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Identification of Novel Associations and Localization
of Signals in Idiopathic Inflammatory Myopathies Using
Genome-Wide Imputation
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Objective. The idiopathic inflammatory myopathies (IIMs) are heterogeneous diseases thought to be initiated by
immune activation in genetically predisposed individuals. We imputed variants from the ImmunoChip array using a
large reference panel to fine-map associations and identify novel associations in IIM.

Methods. We analyzed 2,565 Caucasian IIM patient samples collected through the Myositis Genetics Consortium
(MYOGEN)and10,260ethnicallymatchedcontrol samples.We imputed1,648,116variants fromthe ImmunoChiparrayusing
theHaplotypeReferenceConsortiumpanel andconducted association analysis on IIMandclinical and serologic subgroups.

Results. The HLA locus was consistently the most significantly associated region. Four non-HLA regions reached
genome-wide significance, SDK2 and LINC00924 (both novel) and STAT4 in the whole IIM cohort, with evidence of
independent variants in STAT4, and NAB1 in the polymyositis (PM) subgroup. We also found suggestive evidence of
association with loci previously associated with other autoimmune rheumatic diseases (TEC and LTBR). We identified
more significant associations than those previously reported in IIM for STAT4 and DGKQ in the total cohort, for NAB1
and FAM167A-BLK loci in PM, and for CCR5 in inclusion body myositis. We found enrichment of variants among
DNase I hypersensitivity sites and histone marks associated with active transcription within blood cells.

Conclusion. We found novel and strong associations in IIM and PM and localized signals to single genes and
immune cell types.

INTRODUCTION

The idiopathic inflammatory myopathies (IIMs) are a
heterogeneous group of rare autoimmune diseases primarily

characterized by muscle weakness with extramuscular manifes-
tations. The strongest genetic risk for IIM resides in the HLA
region, although non-HLA associations have also been reported.
To date, the largest genetic association studies have been
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conducted in Caucasian populations through the Myositis Genet-

ics Consortium (MYOGEN) (1) and subsequent meta-analyses (2).

However, a genome-wide association study (GWAS) in clinically

amyopathic dermatomyositis in the Japanese population (3) and

candidate gene studies in Japanese and Chinese populations

have also identified significant genetic risk factors for IIM (4–6).
We previously published a genetic association study on

90,536 genetic variants from ImmunoChip, a targeted array con-
taining coverage of 186 established autoimmune susceptibility
loci (1). In this follow-up study we re-analyzed the IIM Immuno-
Chip data set after imputation of 1,648,116 variants to identify
novel associations and to facilitate fine-mapping of risk regions
reported in IIM and clinical and serologic subgroups.

PATIENTS AND METHODS

Samples. Caucasian IIM patient samples were collected
through MYOGEN (1). IIM samples were included if patients ful-
filled probable or definite Bohan and Peter classification criteria
(7) for polymyositis (PM), juvenile PM, dermatomyositis (DM), or
juvenile DM, and Griggs, European Neuromuscular Centre, or
Medical Research Council criteria for inclusion body myositis
(IBM) (8). ImmunoChip control data from 12 countries were pro-
vided by 4 disease consortia. Anti–Jo-1 (anti–histidyl–transfer
RNA) autoantibodies were detected using either immunoprecipi-
tation or line blot using methods described previously (9).

Genotyping and imputation. Analysis was conducted
on the existing Illumina ImmunoChip array data consisting of
2,565 IIM patients (1). Clinical subgroup analysis was conducted
on PM (n = 903), DM (n = 817), juvenile DM (n = 508), and IBM
(n = 252) patients, and patients with anti–Jo-1 autoantibodies
(n = 311). Healthy control samples were collected from the same
pool of controls but matched with patients 4:1 based on principal

components analysis coordinates (9). Variants were imputed with
the Michigan Imputation Server using the Haplotype Reference
Consortium (HRC) panel version r1.1 2016. The HRC consists of
64,940 haplotypes from individuals of predominantly European
ancestry. Poorly imputed genotypes (r2 < 0.5), single-nucleotide
polymorphisms (SNPs) deviating from Hardy-Weinberg equilib-
rium in controls (P < 0.001), and variants with a low minor allele
frequency of <0.01 were removed. After stringent SNP quality
control, we analyzed 1,648,116 variants, of which 120,734 were
directly genotyped SNPs. Population stratification was assessed
by the genomic inflation factor (λ) scaled to 1,000 patients and
1,000 controls. Including the top 3 principal components as
covariates was sufficient to control for population differences
(λ for 1,000 samples = 1.04).

Statistical analysis. Association analysis was conducted
on gene dosages using SNPTest version 2.5.2. Linkage disequi-
librium between SNPs was calculated using Plink version 1.90.
The first 3 principal components were included as covariates
and used in a logistic regression analysis using an additive model.
Forward stepwise logistic regression was used to test for inde-
pendent effects conditional on the variant of interest. Genome-
wide significance was defined as a P value less than 5 × 10−8.
Suggestive significance was defined as a P value less than
2.25 × 10−5, based on Bonferroni correction for the number of
independent haplotype blocks on the original genotyping array.
Regions were defined as novel if there was no genome-wide or
suggestive evidence of association in previous genetic analyses.
Regional association plots were generated using LocusZoom.
js (10).

Functional analysis. We reported the functional effect of
the most strongly associated SNP in the locus from the dbSNP
database’s predicted functional effect. GARFIELD (GWAS
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Analysis of Regulatory and Functional Information Enrichment
with Linkage Disequilibrium correction) analysis was used to char-
acterize the cellular and regulatory contribution of the associated
variants (11). The “gwas-credible-sets” package implemented in
LocusZoom.js was used to calculate 95% credible SNP sets
(10), which were annotated with functional information from public
databases, including Genotype-Tissue Expression (GTEx) and
splicing quantitative trait locus (QTL), and regulatory information
from the UCSC Genome Browser.

RESULTS

Regions of interest associated with IIM and clinical
subgroups are presented in Table 1 and Figure 1. SNPs are
reported if they reached genome-wide significance, or reached
suggestive significance and the locus has previous statistical evi-
dence of association in an autoimmune rheumatic disease in the
National Human Genome Research Institute–European Bioinfor-
matics Institute GWAS Catalog. All associations reaching a sug-
gestive significance threshold of P < 2.25 × 10−5 are included in
the Supplementary Data, available on the Arthritis & Rheumatol-

ogy website at https://onlinelibrary.wiley.com/doi/10.1002/art.
42434. A Manhattan plot of the combined IIM analysis is shown
in Figure 1. Manhattan plots for subgroup analyses and regional
association plots for non-HLA associations are included in
Supplementary Figures 1–19, https://onlinelibrary.wiley.com/doi/
10.1002/art.42434.

For IIM as a whole and all clinical subgroups, the HLA region
was the most significant genetic risk factor. Three non-HLA
regions, STAT4 (P = 1.38 × 10−8, odds ratio [OR] 0.81 [95%

confidence interval (95% CI) 0.75–0.87]), SDK2

(P = 1.46 × 10−8, OR 1.15 [95% CI 1.08–1.23]), and LINC00924
(P = 1.9 × 10−8, OR 0.84 [95% CI 0.79–0.89]), reached
genome-wide significance in the total IIM cohort, and 1 non-HLA
region, NAB1 (P = 1.96 × 10−8, OR 1.41 [95% CI 1.24–1.60]),
reached genome-wide significance in the PM subgroup. This is
the first time these loci have been found to reach genome-wide
significance in IIM. After conditioning on the SNP with the lowest
P value in these regions, there were no additional independent
effects reaching genome-wide significance. However, an
independent intronic variant in STAT4 remained suggestively sig-
nificant in IIM (rs6752770, P = 6.1 × 10−6, OR 1.11 [95% CI
1.04–1.19]) (Supplementary Figure 7, https://onlinelibrary.wiley.
com/doi/10.1002/art.42434).

The 95% credible SNP sets for the 4 regions reaching
genome-wide significance are included in the Supplementary
Data (https://onlinelibrary.wiley.com/doi/10.1002/art.42434),
along with predicted deleteriousness and functionality using
Combined Annotation Dependent Depletion (CADD) and Regulo-
meDB, respectively. For the STAT4 and NAB1 regions, a sub-
stantial proportion of the 95% posterior probability for credible
SNPs could be attributed to a single SNP; rs4853540 (STAT4)
maps to an enhancer for STAT1, and rs6733720 (NAB1) is a sig-
nificant splicing QTL forNAB1 in 26 tissues (P < 1.6 × 10−6) and a
significant expression QTL for several genes, including NAB1 and
GLS (glutaminase), in multiple tissues (see Supplementary Data).

The LINC00924 locus is a novel association in autoimmune
disease, reaching genome-wide significance. Most variants in
these regions were imputed, explaining the lack of association in
our prior IIM ImmunoChip study, where the original SNPmay have
been removed during quality control (1). Notably, we also found

Figure 1. Manhattan plot of the total idiopathic inflammatory myopathy (n = 2,565) association analysis. The red line represents genome-wide
level of significance (P < 5 × 10−8); the blue line represents suggestive significance calculated from prior coverage from the ImmunoChip array
(P < 2.25 × 10−5). Single-nucleotide polymorphisms reaching P < 2.25 × 10−5 that were directly genotyped are colored green to differentiate from
imputed variants. For visualization purposes, the y-axis has a cutoff in the HLA region (chromosome 6, 25–35 Mb) of P < 1 × 10−1.
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suggestive evidence of association with TEC and LTBR, which
have previously been associated with autoimmune rheumatic dis-
eases (12–14). Associations with the STAT4 and DGKQ loci were
more significant in the current study than in the prior IIM Immuno-
Chip study, as were associations previously reported in IIM clinical
subgroups, such as NAB1 and FAM167A-BLK loci in PM and
CCR5 in IBM (Table 1).

We used GARFIELD to assess whether IIM-associated var-
iants are enriched in regulatory elements of specific cell
types (11). We found enrichment of variants among DNase I
hypersensitivity sites and histone marks associated with active
transcription within blood cells (Supplementary Figure 20 and
Supplementary Data, https://onlinelibrary.wiley.com/doi/10.
1002/art.42434). Specifically, IIM variants were most enriched
within DNase I hypersensitivity hotspots of primary CD19+ B
cells (P = 1.1 × 10−16) and CD3+ T cells (P = 3 × 10−15).

DISCUSSION

By using imputation to identify and fine-map genetic associa-
tions in IIM, we found 3 new genome-wide associations in the
combined IIM cohort, STAT4, SDK2, and LINC00924. Condi-
tional analysis revealed evidence of independent associations in
the STAT4 region. For the whole IIM group and clinical sub-
groups, the HLA region was the most significant genetic risk
factor. The strongest genetic risk in this region was for the
anti–Jo-1 subgroup despite a sample size of only 331 patients.
In the PM subgroup, we found 1 novel genome-wide association
with NAB1. This is the first time this data set has been used for
genome-wide imputation, and the first time this data set has been
stratified by adult- and juvenile-onset myositis subgroups and by
individuals with anti–Jo-1 autoantibodies.

We defined an associated region by proximity to the nearest
gene. For example, in the LINC00924 region, the strongest asso-
ciation was intergenic, lying approximately 150 kb from this long
intergenic noncoding RNA, which has been associated with a
number of traits such as coronary heart disease and ischemic
stroke. However, it may be that these associations are influencing
a different gene or regulatory element lying further away from the
most associated SNP. It is worth noting that the lead variant in
the LINC00924 locus was removed during quality control in our
prior ImmunoChip analysis. In other instances, such as in the
SDK2 region, the most associated variants lie intronic of the gene.
SDK2 is a member of the immunoglobulin superfamily, although
the specific function is not yet known. In both instances, there is
no previous evidence of genetic association with rheumatic dis-
eases. A limitation of this study is the lack of a replication cohort
due to the rarity of IIM, although patient recruitment is ongoing
within the MYOGEN consortium.

For some regions, we found suggestive novel associations
that have prior evidence of association with autoimmune disease,
such as TEC, a tyrosine kinase involved in T cell signalling and

activation, and LTBR, a signalling receptor expressed on myeloid
cells. In other instances, we strengthened previously observed
associations with IIM (STAT4 andDGKQ). In addition, it is interest-
ing to note that we observed a suggestive association with PLCL1
(P = 1.45 × 10−5, OR 1.14 [95% CI 1.07–1.21]) in the combined
IIM analysis. Variants in PLCL1, a gene encoding the intracellular
signalling molecule phospholipase C–like 1, were previously
reported in the MYOGEN DM GWAS, although it was not identi-
fied in the subsequent ImmunoChip analysis. We have identified
more significant associations than were previously reported in
IIM clinical subgroups, such as NAB1 and FAM167A-BLK loci in
PM and CCR5 in IBM, which also have prior evidence of associa-
tion with rheumatic disease. Although this study comprised the
same cohort as previous studies, this analysis can be viewed as
a fine-mapping experiment; imputation from a large reference
panel allows better coverage to localize further signals. Indeed,
we found that many associations could be localized to single
genes or credible SNPs with high posterior probability, likely due
to the coverage of coding genes on the ImmunoChip array result-
ing in high-quality imputation. We note that the ImmunoChip is a
targeted array and therefore does not have genome-wide imputa-
tion coverage.

Functional analysis of variants reaching suggestive signifi-
cance in IIM was conducted using GARFIELD. This method uses
functional annotation from primary tissues and cell lines from the
ENCODE and Roadmap Epigenomics projects. As expected from
data generated using the ImmunoChip array, associated variants
in IIM were enriched in regulatory elements of blood cells. In par-
ticular, the strongest relative enrichment was seen in regions of
open chromatin in CD19+ B cells and CD3+ T cells. The role of
T and B cells is well known in IIM through muscle immunohisto-
pathology and the presence of autoantibodies, and our findings
suggest their contribution to disease pathology may be geneti-
cally encoded.

Increasing the number of patient samples in an analysis
should statistically strengthen suggestive associations from previ-
ous studies. A recent genome-wide meta-analysis of 4 seroposi-
tive rheumatic diseases revealed several novel loci, for example,
NAB1, DGKQ, and YDJC, where IIM contributed to the associa-
tion. Using additional IIM patients to those included in the meta-
analysis, we were able to identify these associations in IIM only,
and in some cases, such as NAB1 in PM, attribute these associa-
tions to specific clinical subgroups of IIM. The lead variant
rs6733720 inNAB1 is a significant splicing QTL forNAB1 in 26 tis-
sues and an expression QTL for several genes, including NAB1
and GLS, in different tissues. These NAB1 variants are also in
moderate linkage disequilibrium (r2 = 0.66), with a variant previ-
ously identified in systemic sclerosis and rheumatoid arthritis,
which acts as an expression QTL for NAB1 expression in lympho-
blastoid cell lines (2).

Although we found a number of interesting associations in
the PM subgroup, one limitation of these findings is the potential
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heterogeneity within this subgroup. The Bohan and Peter criteria
do not differentiate between PM and immune-mediated necrotiz-
ing myopathy. In addition, we included patients classified as hav-
ing PM that have autoantibodies against transfer RNA
synthetases, although antisynthetase syndrome is increasingly
recognised as a separate entity. Some previous genetic studies
in IIM combined adult- and juvenile-onset DM for analysis. This
study stratified DM by age of onset to investigate non-HLA asso-
ciations. However, there do not seem to be strong signals that dif-
ferentiate these clinical subgroups. Our previous work has shown
that stratifying IIM cohorts by autoantibody status may increase
power to detect genetic associations within the HLA region (9).
Therefore, we also analyzed a subgroup of patients with
anti–Jo-1 autoantibodies; however, we did not find any significant
associations outside the HLA region. Although the anti–Jo-1 sub-
group is thought to be more clinically homogeneous, there may
have been a lack of power to detect associations with only
331 patients in the analysis. For this reason, we did not investigate
genetic associations with other less common autoantibodies.

To our knowledge, this is the largest genetic association
study investigating non-HLA genes in patients with anti–Jo-1
autoantibodies. A recent study targeted a number of SNPs in
the IL1B locus in a Mexican cohort of 154 antisynthetase-positive
IIM patients and found an association with a synonymous SNP in
IL1B (19). We could not replicate this association in our Caucasian
cohort (rs1143634, P = 0.1). In the prior ImmunoChip analysis,
PTPN22was the only non-HLA region to reach genome-wide sig-
nificance; however, in this analysis, PTPN22 did not reach
genome-wide significance. This disparity may be due to the more
accurate matching of patients to controls, as it is known that there
is a wide variation of allele frequency among different European
populations of the PTPN22 R620W risk polymorphism (20).

In summary, we used imputation to identify and fine-map
genetic associations in IIM. We found 4 new genome-wide asso-
ciations in IIM and PM, and we found associations reaching sug-
gestive significance that have previously been associated with
autoimmune rheumatic disease. These risk variants are function-
ally enriched in relevant immune cells, expanding our knowledge
of the genetic architecture of IIM.
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