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Introduction: Breast cancer (BC) prognosis is largely influenced by histopathological grade, assessed according to the
Nottinghammodification of Bloom-Richardson (BR). Mitotic count (MC) is a component of histopathological grading
but is prone to subjectivity. This study investigated whether mitoses counting in BC using digital whole slide images
(WSI) compares better to light microscopy (LM) when assisted by artificial intelligence (AI), and to which extent
differences in digital MC (AI assisted or not) result in BR grade variations.
Methods: Fifty BC patients with paired core biopsies and resections were randomly selected. Component scores for BR
grade were extracted from pathology reports. MC was assessed using LM, WSI, and AI. Different modalities (LM-MC,
WSI-MC, and AI-MC) were analyzed for correlation with scatterplots and linear regression, and for agreement in final
BR with Cohen’s κ.
Results: MC modalities strongly correlated in both biopsies and resections: LM-MC and WSI-MC (R2 0.85 and 0.83,
respectively), LM-MC and AI-MC (R2 0.85 and 0.95), and WSI-MC and AI-MC (R2 0.77 and 0.83). Agreement in BR
between modalities was high in both biopsies and resections: LM-MC and WSI-MC (κ 0.93 and 0.83, respectively),
LM-MC and AI-MC (κ 0.89 and 0.83), and WSI-MC and AI-MC (κ 0.96 and 0.73).
Conclusion: This first validation study shows that WSI-MC may compare better to LM-MC when using AI. Agreement
between BR grade based on the different mitoses counting modalities was high. These results suggest that mitoses
counting onWSI canwell be done, and validate the presented AI algorithm for pathologist supervised use in daily prac-
tice. Further research is required to advance our knowledge of AI-MC, but it appears at least non-inferior to LM-MC.
Introduction

The yearly worldwide breast cancer (BC) incidence is over 2 million,
which makes it the most diagnosed cancer. Female BC currently occupies
the fifth place in cancer mortality worldwide, and incidence keeps rising.1

However, when diagnosed in an early stage, the prognosis of BC can be
good.1,2 One of the strongest factors to determine BC prognosis is histolog-
ical grade, usually assessed according to the Nottingham modification of
Bloom-Richardson (BR) grade.3,4 BR requires the pathologist to score 3 fea-
tures: tubule formation, nuclear pleomorphism, and mitotic count (MC).
Each category gets a score from 1 to 3. Scores 3–5 define grade 1, 6–7
grade 2, and 8–9 make up grade 3 BC. Grade 1 cancers have a significantly
better survival than grade 2 or 3 cancers.3,5,6 Studies have shown histolog-
ical grading, tumor size, and lymph node status to be of equal importance
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for the prognosis of BC.5,6 Furthermore, histological grade proved to be
decisive in up to a third of treatment decisions.7

MC is, as a marker of tumor proliferation, the strongest constituent of
BR grade, and a high MC is associated with poor prognosis.8–10 Several
studies have shown a moderate to good reproducibility for BR.11–13 When
focusing solely on MC, reproducibility also ranges from moderate to
high.14,15 However, concerns for reproducibility still exist as 1 recent
study again found substantial inter- and intra-laboratory variations in BR
in more than 33 000 patients.7 Because of these variations and the impor-
tance of MC for the prognosis of BC, higher reproducibility is required.

With the development of digital whole slide imaging (WSI), breast cancer
diagnostics have increasingly been performed digitally asWSI have been val-
idated for diagnostic purposes.16,17 It has been argued that standardWSI has
limitations for reliable histologic grading, as the quality of the images
x 85500, 3508 GA Utrecht, The Netherlands.
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Fig. 1. Screenshot of the SectraPACSwhere an area of interest has interactively been drawn on the right-hand side, afterwhichanAI algorithmhas found candidatemitoses and
mitosis-like objects, which are displayed in the galleries in the upper left-hand side of the screen. By clicking on a thumbnail in either of the galleries, the PACS displays the
candidate object in the center on the right for review, and false positives can be dragged to the negative gallery and vice versa, afterwhich afinal AI supportedMC is established.

S.A. van Bergeijk et al. Journal of Pathology Informatics 14 (2023) 100316
may not be high enough for properly assessing the MC in all cases due to
lack of a z-axis (i.e. fine-tuning of the focal length), which pathologists
often use when microscopically assessing MC. Pathologist familiarity
with WSI in the clinical workflow might also be limiting factor. Also, a
change in ergonomics is required when using a computer mouse instead
of a microscope which might further influence pathologist opinion on
WSI. Two studies have shown that MCs in WSI and traditional light mi-
croscopy (LM) show comparable results.18,19 However, other studies
suggest that although the inter-observer agreement on WSI is similar
to LM, MC tends to be systematically lower on WSI.16,17,20,21

The increased usage ofWSI has stimulated the rise of artificial intelligence
(AI) algorithms in pathology. Several of these have been developed for
assisting the pathologist in performing MC, expecting to improve the repro-
ducibility of MC, often tested in validation cohorts.5,19,22–27 The next step is
to test AI algorithms in a clinical setting. The present study validates an in-
house developed AI algorithm for mitoses counting in BC on digital WSI by
comparingAI supportedMCto lightmicroscopicMCandevaluating influence
of putative differences of these MCmodalities on BR grade in breast cancer.

Methods

Study design and population

Fifty BC patients with paired core biopsies and resections were ran-
domly selected from the workflow of the Department of Pathology at the
2

UMC Utrecht between December 2018 and February 2020. For each pa-
tient, tubular differentiation (scored 1, 2, or 3) and nuclear polymorphism
scores (1, 2, or 3) according to Elston and Ellis3 were taken from the original
pathology report (14 grade 1, 28 grade 2, and 8 grade 3). An approval from
our Institutional Review Board was requested and granted under the appli-
cation number TCBio-20-777.

An experienced Pathologist Assistant (PA) trained in breast microscopy
first determined the most cellular and proliferative area of the tumor using
LM without prior knowledge of the BR grade and MC. The MC was
reassessed using LM (LM-MC) in 2 mm2 of adjacent fields.14 After getting
the exact count, MC was scored as 1, 2, or 3 points, for respectively ≤7,
8–12, and ≥13 mitoses. After a washout period of at least 2 months, MC
was assessed digitally using WSI (WSI-MC), and after another 2 months
washout period, MC was assessed supported by the AI algorithm (AI-MC).

Prior to start using the AI algorithm, a standard operation procedure
document (SOP) was made for the AI tool and the PA was trained on the
usage of the tool on the test PACS environment.

Digital pathology and AI

Slides had routinely been scanned within the workflow of the UMC
Utrecht at 40× magnification (resolution of 0.22 μm per pixel) with a
Nanozoomer 2.0-XR (Hamamatsu, Japan). All WSI were viewed using stan-
dard high-resolution 4k computer screens in the Sectra PACS (Linköping,
Sweden).



Fig. 2. Scatterplot showing a high concordance between whole slide image-based digital mitotic count (WSI-MC) and light microscopic MC (LM-MC) in 50 breast cancer
biopsies.
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The automated mitosis detection system was developed internally
based on the methodology introduced by Cireşan et al28 and the improve-
ments upon this work by Lafarge et al.29 The model was trained using
Tensorflow 1.12 on python 2.7 and is based on rotation invariant group
convolutional neural networks. We used the TUPAC16 and AMIDA13
grand challenge (GC) dataset to train the network as well as a smaller anno-
tated dataset containing mostly hard-negatives and ink artifacts to improve
robustness. Most GC datasets include examples from within the tumor and
rarely from the periphery of the slide—here themost ink artifacts and other
Fig. 3. Scatterplot showing a high concordance between artificial intelligence-based mit
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mimics are found—which can lead to performance degradation when
whole slide inference is performed.

The model is a 6-layer group CNN, the architecture is extensively de-
scribed in Lafarge et al.29 In short, we used a patch size of 68×68 pixels
with a batch size of 64 and it was trained on NVIDIA K80 and NVIDIA
V100 hardware. We evaluated the performance of the model on test
sets of the GC datasets and used the F2-score threshold for the clinical
implementation. The F2-score threshold gives more weight to recall than
precision in contrast to F1-score which gives equal weight to both. This
otic count (AI-MC) and light microscopic MC (LM-MC) in 50 breast cancer biopsies.



Fig. 4. Scatterplot showing a high concordance between artificial intelligence-based mitotic count (AI-MC) and whole slide image-based digital MC (WSI-MC) in 50 breast
cancer biopsies.

Table 1
Crosstab between Bloom & Richardson (BR) grade based on light microscopic mi-
totic count (LM-MC) and artificial intelligence supported MC (AI-MC) in 50 breast
cancer biopsies (κ=0.894, 95% CI 0.78–1.01).

AI-MC-based grade

LM-MC-based grade 1 2 3 Total

1 17 0 0 17
2 1 26 1 28
3 0 1 4 5

Total 18 27 5 50

Table 2
Crosstab between Bloom & Richardson (BR) grade based on light microscopic mi-
totic count (LM-MC) andwhole slide image-based digital MC (WSI-MC) in 50 breast
cancer biopsies (κ=0.928, 95% CI 0.83–1.01).

WSI-MC-based grade

LM-MC-based grade 1 2 3 Total

1 17 0 0 17
2 1 27 0 28
3 0 1 4 5

Total 18 28 4 50
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threshold allows the pathologist to review more objects while not over-
whelming them with too many objects to review.

The model takes large image patch of 40× resolution and generates a
probability map of that patch. Then by using local-maxima extraction, it
gets the positions of mitosis on that patch. The MC AI algorithm (both
model and integration with PACS) was in-house developed. In the Sectra
PACS, an area of interest of the appropriate size of 2 mm2 (as described
for LM-MC) is interactively drawn, after which the algorithm automatically
identifies candidatemitoses andmitoses-like objects and displays them in 2
galleries. Objects are interactively reviewed and dragged to the correct gal-
lery, resulting in a final AI MC per 2 mm2 (Fig. 1).

Data analysis

Using the MC from the 3 modalities, 3 BR grades were composed for
each biopsy and resection as usual by summing up the scores from tubular
differentiation, nuclear polymorphism, and MC, total score 3–5 defining
grade 1, scores 6–7 grade 2, and scores 8–9 grade 3. Data for biopsies
and resections were separately analyzed. MC data were pairwise
displayed in logarithmic scatterplots with reference lines between the
different MC modalities and R2 was calculated to detect systematic dif-
ferences. To assess the concordance in BR resulting from the different
MC modalities, crosstabs were created, using Cohen’s κ to assess BR
agreement between the different MC modalities.30 Scores of 0 meant
no agreement, 0.01–0.20 none to slight, 0.21–0.40 fair, 0.41–0.60 mod-
erate, 0.61–0.8 substantial, and 0.81–1.00 almost perfect agreement.32

All statistics were done using Python version 3.8.5. and scikit-learn
1.0.2 and pingouin 0.5.2 python packages.

Results

Biopsies

Scatterplots for pairwise comparison between the 3 MC modalities are
shown in Figs 2, 3 and 4. All MCmodalities were strongly correlated: R2 be-
tween LM-MC andWSI-MCwas 0.85, 0.85 between LM-MC and AI-MC, and
0.77 between WSI-MC and AI-MC.
4

The crosstabs for the BR grades resulting from the different MC
modalities are shown in Table 1, 2 and 3, all showing high κ values: 0.93
for LM-MC versus WSI-MC-based BR, 0.89 for LM-MC versus AI-MC-based
BR, and 0.96 for WSI-MC versus AI-MC-based BR.

Resections

Scatterplots for pairwise comparison between the 3 MC modalities are
shown in Figs 5, 6, and 7. All MC modalities were strongly correlated: R2

between LM-MC and WSI-MC was 0.83, 0.95 between LM-MC and AI-MC
and 0.83 between WSI-MC and AI-MC.

The crosstabs for the BR grades resulting from the different MC
modalities are shown in Table 4, 5 and 6, all showing high κ values: 0.83



Table 3
Crosstab between Bloom & Richardson (BR) grade based on whole slide
image-based digital mitotic count (WSI-MC) and artificial intelligence supported
MC (AI-MC) in 50 breast cancer biopsies (κ=0.964, 95% CI 0.90–1.03).

AI-MC-based grade

WSI-MC-based grade 1 2 3 Total

1 17 0 0 17
2 1 26 1 28
3 0 1 4 5

Total 18 27 5 50
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for LM-MC-based BR versus WSI-MC, 0.83 for LM-MC versus AI-MC-based
BR, and 0.73 for WSI-MC versus AI-MC-based BR.

Discussion

In this study, we investigated whether mitoses counting in BC using
digital WSI compares better to LM-MC when assisted by AI, and to which
extent differences in digital MC (AI assisted or not) result in BR grade
variations.

For biopsies, LM-MC and AI-MC showed an equal R2 when compared
with LM-MC and WSI-MC, despite the latter already correlating well. For
resections, R2 of LM-MC and AI-MC even surpassed that of LM-MC and
WSI-MC. This data suggests that not only does AI correlate as well as WSI
with LM for mitotic count, but also might perhaps compare better to LM.

It was noted that AI-MC resulted in systematically slightly lower MC
values compared to LM-MC and WSI-MC. This indicates that the AI algo-
rithm may miss some mitoses and needs further improvement. However,
as the observer checked the results, the observer may not have been critical
enough when reviewing mitoses which the AI classified as mitoses-like
objects. This could lower AI-MC compared to LM-MC and WSI-MC and
underlines the importance of careful human supervision of the output of
algorithms when AI is used in daily practice.

Several other studies showed similar results regarding the compara-
bility between LM-MC and WSI-MC.16,20,31,32 Noted differences
between LM-MC and WSI-MC were perceived to be within the range of
Fig. 5. Scatterplot showing a high concordance between whole slide image-based digit
resections.
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inter-observer differences in LM-MC. Also, studies which used 40×
magnification for scanning and high-resolution displays noted that dif-
ferences between WSI and LM tended to get smaller, suggesting that a
certain standard of technology is required for proper mitoses counting
on WSI. As to AI, a recent study applying AI to select a mitoses hotspot
in which to count showed improved inter-observer agreement in inter-
active mitoses counting on WSI, with similar inter-observer κ values
for LM-MC and AI-MC.19 However, one study demonstrated higher
inter-observer agreement for AI-MC compared to LM-MC, and a sub-
stantial saving in time.33 So, different studies seem to point at least to
non-inferiority of AI-MC compared to LM-MC in BC. The potential to
save time is another reason to further explore the possibilities of AI.

Both biopsies and resections showed near perfect agreement in BR be-
tween different modalities, although the κ for WSI-MC versus AI-MC-
based BR in the resection group was slightly lower. This indicates that
differences in MC between different modalities hardly influence BR
grade.

One study compared BR based on LMandWSI in over 1600 cases, show-
ing a strong association (Cramer’s V: 0.58) between both modalities.16 An-
other study focusing on inter-observer differences in BR when using WSI,
showed the concordance to be similar to inter-observer differences in BR
using LM.21 These studies substantiate our results. To the best of our knowl-
edge, no previous study has been conducted that compares agreement of BR
using LM-MC or WSI-MC and AI-MC. The high agreement in BR in this
study is probably related to 2 factors. Firstly, WSI-MC and AI-MC were per-
formed on the exact same slide as LM-MC, whereas larger tumors may be
heterogeneous across different tissue blocks. Secondly, grading in different
modalities was assessed by the same observer, causing the criteria for mi-
totic figures to be interpreted singularly and increasing the chance of
selecting the same hotspot.

This study has some limitations. First, the gold-standard is
LM-MC assessed by a single observer. Due to significant inter-observer
differences for LM-MC, a study with multiple observers may provide a more
realistic view on the added value of AI. Another option would be to use
Phosphohistone H3 immunohistochemistry, which enhances recognition of
mitotic figures and may make LM-MC (and perhaps even AI-MC) more
reproducible.34 Secondly, this study has a relatively small number of cases.
al mitotic count (WSI-MC) and light microscopic MC (LM-MC) in 50 breast cancer



Fig. 6. Scatterplot showing a high concordance between artificial intelligence-basedmitotic count (AI-MC) and light microscopic MC (LM-MC) in 50 breast cancer resections.
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In daily pathology practice, digital WSI is increasingly used worldwide.
This study, in combination with previous studies in this field, shows WSI-
MC to be suitable for grading BC. Especially pathology laboratories which
have a digital workflow could thereby incorporate WSI-MC in their daily
practice of grading BC.

In general, AI algorithms show great promise in improving pathology
practice. This study demonstrates that mitoses counting in BC can not
Fig. 7. Scatterplot showing a high concordance between artificial intelligence-based mi
cancer resections.
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only be performed by an AI algorithm, but also might compare better to
LM than WSI. We expect the next generation algorithms to be improved
even further.35 These algorithms may also save valuable interaction time
for the pathologist, especially when algorithms run in the background on
WSI, providing the pathologist with mitotic hotspots.

In conclusion, this first validation study shows thatWSI-MCmight com-
pare better to LM-MC by using AI. Agreement between different modalities
totic count (AI-MC) and whole slide image-based digital MC (WSI-MC) in 50 breast



Table 5
Crosstab between Bloom & Richardson (BR) grade based on light microscopic mi-
totic count (LM-MC) and artificial intelligence supported MC (AI-MC) in 50 breast
cancer resections (κ=0.825, 95% CI 0.68–0.97).

AI-MC-based grade

LM-MC-based grade 1 2 3 Total

1 13 1 0 14
2 2 26 0 28
3 0 2 6 8

Total 15 29 6 50

Table 6
Crosstab between Bloom & Richardson (BR) grade based on whole slide image-
based digital mitotic count (WSI-MC) and artificial intelligence supported MC
(AI-MC) in 50 breast cancer resections (κ=0.732, 95% CI 0.56–0.90).

AI-MC-based grade

WSI-MC-based grade 1 2 3 Total

1 13 2 0 15
2 2 23 0 25
3 0 4 6 10

Total 15 29 6 50

Table 4
Crosstab between Bloom & Richardson (BR) grade based on light microscopic
mitotic count (LM-MC) and whole slide image-based digital MC (WSI-MC) in 50
breast cancer resections (κ=0.834, 95% CI 0.70–0.97).

WSI-MC-based grade

LM-MC-based grade 1 2 3 Total

1 13 1 0 14
2 2 24 2 28
3 0 0 8 8

Total 15 25 10 50

S.A. van Bergeijk et al. Journal of Pathology Informatics 14 (2023) 100316
for BRwas high.WSI-MC appears as a viable alternative to LM-MC. Further
research is required to advance our knowledge of AI-MC, but it appears at
least non-inferior to LM-MC and has the potential to save time.
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