′-TTGAGTTCGGCAAGCCTACC-3′ and 5′-GTGTA
CCCGTCCATGAAGGTG-3′; and Egr1, 5′-TCGGCTCCTTTCCTCACTCA-3′ and
5′-CTCATAGGGTTGTTCGCTCGG-3′.

Immunoblot analysis. Total protein extracts were prepared from cultured neurons
or the hippocampus and subjected to immunoblot analysis as previously
described40. ImageJ software was applied to measure the signal intensity for each
protein.

RNA-seq analysis. Total RNA was extracted from neurons treated with 5 or
55 mM KCl with the use of the TRIzol reagent. Messenger RNA (1 μg) purified
from the total RNA with the use of a NEBNext Poly(A) mRNA Magnetic Isolation
Module (New England Biolabs) was used to prepare a cDNA library with the use of
a NEBNext Ultra II Directional RNA Library Prep Kit for Illumina (New England
Biolabs), and each library was then sequenced with the use of a NovaSeq
6000 system (Illumina). The quality of the raw sequencing data was checked with
FastQC (version 0.11.9), and trimming of the adapter sequences was performed
with Trimmomatic (version 0.39)41. The total amount of each mRNA was calcu-
lated with the use of a series of programs including HISAT2 (version 2.1.0)42,
featureCounts (version 2.0.0)43, and DESeq2 (version 1.26.0)44. RNA-seq reads
were mapped against the mouse (mm10) genome. GSEA was performed as
described previously with the use of GSEA software version 4.2.145. A set of genes
whose expression was significantly upregulated (log2(fold change) of >2.0 asso-
ciated with an FDR-adjusted P value of <0.01) in control neurons treated with
55 mM KCl relative to those treated with 5 mM KCl was used for GSEA. GO
analysis of differentially expressed genes (FDR q < 0.05) was performed with the
use of DAVID46 and SynGO47.

ATAC-seq analysis. ATAC-seq libraries were prepared with the use of an ATAC-
Seq Kit (Active Motif). Chd8 CKO and control neurons isolated frommale mice were

treated with 5 or 55mMKCl for 2 h and then incubated for 30min at 37 °C in culture
medium containing DNase (15 µg/ml). The neurons were then dissociated from the
culture plate by exposure to 0.25% trypsin–EDTA. The hippocampus was manually
dissociated from the brain of mice of each genotype with a similar seizure stage at
60min after KA or vehicle treatment. Nuclei were extracted from the cultured cells or
hippocampus with the use of ATAC Lysis Buffer, and 1 × 105 nuclei were used to
prepare each ATAC-seq library. The libraries were sequenced with the use of a HiSeq
2500 system (Illumina). The reads were uniquely mapped to the mouse (mm10)
genome with the use of Bowtie software (version 2.2.3)48, and duplicated reads were
removed with samtools (version 1.9)49. BAM files for two replicates for each con-
dition were merged with samtools. Markedly enriched regions of the genome were
identified with the use of the MACS peak caller (version 2.1.1, with the option
“-p 1e−5 --gsize mm --nomodel --extsize 160”)50. Heat map and density profiles were
generated with plotHeatmap in deepTools (3.5.0)51.

ChIP-qPCR assay. ChIP was performed essentially as described previously21.
Cultured neurons treated with 55 mM KCl for 2 h were fixed by incubation for
10 min on ice with 0.5% paraformaldehyde in ChIP buffer (5 mM HEPES-KOH
(pH 8.0), 200 mM KCl, 1 mM CaCl2, 1.5 mM MgCl2, 5% sucrose, 0.5% Nonidet P-
40) supplemented with a protease inhibitor cocktail (Wako), subjected to ultrasonic
treatment, and digested with micrococcal nuclease for 40 min at 30 °C. After the
addition of EDTA to a final concentration of 0.1 mM, each digested sample was
centrifuged at 15,000 × g for 10 min at 4 °C, and the resulting supernatant was
incubated with rotation for 6 h at 4 °C with antibodies conjugated to magnetic
beads. Bound proteins were eluted from the beads, and cross-links were reversed by
incubation overnight at 65 °C with 1% SDS in Tris-EDTA buffer. After washing
twice both with ChIP buffer and with Tris-EDTA buffer, DNA was purified with
the use of Nucleo Spin Gel and PCR Clean-Up (Takara Bio) and subjected to real-
time PCR analysis as described above. PCR primers (sense and antisense, respec-
tively) were as follows: Egr3 TSS, 5′-GGAAGGCTTGGTTGGAGAC-3′ and 5′-GC
ACCTACCTCCCTCCAGTC-3′; Fosb TSS, 5′-AGCCTGGACTTTCAGGAGGT-3′
and 5′-GCTCGGGGAAGCTTAGTCTC-3′; Nr4a1 TSS, 5′-AACCTGCACTGG
GGTATCAC-3′ and 5′-GACAAAGCTTGGCTTCCTTG-3′; Homer1 TSS, 5′-GC
CTTTAGGAGGGGAGAAAG-3′ and 5′-GGGGAAAACCACCGTTAAT-3′; and
Homer1 upstream, 5′-TCTGCCACCTCATTTCTGCT-3′ and 5′-TAGCACACAC
AGGCCATCAT-3′.

Analysis of published ChIP-seq data. The ChIP-seq data previously obtained
with antibodies to CHD8 (DRA003116) were reanalyzed as described in the ori-
ginal study12. In brief, the reads were uniquely mapped to the mouse (mm10)
genome with the use of Bowtie software (version 2.2.3)48, and duplicated reads
were removed with samtools (version 1.9)49. Markedly enriched regions of the
genome were identified with the use of the MACS peak caller (version 2.1.1, with
the option “-p 1e−5 --gsize mm --nomodel --extsize 160”)50.

Induction of seizures with KA. Male mice at 16 to 18 weeks of age and female mice
at 13 to 18 weeks of age were injected intraperitoneally with KA (25mg/kg) dissolved
in PBS. Induction of seizures by KA is one of the most commonly studied models of
temporal lobe epilepsy52. Behavioral seizures were observed for 1 h after the injection
and were scored according to previously described criteria53: stage 0, normal beha-
vior; stage 1, immobility and rigidity; stage 2, head bobbing; stage 3, forelimb clonus
and rearing; stage 4, continuous rearing and falling; stage 5, clonic-tonic seizure; stage
6, death. The hippocampus was then removed, flash frozen in liquid nitrogen, and
stored at –80 °C for analysis of gene expression. Mice with a seizure stage of 3 to 5
were used for gene expression analysis and ATAC-seq analysis.

General protocol for behavioral tests. Chd8 CKO or control mice were group-
housed in a room with a 12-h-light, 12-h-dark cycle (lights on at 8:00 a.m.) and
with access to food and water ad libitum. Behavioral tests were performed with
male and female mice at 11 to 18 weeks of age and between 9:00 a.m. and 6:00 p.m.
as described previously19. Each apparatus was cleaned with a dilute sodium
hypochlorite solution before testing of each animal in order to prevent bias due to

Fig. 3 Chromatin accessibility profile at CHD8 binding sites for neurons activated by KCl-induced depolarization. a Venn diagram showing the overlap
between ATAC-seq peaks detected in Chd8 CKO or control neurons isolated from male mice and exposed to 5 or 55 mM KCl (n= 2 mice per
condition). Merged data for two independent ATAC-seq replicates for each condition were used for analysis. The separate results of the two replicates
for each condition are shown in Supplementary Fig. 5. b Grouping of signal density and heat maps of ATAC-seq peaks in the region spanning 3 kb
upstream to 3 kb downstream of the center of CHD8 binding peaks. CHD8 ChIP-seq data are from a previous study12. c ATAC-seq, CHD8 ChIP-seq,
and RNA-seq data for representative activity-dependent genes viewed in the Integrative Genomics Viewer browser. The yellow shaded areas indicate
prominent overlapping ATAC-seq and ChIP-seq peaks. d, e ChIP-qPCR analysis was performed for H3K4me3 deposition (d) and RNA polymerase II
binding (e) at the TSS region of the indicated activity-dependent genes (or at the upstream region of Homer1 examined as a negative control) in
hippocampal neurons isolated from Chd8 CKO or control mice and treated with 55 mM KCl for 2.0 h. ChIP was performed with normal immunoglobulin
G (IgG) as a control for the antibodies to H3K4me3 or to RNA polymerase II. Data are means ± s.e.m. (n= 3 independent experiments). The P values
were determined with the unpaired Student’s t test.
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olfactory signals. Behavioral tests included the Morris water-maze test, open-field
test, light-dark transition test, elevated plus-maze test, self-grooming test, social-
interaction test in a novel environment, and sociability and social-novelty pre-
ference tests. All tests were carried out by well-trained experimenters using auto-
mated analysis systems as described below. The experimenters were always blinded
to mouse genotype in order to exclude bias in behavioral measurements.

Morris water-maze test. For visible and hidden platform trials of the Morris
water-maze test, a circular plastic pool (120 cm in diameter) was filled to a
depth of 30 cm with water (maintained at 21° ± 1.0 °C) that had been colored

white by the addition of nontoxic paint54. A transparent circular escape
platform (9 cm in diameter) was submerged in the center of one of the pool
quadrants with its surface located ~1 cm below that of the water. Visual cues
that differed in geometric shape and color were distributed around the pool.
Male mice between 11 and 15 weeks of age and female mice between 11 and
16 weeks of age were initially subjected to the visible platform task, in which the
platform was marked with a flag. The next day, the flag was removed, and the
hidden platform tasks were performed on four consecutive days. The mouse was
randomly placed in the pool facing the wall in each of the four quadrants. Each
task consisted of four trials per day with a cutoff time of 60 s. If the mouse
reached the target platform, it was allowed to remain on the platform for >15 s.
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Fig. 4 Activity-dependent gene expression is attenuated by Chd8 ablation in the adult brain in vivo. a RT-qPCR analysis of Chd8 mRNA in the
hippocampus of CAG-CreER/Chd8F/F (Chd8 CKO) and Chd8F/F (control) male mice at 17 to 18 weeks of age after treatment with tamoxifen for five
consecutive days at 8 to 12 weeks of age (n= 6 mice of each genotype). b Time course of seizure score for 60min after KA injection in Chd8 CKO (n= 12)
and control (n= 14) male mice between 16 and 18 weeks of age (left panel) or Chd8 CKO (n= 18) and control (n= 16) female mice between 13 and
18 weeks of age (right panel). c RT-qPCR analysis of mRNA abundance for the indicated activity-dependent genes in the hippocampus of Chd8 CKO mice
treated with vehicle (n= 6), control mice treated with vehicle (n= 6), Chd8 CKO mice treated with KA (n= 9), and control mice treated with KA (n= 7) at
16 to 18 weeks of age. Male mice with a seizure stage of 3 to 5 were studied for this analysis. Data are means ± s.e.m. d Venn diagram showing the overlap
between ATAC-seq peaks detected in the hippocampus of Chd8 CKO and control mice with a similar seizure stage at 60min after KA or vehicle treatment
(n= 2 mice per condition: 1 male and 1 female for Chd8 CKO and control mice treated with KA, 2 males for Chd8 CKO and control mice treated with
vehicle). Merged data for two independent ATAC-seq replicates for each condition were used for analysis. The separate results for the two replicates of
each condition are shown in Supplementary Fig. 7. e Grouping of signal density and heat maps of ATAC-seq peaks in the region spanning 3 kb upstream to
3 kb downstream of the center of CHD8 binding peaks. f ATAC-seq signals of representative activity-dependent genes viewed in the Integrative Genomics
Viewer browser. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001 (unpaired Student’s t test in (a), two-way repeated ANOVA in (b), and one-way
ANOVA with Tukey’s post hoc test in (c)).
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Fig. 5 Normal learning and memory phenotypes of mice with CHD8 deficiency in adulthood. a Latency to reach the visible and hidden platforms in the
Morris water-maze test for Chd8 CKO (n= 18) and control (n= 20) male mice at 11 to 15 weeks of age (left panel) or for Chd8 CKO (n= 16) and control
(n= 18) female mice between 11 and 16 weeks of age (right panel). Data are means ± s.e.m. b, c Number of target crossings (b) and time spent in each
quadrant (c) after platform removal on day 6 for the probe trial of the Morris water-maze test performed with the mice in (a). T, O, L, and R represent the
target, opposite, left, and right quadrants, respectively. The gray circle represents the target platform. Data are presented as box-and-whisker plots, in
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If the mouse did not find the platform within 60 s, it was gently guided to it and
then left there for >15 s. On the 6th day, the platform was removed from the
pool and a probe trial was performed to assess memory of the previous location
of the platform. Mice were allowed to swim in the pool for 60 s, and the time
spent in each quadrant was measured. Mouse locomotion was recorded with a
video camera and was analyzed automatically with SMART Video Tracking
software (Panlab).

Open-field test. Each male mouse at 14 to 16 weeks of age or female mouse at 12
to 17 weeks of age was placed in the corner of an open-field apparatus (50 by 50 by
40 cm, O’Hara & Co.), which was illuminated at 100 lux. Total distance traveled
and time spent in the central area (25 by 25 cm) were recorded over 10 min. Mouse
locomotion was recorded with a video camera controlled with a custom-made
program in LabVIEW and was analyzed automatically with in-house software
written in Python.
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Elevated plus-maze test. The apparatus consisted of two open arms (25 by 5 cm)
and two enclosed arms of the same size with 15-cm-high transparent walls (O’Hara &
Co.). The arms and central square were made of white plastic plates and were elevated
to a height of 50 cm above the floor. The likelihood of animals falling from the
apparatus was minimized by the presence of 3-mm-high plastic ledges on the open
arms. Arms of the same type were arranged on opposite sides. Each male mouse at 15
to 17 weeks of age or female mouse at 12 to 17 weeks of age was placed in the central
square of the maze (5 by 5 cm) facing one of the closed arms, and its behavior was
recorded over 10min. Mouse locomotion was recorded with a video camera con-
trolled with a custom-made program in LabVIEW, and the time spent in the open
arms was measured automatically with in-house software written in Python.

Light-dark transition test. The apparatus consisted of a cage (21 by 42 by 25 cm)
that was divided into two sections of equal size by a partition with a door (O’Hara
& Co.). One chamber was made of white plastic and brightly illuminated (390 lux),
whereas the other was black and dark (2 lux). Male mice at 14 to 17 weeks of age or
female mice at 12 to 17 weeks of age were placed in the dark side and allowed to
move freely between the two chambers with the door open for 10 min. Mouse
locomotion was recorded with a video camera controlled with a custom-made
program in LabVIEW, and the time spent in each chamber was measured auto-
matically with in-house software written in Python.

Self-grooming test. The grooming test was performed as previously described12.
Each male mouse at 11 to 16 weeks of age or female mouse at 13 to 18 weeks of age
was placed individually into a new standard cage. After habituation for 10 min, the
animal was videotaped for a 10-min test period and the time spent in grooming
behavior was determined.

Social-interaction test in a novel environment. Two mice at 15 to 17 weeks of
age for males and 12 to 17 weeks of age for females and of the same genotype that
had previously been housed in groups of mixed genotypes (three or four animals
per cage) and in different cages were placed together in a box (50 by 50 by 40 cm,
O’Hara & Co.) and allowed to explore freely for 10 min. Images were captured at a
rate of three frames per second, and analysis was performed automatically with in-
house software written in Python. The total number of contacts and the total
duration of contacts were measured.

Sociability and social-novelty preference tests. The testing apparatus consisted
of a rectangular three-chambered box (O’Hara & Co.). Each chamber was 20 by 40
by 30 cm, and the dividing walls were made of clear Plexiglas, with small openings
(6 cm) that allowed access into each chamber. A sex-matched unfamiliar mouse
(stranger 1) that had not had prior contact with the subject mouse was placed in
one of the side chambers. The location of stranger 1 in the left versus right chamber
was systematically alternated between trials. The stranger mouse was enclosed in a
small round wire cage that allowed nose contact between the bars but prevented
fighting. The cage was 10 cm in height, with a bottom diameter of 10 cm and
vertical bars 0.5 cm apart. An identical empty cage was placed in the other side
chamber. The subject mouse was first placed in the middle chamber and was
allowed to explore the entire social test box for 10 min. The amount of time spent
around each cage and in each chamber was measured with the aid of a camera to
quantify the social preference for stranger 1. A second sex-matched unfamiliar
mouse (stranger 2) was then placed in the empty cage. The test mouse thus had a
choice between the first, already-investigated unfamiliar mouse (stranger 1) and the
novel unfamiliar mouse (stranger 2). The amount of time spent around each cage
and in each chamber during a second 10-min session was measured as before.
C57BL/6J mice were used as stranger mice, and male and female subject mice used
in these tests were 16 to 18 weeks or 13 to 17 weeks of age, respectively. Mouse

locomotion was recorded with a video camera controlled with a custom-made
program in LabVIEW and was analyzed automatically with in-house software
written in Python.

Statistics and reproducibility. Quantitative data are presented as means ± s.e.m.
or as indicated, with the number of mice subjected to each experiment also being
stated. Statistical analysis by the unpaired Student’s t test, the paired Student’s t
test, one-way analysis of variance (ANOVA) with Tukey’s post hoc test, two-way
factorial ANOVA, or two-way repeated ANOVA was performed with the use of R
language. Significance levels for P and FDR q values are indicated by *, **, ***, and
**** for <0.05, <0.01, <0.001, and <0.0001, respectively.

Data availability
Source data underlying all the graphs is available in the Supplementary Data 2. Data are
available by contacting the corresponding author. Uncropped images of the immunoblots
are shown in Supplementary Fig. 8. RNA-seq and ATAC-seq data have been deposited in
the DDBJ sequence read archive (DRA) under accession numbers DRA014131,
DRA016165, and DRA016198.
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