Skip to main content
. 2023 Jun 3;80(6):174. doi: 10.1007/s00018-023-04818-4

Table 2.

Effects of hydrogen treatment on cardiac ischemia − reperfusion injury models: reports from in vivo studies

Study model Intervention Major findings Interpretation References
Dose/Duration Route Cardiac function/Cardiac injury marker Oxidative stress Inflammation Apoptosis Autophagy/Mitophagy

Male Wistar rats

I/R model

30 min/24 h

Hydrogen-rich saline under 0.4 MPa dissolved in saline for 6 h (0.6 mmol/l)/10 ml/kg/5 min prior to reperfusion IP

↑ HR

↑ MAP

↑ SBP

↑ DBP

↑ LV + dP/dt

↑ LV − dP/dt

↑ LVEF

↓ LVEDP

↓ Infarct size

↓ CK-MB

↓ cTnI

-

↓ IL-1 β

↓ IL-6

↓ TNF-α

↓ HMGB1

↓ TUNEL

↓ BAX

↓ Caspase 3

↑ Bcl‑2/Bax

ratio

↑ LC3II/I

↑ ATG5

↑ ATG12

↑ Beclin 1

↑ PINK1

↑ Parkin

Hydrogen-rich saline alleviated myocardial infarct size, reduced inflammation, apoptosis, and promoted autophagy and mitophagy, leading to improved left ventricular function and hemodynamics following cardiac I/R injury [15]

Male SD rats

I/R model

30 min/24 h

Hydrogen-rich saline under 0.4 MPa dissolved in saline for 6 h (0.6 mmol/l)/5 ml/kg/5 min before reperfusion IP

↑ LVSP

↓ LVDP

↑ LV + dP/dt

↑ LV− dP/dt

↓ Infarct size

↓ MDA in tissue and plasma

↓ 8-OHdG

↓ TUNEL

↓ Caspase 3

Hydrogen-rich saline improved cardiac function and reduced infarct size from I/R injury by reducing oxidative stress and apoptosis [5]

Male SD rats

I/R model

30 min/24 h

Hydrogen-rich saline under 0.4 MPa dissolved in saline for 6 h (0.6 mmol/l)/10 ml/kg/5 min prior to reperfusion IP

↑ LVSP

↓ LVEDP

↑ LV + dP/dt

↓ LV − dP/dt

↓ Infarct size

↓ PMN accumulation

↓ CK-MB

↓ cTnI

↓ MPO

↓ 3-nitrotyrosine

↓ IL-1 β

↓ TNF-α

↓ ICAM-1

Hydrogen-rich saline improved cardiac function and reduced infarct size by reducing oxidative stress and inflammation [20]

Male SD rats

I/R model

45 min/3 min, 30 min, or 24 h

Hydrogen-rich saline under 0.4 MPa dissolved in saline for 4 h (60 μL)/NA/at onset of reperfusion Injected into the myocardial tissue around the infarct zone

↑ LV + dP/dt

↑ LV − dP/dt

↔ Infarct size

↓ CK

↓ CK-MB

↓ MDA

↑ SOD

↓ TNF-α

↓ TUNEL

↓ Cyt-c

↓ Caspase-8

↓ p-p38

↓ p-JNK

↓ p-ERK

Hydrogen-rich saline improved cardiac function from I/R injury by reducing oxidative stress, inflammation, apoptosis, and regulating the MAPK signal pathway [21]

Male Wistar rats

I/R model

30 min/ 24 h

2% H2/at onset of ischemia and continue for 60 min after reperfusion Inhalation

↓ LVEDP

↓ LVEDd

↓ LVESd

↑ IVS

↑ PW

↑ FS

↑ EF

↓ Infract size

↓ 8-OHdG Inhalation of H2 improved cardiac function and reduced infarction by reducing oxidative stress after I/R injury [22]

Male Wistar rats

I/R model

1 h/2 h

2% H2/5 min before reperfusion until 2 h after reperfusion Inhalation

↓ Infarct size

↓ TnI

↓ 8-OHdG

↓ MDA

↓ ROS

↓ TRAF2

↓ GRP78

↓ p-Bcl-2/Bcl2

↓ LC3II/I

↓ Beclin 1

Inhalation of 2% H2 gas attenuated myocardial injury by attenuating ER stress, oxidative stress, apoptosis and autophagy [23]
Postischemic conditioning treatment (Four cycles of 1 min reperfusion/1 min ischemia (total time, 8 min) was given at the end of 1 h coronary occlusion)

↓ Infarct size

↓ TnI

↓ 8-OHdG

↓ MDA

↓ ROS

↓ TRAF2

↓ GRP78

↓ p-Bcl-2/Bcl2

↓ LC3II/I

↓ Beclin 1

2% H2 combined with postischemic conditioning treatment

↓ Infarct size

↓ TnI

↓ 8-OHdG

↓ MDA

↓ ROS

↓ TRAF2

↓ GRP78

↓ p-Bcl-2/Bcl2

↓ LC3II/I

↓ Beclin 1

Swine

I/R model

Myocardial stunning

12 min/90 min

2% H2/during and after ischemia Inhalation

↓ Incidence of VF, VT

↑ SS

Inhalation of 2% H2 gas during I/R improved cardiac function and reduced VF/VT incidence from myocardial stunning, while inhalation of 4% H2 gas during I/R reduced infarct size [24]

Myocardial infarction

40 min/120 min

4%H2/during and after ischemia Inhalation ↓ Infarct size

Male SD rats

CBP model

(1 h)

Hydrogen-rich water under 0.8 MPa dissolved in saline for 24 h/6 ml/kg/prior to hypoxia and during reoxygenation IV injection via tail vein

↑ MAP

↑ LV + dP/dt max

↓ LDH

↓ CK-MB

↓ MDA

↓ MPO

↑ SOD

↓ IL-1 β

↓ IL-6

↓ TNFα

↓ TUNEL

↓ BAX

↓ caspase 3

↑ Bcl-2

- Hydrogen-rich water improved cardiac function and reduced cardiac injury by reducing oxidative stress, inflammation, and apoptosis [6]

Male Lewis rats

Heterotopic heart transplantation

(I/R model)

6 or 18 h/6 h

1%, 2%, 3%H2/1 h before ischemia and 1 h

after reperfusion

1% H2

2% H2

3% H2

Inhalation

↔ CPK

↓ CPK

↓ CPK

The combination of hydrogen and CO therapy reduced infarct size, cardiac injury, and enhanced cardiac graft survival by decreasing oxidative stress, inflammation, and apoptosis [11]

CO

(After 6 h cold ischemia)

– CO: 50 ppm

– CO: 250 ppm

Inhalation

↔ CPK

↓ CPK

Inhaled gas

(After 18 h cold ischemia)

Mixed H2 and CO

↓ Infarct size

↓ Macrophage

↓ CPK

↓ cTnI

Transplantation score (3 h after storage)

↑ Graft survival after 7 days

3 h after perfusion

↓ MDA

↓ MPO

6 h after perfusion

↓ MPO

3 h after perfusion

↓ IL-1 β

↓ IL-6

↓ TNF α

↓ iNOS

↓ HMGB1

↓TUNEL

↓ ED1

↓ cleaved

caspase 3

H2 alone Inhalation

Transplantation score

(3 h after storage)

↑ Graft survival after 7 days

3 h after perfusion

↓ MDA

6 h after perfusion

↔ MPO

3 h after perfusion

↔ IL-1 β

↔ IL-6

↔ TNF α

↔ iNOS

↓ HMGB1

↔ TUNEL

↔ ED1

↔ cleaved caspase 3

Inbred male LEW (RT1l) and BN (RT1n) rats

Heterotopic heart transplantation

(I/R model)

Hydrogen-rich water/dose: NA/60 d, 100d Oral

↑ Viability of cardiac allografts

↑ Tissue ATP

↑ Mito activity

↓ CD3 + T cells

↓ CD68 + macrophages

50 d after transplant

↓ MPO

↓ MDA

↓ IFN γ

↓ TNF α

↓ CCL2

↓ CCL5

↓ MCP-1

Hydrogen-rich water enhanced cardiac allograft survival by reducing intimal hyperplasia, inhibition of T cell proliferation, reduction of oxidative stress and

increased tissue ATP and mitochondrial activity

[25]

Male LEW (RT1l) and BN (RT1n) rats

Orthotopic Aortic transplantation

↓ Intimal hyperplasia in aortic graft

AAR area at risk, Akt protein kinase B, ATG autophagy-related protein, ATP adenosine triphosphate, BAX apoptosis regulator Bax, Bcl-2 apoptosis regulator Bcl-2, BNP brain natriuretic peptide, CBF coronary blood flow, CCL chemokine (C–C motif) ligand, CD cluster of differentiation, CK-MB creatinine kinase-MB, CO carbon monoxide, CPB cardiopulmonary bypass, CPK creatine phosphokinase, cTnI cardiac troponin-I, Cyt-c cytochrome c, DBP diastolic blood pressure, EF ejection fraction, ER endoplasmic reticulum, ERK extracellular signal-regulated kinase, FS fractional shortening, GRP78 glucose-regulated protein 78, HO1 heme oxygenase 1, HMGB1 high mobility group box 1, HRS hydrogen-rich saline, HR heart rate, ICAM-1 intercellular adhesion molecule 1, IFN γ interferon γ, IL interleukin, iNOS inducible nitric oxide synthase, IP intraperitoneal, IVS interventricular septum, JNK c-Jun-N-terminal Kinase, LC3 microtubule-associated protein 1 light chain 3 α, LDH lactate dehydrogenase, LV left ventricle, LVAWd LV anterior wall thickness at end-diastole, LVEDd LV endodiastolic diameter, LVEDP left ventricular end-diastolic pressure, LV dp/dt rate of pressure change in left ventricle, LVSP LV systolic pressure, LVDP LV diastolic/developed pressure, LVDP LV developed pressure (LVSP-LVDP), LVEDd LV endodiastolic diameter, LVESd LV endosystolic diameter, LVPWd LV posterior wall thickness in diastole, LVW left ventricular weight, IVS intraventricular septum diameter, MAP mean arterial pressure, MAPK mitogen-activated protein kinase, MCP-1 monocyte chemotactic protein-1, MDA malondialdehyde, Mfn2 mitofusin-2, MPO myeloperoxidase, Nrf2 the nuclear factor erythroid 2-related factor2, ·OH hydroxyl radicals, p phosphorylation, PERK protein kinase-RNA-like endoplasmic reticulum kinase, PI3K phosphatidylinositol 3-kinase, PINK PTEN-induced kinase 1, PMN polymorphonuclear neutrophil, PW posterior wall thickness, p38 38-kDa protein, ROS reactive oxygen species, SBP systolic pressure, SD Sprague Dawley rat, SOD superoxide dismutase, SpO2 pulse oximetry, SS segment shortening, TnI troponin I, TNF-α tumor-necrosis factor-α, TRAF2 tumor-necrosis factor-a (TNF-a) receptor-associated factor 2, VF ventricular fibrillation, VT ventricular tachycardia, 8-OHdG 8-hydroxydeoxyguanosine