Skip to main content
. 2023 Apr 25;26(6):106735. doi: 10.1016/j.isci.2023.106735

Table 4.

Compared results on grasping seen objects from YCB in simulation

Methods P-Depthacm P-Volumeacm3 Success Rate (%)
Fine-tune 0.824 9.142 32.8
IID-Offline 0.642 7.273 62.0
EWC 0.714 8.530 23.3
SI 0.733 8.663 33.6

BufferSize|M|=1K

ER 1.262 23.204 41.4
ER-RM 0.895 11.928 49.3
NI-WLb 0.516 6.115 54.7
NI-WL-RDb 0.755 10.073 45.3
NI-WL-RMb 0.731 9.963 50.6
NI-WL-RM-KDb 0.818 6.413 47.1

BufferSize|M|=5K

ER 0.668 8.021 53.0
ER-RM 0.477 5.211 55.2
NI-WL 0.496 5.868 55.5
NI-WL-RD 0.533 6.587 54.7
NI-WL-RM 0.531 5.908 54.5
NI-WL-RM-KD 0.613 4.400 55.4

BufferSize|M|=10K

ER 0.608 6.340 55.4
ER-RM 0.455 4.703 55.9
NI-WL 0.512 5.720 52.7
NI-WL-RD 0.438 4.458 54.6
NI-WL-RM 0.482 5.201 53.1
NI-WL-RM-KD 0.661 4.355 51.3

Bold underline, italic underline, and underline font highlights the first place, second place, and third place with same BufferSize, respectively.

a

P-Depth is short for Penetration Depth, P-Volume is short for Penetration Volume.

b

NI-WL, NI-WL-RD, NI-WL-RM, and NI-WL-RM-KD are four variants of our proposed method.