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Abstract
Population-based studies and case reports suggest that there may be an increased risk of acute leukemia associated with 
sickle cell disease (SCD). Following the description of a new case report, an extensive review of the literature identified 51 
previously described cases. Most cases study showed myelodysplastic features confirmed, when available, by genetic markers 
such as chromosome 5 and/or chromosome 7 abnormalities and TP53 gene mutations. The increased risk of leukemogenesis 
is certainly multifactorial and related to the pathophysiologic mechanisms of the clinical manifestations of SCD. Chronic 
hemolysis and secondary hemochromatosis may cause increased chronic inflammation, resulting in persistent marrow stress, 
which could potentially compromise the genomic stability of the hematopoietic stem cells generating genomic damage and 
somatic mutations over the course of SCD and its treatment, resulting in a clone that led to acute myeloid leukemia.
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Introduction

Sickle cell disease (SCD) corresponds to an autosomal 
recessive hemoglobinopathy in which structurally abnormal 
hemoglobin (HbS) leads to chronic hemolytic anemia and 
to a variety of severe clinical manifestations. The disorder 
is caused by a point mutation. A single DNA base change 
leads to substitution of valine for glutamic acid at the sixth 
position on β globin chain. Patients with homozygous hemo-
globin (SS) often present with severe symptoms, while those 
with a heterozygous mutant allele (SA) demonstrate mini-
mal clinical symptoms. The combination of hemoglobin S 
with another type of β subunit gene mutation, such as hemo-
globin C or β thalassemia, forms a compound heterozygous 

hemoglobinopathy (SC or Sβ0). With the exception of the 
compound Sβ0, the heterozygous genotypes are usually less 
clinically severe than hemoglobin SS [1].

Since Herrick’s description of SCD in 1910 [2], a wide 
variety of malignancies, including hematological neoplasms, 
have been reported in both children and adults with SCD. 
However, the exact incidence of malignancy has not been 
accurately determined due to a lack of long-term follow-up. 
The first description of SCD coexisting with acute leukemia 
has been reported by Goldin et al. in 1953 in a 38-year-old 
black man with SCD and acute myeloid leukemia (AML) 
[3]. Since then, the occurrence of acute leukemia has been 
reported in several cases of patients with SCD.

We reported here a new case of SCD patient who devel-
oped AML and reviewed extensively the literature in order 
to better understand the relationship between the two dis-
eases. This review leads to the hypothesis of a mechanism 
involving multifactorial causes through the pathophysiologic 
mechanisms of the clinical manifestations of SCD.
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Patients and methods

Case selection

A sole case of acute leukemia in the setting of SCD was 
retrieved from the pathology database of the “Centre de 
Référence Constitutif des pathologies du globule rouge et 
de l’érythropoïèse” in Lyon (France), including a pool of 
more than 600 adults and children with SCD. The diagnosis 
of leukemia was confirmed according to the World Health 
Organization classification [4]. Informed consent for report-
ing this case was obtained from this patient in accordance 
with the declaration of Helsinki. Clinical history and labora-
tory data, including flow cytometry analysis, cytogenetics, 
and molecular biology, were collected as well as data regard-
ing SCD history.

Literature data sources

The PubMed database was searched on October 2022 for 
case reports previously published involving both SCD and 
acute leukemia. The relevant keywords used were: “sickle 
cell disease” or “sickle cell anemia”, combined with “acute 
leukemia”, or “myelodysplastic syndrome” (MDS). Fifty-
one previously published cases were identified since 1972, 
and the relevant data regarding acute leukemia and SCD 
were collected and analyzed (Tables 1 and 2). These cases 
did not included those only mentioned in the epidemiologic 
reports from California and the United Kingdom [5, 6].

Results

Case report

A 27-year-old woman of African origin with known SCD 
(Sβ0), previously complicated by recurrent severe vaso-
occlusive crisis (VOC) and acute chest syndrome despite 
hydroxyurea (HU) therapy (1000 mg/day for 7 years) and 
regular exchange transfusions, presented on May 2022 a 
progressive bicytopenia with anemia to 50 g/dL (based-
hemoglobin level under compliant treatment with HU 
around 75  g/dL) and thrombocytopenia to 50 × 109/L, 
leading to HU discontinuation. A suspicion of MDS 
was confirmed by a first bone marrow sample showing a 
hypercellular marrow with signs of dyserythropoiesis 
with demonstration of ring sideroblasts on a Perls’stain, 
dysmegacaryopoiesis, and dysgranulopoiesis, but no leu-
kemic cells. The patient was referred to the Hematology 
Department and a repeat bone marrow aspirate, performed 
sequentially showed a progressive blast increase up to 25% 

leading to the diagnosis of AML-MRC (myelodysplas-
tic related changes). The immunophenotypic profile was 
CD34+/− CD38+/− CD123+/−, CD13+/− CD33+/− CD117++, 
HLADR+/−, CD36+/− CD71++, CD7− CD19− CD56−, 
MPO−. Seventeen percent of myeloblasts expressed a 
multipotent progenitor-like leukemia stem cell (LSC) pro-
file CD34+ CD38− CD90++/− CD45RA+/− CLL1/TIM3/
CD97+/−. Cytogenetic analysis showed a complex karyo-
type: 44–46, XX, der(1)t(1;12)(q31;q15)add(1)(p11), − 3, 
der(5)t(5;7)(q13;q31), − 7, del(12)9q21), der(15)t(?3;15)
(q21;p13), add(16)9p13), − 22, + 3-6mars[cp18]/46, XX [2]. 
Molecular study by next-generation sequencing (NGS) iden-
tified the presence of a TP53 mutation c.1024C > T with a 
variant allele frequency (VAF) of 0.64. The patient received 
induction chemotherapy with Vyxeos (daunorubicin/cyta-
rabine) at a dose of 44 mg/m2 on days 1, 3, and 5. On day 
22, peripheral blood showed 18% blasts signing remnant 
leukemia. Salvage chemotherapy combined mitoxantrone 
6 mg/m2/day, etoposide 80 mg/m2/day, and intermediate-
dose cytarabine 1 g/m2/day from day 1 to day 6. Salvage 
chemotherapy was complicated by infections including 
inguinal cellulitis requiring large spectrum antibiotics and 
white blood cell infusion therapy, pericarditis, and posterior 
reversible encephalopathy syndrome (PRES) leading to a 
transitory hospitalization in intensive care unit. Cytologi-
cal remission was achieved, but measurable residual disease 
(MRD) remained positive at 0.09% based on leukemia asso-
ciated immunophenotype (LAIP)/LSC. Allogeneic phenol-
identical hematopoietic stem cell transplantation (HSCT) 
with one mismatch was performed on January 2022 based on 
thiotepa-busulfan-fludarabine (TBF) conditioning regimen 
followed by post-transplant cyclophosphamide and everoli-
mus for graft-versus-host prophylaxis. The hospitalization 
was complicated by a septic shock (Klebsiella pneumonia) 
and by invasive pulmonary aspergillosis and severe hepato-
splenic candidosis (Candida glabrata). Bone marrow evalua-
tion at one month and two months post-transplant confirmed 
the cytological remission with MRD negativity assessed by 
multi-parameter flow cytometry and total donor chimerism.

Review of the literature

Fifty-two cases of acute leukemia in SCD patients (including 
our case report) were identified in the literature since 1972 
(Tables 1 and 2). Among patients with available data, male/
female sex ratio was 0.45. Median age was 23.5 years (range: 
3 – 61 years). Thirteen patients (25%) had acute lymphoblas-
tic leukemia (ALL), one patient an undifferentiated acute 
leukemia, and 38 patients (73%) a myeloid neoplasm, includ-
ing 16 AML, 6 MDS and 16 MDS/AML. Among the 26 
patients studied for genetic markers, two patients with ALL 
showed a Philadelphia chromosome (Ph +) (#9, #49), one 
patient with AML had a normal karyotype (#12), two had 
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Table 1   Acute leukemia characteristics and outcome of the 51 patients identified in the literature

Reference Pt/Age/Gender Type of AL Treatment Outcome
(Cause of death)

Jackson (1972) [7] #1/6/F ALL Chemo CR
OS: 17 months
(viremia)

Samal (1979) [8] #2/7/F AML None OS: 4 days
Clinicopathologic conference 

(1982) [9]
#3/27/F MDS/AML4 None OS: 3 days

(ARDS)
Johnson (1984) [10] #4/8/F AML2 HSCT OS: 16+ months
Bigner (1986) [11] #5/4/F ALL null

(del9p13)
NA NA

Stricker (1986) [12] #6/43/M MDS/AML1
(− 3, t13;17, t3;5, 5q − , − 7, + 8)

Chemo OS: 1 month
(hemorrhage)

Njoku (1988) [13] #7/22/M ALL Chemo CR
OS: 10 months
(disease progression)

Sotomayer (1999) [14] #8/14/M ALL (CD10+, CD19+, CD22+, 
DR+, TdT+)

Chemo CR
OS: 2.5+ years

De Montalembert (1999) [15] #9/10/F Ph+ ALL Chemo CR
OS: 12+ months

Rauch (1999) [16] #10/27/F MDS/AML NA NA
Wilson (2000) [17] #11/42/F MDS/AML

(− 5, − 7, del17)
Chemo OS: 13 months

Al-Jam’a (2002) [18] #12/25/F AML1
(Normal karyotype)

Chemo CR
OS: NA
(aspergillosis)

Schultz (2003) [19] #13/14/F ALL NA NA (Alive)
#14/5/NA ALL NA NA (Alive)
#15/7/NA ALL NA NA (Alive)
#16/8/NA AML NA NA (Alive)
#17/8/NA ALL NA NA (Alive)
#18/17/NA ALL NA NA (Alive)
#19/61/NA ALL NA NA (Dead)
#20/20/NA AML NA NA (Dead)

Ferster (2003) [20] #21/21/F AML3v ATRA + Chemo CR
Taylor (2011) [21] #22/33/M MDS/AML6

(Abn5q, del7q, − 15, − 22, − Y, 
mar5)

Chemo
Allo HSCT

CR
Relapse at 4 months
OS: 9 months

Baz (2012) [22] #23/41/M MDS/AML
(Abn5, del7, − 17)

Chemo OS: 3 months
(sepsis)

Zemenides (2014) [23] #24/55/M MDS/AML
(5q − , 7q − , del17p)

NA NA

Aumont (2015) [24] #25/49/M MDS/AML6
(del17p, del5q, monosomy 20)
BM fibrosis

Chemo OS: 3 weeks
(CNS involvement)

Chauhan (2018) [25] #26/25/F AML3 NA NA
#27/19/M AML2 NA NA

Janakiram (2018) [26] #28/31/F MDS/AML
(5q − , add5p, − 7, t2;5, TP53+, 

NRas+)

Azacitidine OS: 12 months
(sepsis)
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Abbreviations: Abn, abnormality; AL, acute leukemia; ALL, acute lymphoblastic leukemia; Allo, allogeneic; AML, acute myeloid leukemia; 
ARDS, Acute respiratory distress syndrome; ATRA, all-trans retinoic acid; BM, bone marrow; Chemo, intensive chemotherapy; CNS, central 
nervous system; CR, complete remission; F, female; Haplo, haplo-identical; HSCT, hematopoietic stem cell transplantation; NA, not available; 
M, male; MEC, chemotherapy combining mitoxantrone, etoposide, and cytarabine; MDS, myelodysplastic syndrome; MRD, measurable residual 
disease; OS, overall survival; Ph+, Philadelphia chromosome-positive; Pt, patient number
* This reference is based on registry data. The patients may therefore overlap with others reported in the table

Table 1   (continued)

Reference Pt/Age/Gender Type of AL Treatment Outcome
(Cause of death)

Li (2019) [27] #29/59/F MDS (del4, 5q − , 
7q − , − 15, − 16, TP53+)

Decitabine OS: 2 months
(progression to AML)

#30/27/M MDS/
AML (11q23, + 3, + 19, + 21, 
KMT2A+)

ChemoAllo HSCT OS: 7 months

#31/37/F MDS (del1, del5, t3;6, − 17, + 3, 
TP53+)

Lenalidomide + prednisone OS: 5+ months

#32/34/M MDS (7q22, del20, − 2, Inv9) Matched sibling HSCT OS: 21+ months
Eapen (2019)* [28] #33/19/NA AML NA NA

#34/37/NA MDS NA NA
#35/32/NA AML NA NA
#36/37/NA MDS NA NA

Regan (2019) [29] #37/26/F MDS/AML
(5q − , + 8, del17, TP53 deletion)

Chemo OS: 4 months

Aworanti (2020) [30] #38/15/M AL mixed lineage None Death before any treatment
#39/21/F ALL None Discharged at day5CR after 

2 lines
#40/15/M AML4 Chemo Discharged after CRDeath 

4 weeks after
#41/3/M AML None Discharged after diagnosis
#42/15/F AML5 Chemo OS: 2 months(sepsis)

Yadav (2020) [31] #43/29/F AML6
(5q −)

Chemo OS: few months
(AML progression)

Ghannam (2020) [32] #44/39/M MDS/AML7
(complex cytogenetics, TP53+, 

BM fibrosis)

Decitabine
Azacitidine

OS: 12 months
(pulmonary hypertension)

#45/39/M MDS/AML(complex cytogenet-
ics, TP53+)

Haplo HSCT OS: 7 months(intracranial 
hemorrhage)

#46/49/F MDS/AML(7q − , BM fibrosis) NA NA
Chellapandian (2020) [33] #47/14/F AML CNS+

(FLT3-ITD+)
Chemo + sorafenib
Haplo HSCT

CR
OS: 8+ months

Hsieh (2020) [34] #48/42/M MDS/AML
(− 7, 19p abnormality, RUNX1+, 

KRAS+, PTPN11+)

Azacitidine
Decitabine
Chemo
Haplo HSCT

CR after Haplo
OS: 6+ months

Ahmed (2021) [35] #49/19/M Ph+ ALL Chemo + imatinib OS: 6 months
(meningoencephalitis)

Goyal (2022) [36] #50/31/F AML0
(− 7, 11p − , WT1+, RUNX1+, 

PTPN11+)

Chemo
Haplo HSCT

CR (MRD+)
OS: 12 months
(AML progression)

Flevari (2022) [37] #51/40/M MDS
(complex cytogenetics, 5q‒, 3p, 

7p, ‒16, ‒7, ‒18)

None OS: 3 months
(severe cytopenia)

Our case report #52/27/F MDS/AML
(− 3, t5;7, − 7, del12, − 22, 

TP53+)

Vyxeos
MEC
HSCT

CR
MRD− after HSCT
OS: 12+ months
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Table 2   SCD characteristics of the 51 patients identified in the literature

Reference Pt/Diagnosis/Origin Age at diagnosis Treatment Clinical features

Jackson (1972) [7] #1/SS/Afr.Am NA No HU NA
Samal (1979) [8] #2/SS/NA Infancy Transfusions NA
Clinicopathologic conference 

(1982) [9]
#3/SS/NA NA Transfusions Hemosiderosis

Johnson (1984) [10] #4/SS/Afr.Am Infancy NA NA
Bigner (1986) [11] #5/SS/NA At birth NA NA
Stricker (1986) [12] #6/SC/Afr.Am NA NA Aseptic necrosis humeral head
Njoku (1988) [13] #7/SS/Nigerian NA NA NA
Sotomayer (1999) [14] #8/SS/Afr.Am Infancy No HU VOC
De Montalembert (1999) [15] #9/SS/NA Infancy HU (1.5 m) VOC

(3 to 7/year)
Rauch (1999) [16] #10/SS/NA NA HU (8y) VOC
Wilson (2000) [17] #11/SS/NA NA HU (6y) NA
Al-Jam’a (2002) [18] #12/SS/Saudi Arabian NA HU (2y) VOC

(6/year)
Hepatitis C

Schultz (2003) [19] #13/SS/NA Infancy HU (3 m) NA
#14/SS/NA Infancy No HU NA
#15/SS/NA Infancy No HU NA
#16/SS/NA Infancy No HU

HSCT
NA

#17/SS/NA Infancy No HU NA
#18/SS/NA NA No HU NA
#19/SS/NA NA No HU NA
#20/SS/NA NA No HU NA

Ferster (2003) [20] #21/SS/NA NA HU (8y) VOC
Osteonecrosis
ACS

Taylor (2011) [21] #22/SS/Afr.Am NA HU (5y)
Transfusions

VOC
Priapism
ACS

Baz (2012) [22] #23/SS/Afr.Am 21 Exchange transfusions
HU (15y)

VOC
(14 to 3/year)

Zemenides (2014) [23] #24/SS/Jamaican NA No HU Pulmonary hypertension
Aumont (2015) [24] #25/SS/NA NA HU (14y)

Transfusions
VOC
Hip necrosis
Retinopathy
Infections
Ischemic stroke
Cholelithiasis
Iron overload

Chauhan (2018)[25] #26/SS/Indian NA Transfusions
HU

NA

#27/SS/Indian NA HU NA
Janakiram (2018) [26] #28/SS/Afr.Am Childhood HU (5y)

Haplo HSCT (8 m)
VOC

Li (2019) [27] #29/SC/NA NA HU
Exchange transfusions

HHV8

#30/SS/NA NA Exchange transfusions VOCMyocardial 
infarctionHIV+

#31/SS/NA Infancy Exchange transfusions VOC
#32/Sβ0/NA NA Exchange transfusionsHU (9y)

Matched HSCT (7y)
VOCPriapismArterial 

anevrysmIntracranial bleed-
ing
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acute promyelocytic leukemia (#21, #26), and 20 patients 
with MDS and/or AML displayed unfavorable cytogenetics 
[− 5, − 7, del(17), 11q23, chromosome 3 abnormality] and/or 
molecular abnormalities of poor prognosis [TP53, KMT2A, 
RAS, RUNX1, PTPN11] (#6, #11, #22–25, #28-#32, #37, 

#43–46, #48, #50, #51, #52). Most of the patients (84%) dis-
played a SS homozygous hemoglobin, while only 9% were 
SC and 7% Sβ0. Data were available in 38 patients regarding 
the potential use of long-term SCD therapy with HU: 16 
(43%) did not receive any HU, while 22 (57%) received HU 

Abbreviations: ACS, acute chest syndrome; Afr.Am, African-American; AL, acute leukemia; CRI, chronic renal insufficiency; ESRD, end-stage 
renal disease; Haplo, haplo-identical; HIV, human immunodeficiency virus; HSCT, hematopoietic stem cell transplantation; HU, hydroxyurea; 
LentiGlobin, Gene therapy consisting of autologous hematopoietic stem and progenitor cells transduced with the BB305 lentiviral vector encod-
ing the βA−T87Q-globin gene designed to produced anti-sickling hemoglobin (HbAY87Q); m, months; NA, not available; Pt; patient number; VOC, 
vaso-occlusive crisis; y, years
* This reference is based on registry data. The patients may therefore overlap with others reported in the table

Table 2   (continued)

Reference Pt/Diagnosis/Origin Age at diagnosis Treatment Clinical features

Eapen (2019)* [28] #33/NA/NA
#34/NA/NA
#35NA/NA
#36/NA/NA

NA
NA
NA
NA

Haplo HSCT (3.6y)
Haplo HSCT (9 m)
Haplo HSCT (1y)
Matched sibling HSCT (2.6y)

NA
NA
NA
NA

Regan (2019) [29] #37/SS/Afr.Am Childhood Transfusion/Exchange
HU (2y)

VOC
Pulmonary fibrosis
Pneumonia
Hips necrosis
Peritonitis

Aworanti (2020) [30] #38/SS/Nigerian
#39/SS/Nigerian
#40/SC/Nigerian
#41/SC/Nigerian
#42/SS/Nigerian

2 years
4 years
Childhood
et al. diagnosis
NA

No HU
Transfusion
No HU
Transfusion
No HU
Transfusion
None
No HU

None
VOC (1/year)
VOC (1/2 years)
None
NA

Yadav (2020) [31] #43/SS/NA NA HU (5y) VOC
Ghannam (2020)[32] #44/SS/NA

#45/SS/NA
#46/SS/NA

NA
NA
NA

HU
Haplo HSCT (2y)
HU
Sibling HSCT (2.5y)
HU
Haplo HSCT (5y)

Stroke
VOC
CRI
VOC
Diastolic dysfunction
ESRD
Pulmonary hypertension

Chellapandian (2020) [33] #47/Sβ0/Haitian At birth HU (9y) VOC
Hsieh (2020) [34] #48/SS/NA NA HU (8y)

Gene therapy (LentiGlobin) (3y)
VOC
Iron overload
Leg ulcers
Hypertension
Gallbladder disease

Ahmed (2021) [35] #49/SS/Nigerian At 1 year Transfusions
No HU

VOC
(> 4/year)

Goyal (2022) [36] #50/SS/NA NA HU (6y)
Gene therapy (LentiGlobin) 

(5.5y)

VOC
Hip necrosis
Deep-vein thrombosis

Flevari (2022) [37] #51/SS/NA NA HU (17y)
Exchange transfusions

VOC
Priapism
Pulmonary hypertension

Our case report #52/Sβ0/African Childhood HU (7y)
Exchange transfusions

VOC
ACS
Cholelithiasis
Retinopathy
COVID-19
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prior to acute leukemia diagnosis (median duration of treat-
ment: 6.5 years; range: 0.05 – 17 years). Ten patients under-
went allogeneic HSCT, after conditioning regimen including 
alkylating agents and/or total body irradiation, as treatment 
of SCD. Four patients were allografted from a matched 
sibling donor (#16, #32, #36, #45) and six patients from a 
haploidentical donor (#28, #33–35, #44, #46) (Table 2). The 
median time between HSCT and acute leukemia diagnosis 
was 2.5 years (range: 0.26 – 7 years). Two cases of AML 
developed in SCD patients who had been treated by gene 
therapy with LentiGlobin [34, 36], which required myelo-
ablation with an alkylating agent.

Overall acute leukemias in SCD patients were of dis-
mal outcome with overall survival (OS) ranging from few 
days to 2.5+ years (median in patients with available data: 
7 months).

Discussion

Historically, the development of malignancy in children and 
adults patients with SCD has been documented by several 
small series [7, 12, 38]. On the basis of a single institu-
tion study, the cancer incidence in SCD patients has been 
estimated to be 1.74 cases per 1,000 patient-years [39]. 
Malignancies mainly included hematological neoplasias, 
especially acute leukemias. In the 1970s, Jackson reported, 
among 58 black children treated for acute leukemia, 4 ALL 
and 3 AML with sickle cell trait, and one ALL with homozy-
gous HbS [7]. In a low-income country, the association of 
acute leukemia with SCD was even reported in 8.6% of cases 
[30]. Actually, the risk of hematologic malignancies is 2 to 
11 times as high as that in the general population. This was 
established by three recent epidemiology reports [5, 6, 19]. 
The first study used a standardized incidence ratio (SIR) to 
compare individuals with SCD to the general population. 
One hundred and fifteen on 6423 SCD individuals were 
diagnosed with cancer, with a total of 6 AML cases (SIR, 
3.59; 95% confidence interval: 1.32–7.82) and 3 cases of 
ALL (1.83; 0.38–5.35) [5]. In the second study, 8 cases of 
AML on 7512 individuals with SCD were reported (11.05; 
3.86–30.17). Among hematological malignancies, the risks 
remained elevated for all conditions studied, except for lym-
phoid leukemia [6]. The third study identified 52 cases of 
cancer in 49 patients among 16,613 individuals with SCD, 
40% of cases occurring in children [19]. The most frequent 
malignancy was acute leukemia (8 cases).

The vast majority of SCD patients receive conservative 
therapy. In this setting, HU has greatly improved the survival 
of SCD patients in developed countries, due to its efficacy in 
preventing VOC via an inhibitory effect on HbS polymeriza-
tion by increasing the synthesis of fetal hemoglobin, and an 
improvement of blood flow in the microcirculation through 

the expression or activity of several adhesion molecules on 
red blood and endothelial cells [40, 41]. Three randomized 
placebo controlled trials have demonstrated the efficacy of 
HU in SCD, with an excellent safety profile and up to a 40% 
reduction in mortality after 9 years of follow-up [42–44]. 
HU is an inhibitor of DNA synthesis that may theoretically 
lead to an accumulation of acquired DNA mutations and 
eventually leukemic transformation. Whether acute leuke-
mia in SCD patients with long-term exposure to HU is a 
co-incidental or related to therapy has been a major issue 
debated in many reports. The leukemogenic risk could theo-
retically increase with the duration of drug exposure. The 
index of DNA damage in peripheral blood leukocytes from 
HU-treated patients with SCD was demonstrated higher than 
in controls and was confirmed influenced by the duration 
and the dose of HU treatment, and by the HbS genotype [45, 
46]. The leukemic risk of HU has never been confirmed in 
patients with chronic myeloproliferative diseases [47, 48], 
and no increased risks of malignancy were reported in large 
series of SCD patients [49–51]. Among 278 SCD children 
receiving long-term treatment with HU, only one developed 
acute leukemia [15, 52, 53]. If one study in pediatric SCD 
patients treated with HU showed that genotoxicity increased 
with HU administration [54], it was demonstrated that indi-
viduals may have different susceptibilities to HU, and that 
this occurred in a patient population that may already have 
an elevated risk for malignancy evaluated at baseline by a 
greater Damage Index [55]. Overall the genotoxicity results 
clearly demonstrate that HU does not directly bind DNA 
and is not mutagenic [56]. In vitro, HU can result in the 
accumulation of somatic mutations and chromosomal dam-
ages due to interference with DNA repair, but the number 
of acquired mutations did not increase in patients with long-
term exposure to the drug [57]. On another hand, HU ther-
apy can alleviate the risk of chronic hemolysis by increasing 
the fetal hemoglobin content in the blood, and potentially 
reduce the accompanying marrow stress in these patients. 
The recent prospective observational study ESCORT-HU 
(NCT02516579), which evaluated the long-term safety and 
effectiveness of HU in SCD patients across several Euro-
pean centers, confirmed the benefit-to-risk ratio of HU in 
children and adults [58]. Only one incident hematological 
malignancy was reported.

In contrast to life-long supportive care measures, HSCT 
offers a curative option but may be followed by various 
severe complications. It is therefore being reserved to 
patients who are refractory to conventional therapy. The 
5-year OS ranges from 91 to 95% in children who under-
went HLA-identical HSCT after myeloablative condition-
ing, while disease-free survival, rate of rejection, and inci-
dence of chronic graft versus host disease are approximately 
82%, 8%, and 12%, respectively [59, 60]. Nine percent of 
patients died of complications related to transplantation [59]. 
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Peripheral blood stem cells, which would come from AA 
or AS donors, have also been proposed as a source of stem 
cells for allogeneic HSCT. The results after related (5-year 
OS: 97%) and unrelated (2-year EFS: 90%) donor umbili-
cal cord transplantation (UCT) have also been encouraging 
[61]. However recent results were more discouraging show-
ing a high incidence of graft rejection (50% to 62%) after 
unrelated UCT [62], although updated data using a reduced 
intensity conditioning combining HU, alemtuzumab, 
fludarabine, thiotepa, and melphalan were more impressive 
[63]. Haploidentical-related donor transplantations are under 
study. It is becoming a viable alternative curative option 
for SCD, extending the availability of HSCT as a treat-
ment option to eligible SCD patients. Overall survival was 
high (91%) in all studies included in a recent meta-analysis 
[64]. One study has suggested that HSCT for SCD does not 
increase the risk of developing acute leukemia, compared 
with patients who have not undergone SCT [60]. However, 
transplanted patients are generally exposed to alkylating 
agents and ionizing radiation as part of a conditioning regi-
men, and intervals, found in the literature, between the pro-
cedure and the diagnosis of leukemia are falling in the range 
of latency reported in other diseases. Furthermore, therapy-
related MDS/AML is a well known event after autologous 
transplantation for lymphomas, with cumulative risks as 
high as 15%.

Trials in gene therapy are under way and also offer great 
promise. However, the largest lentiviral vector-mediated 
β-globin replacement gene therapy trial in SCD reported 
two cases of adult patients diagnosed with AML [34, 36, 
65, 66]. These two cases shared similar cytogenetic and 
molecular abnormalities with monosomy 7 and RUNX1 
and PTPN11 mutations, which were not found in patients 
pre-conditioning bone marrow samples. The first case was 
considered to be related to busulfan conditioning [34]. The 
second case showed vector present in leukemia blast cells, 
which suggests that blast cells originated from a transduced 
hematopoietic stem cell and not from residual host cells 
exposed to busulfan [36]. However, several lines of evi-
dence showed that the development of this case of AML 
most likely occurred independently of insertional oncogen-
esis [36].

If a coincidental event between acute leukemia and 
SCD could be evocated in several cases from the literature 
that resemble de novo acute leukemia, an increased risk 
for acute leukemia is suggested by the significant under-
lying MDS features of most reported cases compared to 
leukemic patients from the general population of the same 
age. Extensive literature review demonstrates at least 18 
patients with presence of complex structural rearrange-
ments involving complete or partial loss of chromosome 
5 and/or chromosome 7 and/or 17p deletions. TP53 gene 
mutations have also been shown frequently implicated 

[67]. Furthermore, several cases were classified as AML6 
or AML7 and/or presented bone marrow fibrosis. Those 
facts are not in favor of a simple coincidence between the 
occurrence of acute leukemia and SCD, but are generally 
considered as a marker of secondary leukemia.

The exact underlying connection between acute leuke-
mia and SCD is not clearly understood. Beside therapy 
for SCD, other potential cancer risk factors might exist 
for SCD patients and have been discussed in a recent 
published commentary [68]. Red blood cell transfusions 
can lead to increased iron levels and non-specific immu-
nomodulation that could increase the risk of malignancy. 
However, heavily transfused patients with thalassemia 
only show a few cases of cancer [69]. Chronic inflamma-
tion implies the potential involvement of inflammasomes 
in SCD pathogenesis [70]. Chronic organ damage with 
inflammation could also cause cellular damage with subse-
quent malignant transformation. The pro-tumorigenic role 
of inflammasomes is associated with promoting cell pro-
liferation, inhibition of apoptosis, and an immunosuppres-
sive effect on the immune cells. Constant hematopoietic 
hyperplasia, stimulated by a hemolysis-induced cytokine 
storm, may increase the risk of somatic mutations, result-
ing in transformation of myeloid precursors [71]. Other 
factors associated with the increased risk include increased 
risk of infections, and increased bone marrow turnover, 
which form the pathophysiologic mechanisms of the clini-
cal manifestations of SCD [5, 72]. The accumulation of 
multiple genetic abnormalities over years, due to a high 
degree of proliferative activity of bone marrow cells, may 
be responsible of the increased risk of cancer.

After myeloablation, the bone marrow niche undergoes 
extensive proliferation of hematopoietic stem cells, gen-
erating proliferative stress that may lead to mutations as 
part of the normal engraftment process [73]. After HSCT, 
myeloid malignancy was only seen within patients who did 
not engraft [28, 32]. In case of graft failure, the need for 
more replication cycles is required to repopulate the bone 
marrow, increasing the probability of acquiring a mutation 
that could lead to AML. TP53 mutations were detectable 
in blood before transplantation and increase until therapy-
related myeloid malignancy diagnosis [32]. The progression 
of baseline high-risk TP53 clonal abnormalities into AML in 
patients with SCD has been reported after unsuccessful allo-
geneic HSCT. It has been previously demonstrated that the 
TP53 mutated clones specially expanded after chemotherapy 
exposure [74]. Because of erythropoietic stress and systemic 
inflammation, SCD patients may have been predisposed to 
developing clonal hematopoiesis. As these clones may be 
more resistant to radiation and/or chemotherapy, it has been 
suggested that they may preferentially expand after a failed 
transplant, leading to the myeloid malignancy detected after 
graft rejection.
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TP53 is the most commonly mutated gene in therapy-
related MDS/AML. Low folic acid, associated with an 
increased risk for leukemia, can make cells vulnerable to 
mutagenesis and can affect the genetic and epigenetic integ-
rity of TP53 [75]. TP53 plays a central role in regulating 
cellular responses to genotoxic stress, and loss of TP53 
provides a selective advantage for neoplastic growth [76]. 
The specific TP53 mutation has been shown to be present at 
low frequencies (0.003–0.7%) in blood leucocytes in some 
cases 3–6 years prior to the development of therapy-related 
MDS/AML and prior any chemotherapy [74]. TP53 muta-
tions have also identified in small populations of peripheral 
blood cells of healthy chemotherapy-naïve elderly individu-
als. Chromosomal aberrations were demonstrated in some 
SCD patients with no evidence of hematological disease 
[27]. Furthermore, murine bone marrow chimeras contain-
ing wild type and TP53+/− hematopoietic stem/progenitor 
cells preferentially expanded after exposure to chemotherapy 
[74]. These data suggest that TP53 mutations precede the 
development of AML and the acquisition of other mutations, 
such as TET2, NUP98, or RUNX1.

Despite limitations coming from the retrospective nature 
of our study involving missing data and biases related to 
cases reported over an extended period, our review of the 
literature tend to suggest that chronic hemolysis, increased 
iron levels, and increased bone marrow turnover, which form 
the pathophysiologic mechanisms of the clinical manifesta-
tions of SCD are mainly responsible for a situation in which 
cells are undergoing constant hematopoietic hyperplasia, 
leading to the increased risk of acute leukemia by inducing 
genomic damage and somatic mutations [77]. The effects of 
SCD on progenitor cells have not been fully determined [78]. 
SCD may promote accelerated aging of hematopoietic cells 
and oncogenic somatic mutations [79]. Further studies are 
needed to identify risk factors for developing acute leuke-
mia by pre-screening individuals with SCD. Next-generation 
DNA sequencing can be used to detect expanded peripheral 
blood progeny of a mutant clone and clonal hematopoisis 
of indeterminate potential (CHIP), which is a risk factor 
for subsequent hematologic malignancy [80]. Recent large 
studies have tried to address clonal hematopoiesis in SCD 
[81, 82]. Despite different conclusions related to the tech-
nique used, the control cohort chosen, and the value of VAF 
defined for considering clonal hematopoiesis, a small per-
centage of cases were identified as having somatic variants 
of TP53, DNMT3A, ASXL1, and/or TET2.

In conclusion, several cases of MDS/AML have been 
reported in SCD leading to the hypothesis that SCD may 
lead to the development of hematopoietic malignancies, 
even in the absence of disease-modifying treatments. The 
increased risk of leukemogenesis is certainly multifactorial 
and related to the pathophysiologic mechanisms of the clini-
cal manifestations of SCD, which may promote accelerated 

aging of hematopoiesis. A prevalence of clonal hematopoie-
sis in SCD patients should demonstrate a higher risk than in 
the general population.
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