Table 4.
Sample mean and standard error for accuracy, sensitivity, specificity, and area under ROC curve (AUC) for all classifiers, considering the 8-feature PSO dimension-reduced dataset.
Source: Authors
| Classifier | SARS-CoV-2 PSO | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Accuracy | Kappa | Sensitivity | Specificity | AUC | F1 score | |||||||
| Mean | Std dev | Mean | Std dev | Mean | Std dev | Mean | Std dev | Mean | Std dev | Mean | Std dev | |
| Naïve Bayes | 99.9689 | 0.1369 | 0.9963 | 0.0149 | 0.9997 | 0.0014 | 1.0000 | 0.0000 | 1.0000 | 0.0001 | 0.9998 | 0.0007 |
| Bayes Network | 100.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 1.0000 | 0.0000 |
| J48 tree | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 0.9999 | 0.0003 | 0.9999 | 0.0003 |
| Random tree | 99.9539 | 0.0849 | 0.9942 | 0.0107 | 0.9998 | 0.0006 | 0.9939 | 0.0151 | 0.9969 | 0.0076 | 0.9998 | 0.0004 |
| Random forest (10 trees) | 99.9812 | 0.0517 | 0.9977 | 0.0064 | 0.9998 | 0.0005 | 0.9992 | 0.0054 | 1.0000 | 0.0001 | 0.9999 | 0.0003 |
| Random forest (20 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (30 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (40 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (50 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (60 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (70 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (80 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (90 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| Random forest (100 trees) | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 1.0000 | 0.0000 | 0.9999 | 0.0003 |
| MLP (20 neurons) | 99.9496 | 0.0845 | 0.9937 | 0.0106 | 0.9997 | 0.0007 | 0.9955 | 0.0132 | 0.9999 | 0.0005 | 0.9997 | 0.0004 |
| MLP (50 neurons) | 99.9458 | 0.0888 | 0.9932 | 0.0111 | 0.9997 | 0.0007 | 0.9946 | 0.0145 | 0.9999 | 0.0005 | 0.9997 | 0.0005 |
| MLP (100 neurons) | 99.9458 | 0.0888 | 0.9932 | 0.0112 | 0.9997 | 0.0007 | 0.9943 | 0.0154 | 0.9999 | 0.0005 | 0.9997 | 0.0005 |
| SVM polynomial E1; C = 0.01 | 96.3626 | 0.5919 | 0.1952 | 0.1561 | 1.0000 | 0.0001 | 0.1240 | 0.1440 | 0.5620 | 0.0720 | 0.9814 | 0.0030 |
| SVM polynomial E2; C = 0.01 | 95.9281 | 0.4686 | 0.0245 | 0.1154 | 1.0000 | 0.0002 | 0.0195 | 0.1152 | 0.5098 | 0.0575 | 0.9792 | 0.0024 |
| SVM polynomial E3; C = 0.01 | 95.9078 | 0.4678 | 0.0160 | 0.1137 | 1.0000 | 0.0002 | 0.0149 | 0.1150 | 0.5074 | 0.0574 | 0.9791 | 0.0024 |
| SVM polynomial E4; C = 0.01 | 95.9024 | 0.4675 | 0.0136 | 0.1133 | 1.0000 | 0.0002 | 0.0136 | 0.1149 | 0.5068 | 0.0574 | 0.9791 | 0.0024 |
| SVM polynomial E5; C = 0.01 | 95.8890 | 0.4708 | 0.0131 | 0.1133 | 0.9998 | 0.0005 | 0.0135 | 0.1149 | 0.5066 | 0.0574 | 0.9790 | 0.0024 |
| SVM RBF G = 0.01; C = 0.01 | 95.8488 | 0.0629 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.9788 | 0.0003 |
| SVM RBF G = 0.25; C = 0.01 | 95.9019 | 0.4631 | 0.0130 | 0.1125 | 1.0000 | 0.0000 | 0.0128 | 0.1105 | 0.5064 | 0.0552 | 0.9791 | 0.0024 |
| SVM RBF G = 0.5; C = 0.01 | 95.9067 | 0.4728 | 0.0148 | 0.1146 | 1.0000 | 0.0001 | 0.0142 | 0.1151 | 0.5071 | 0.0575 | 0.9791 | 0.0024 |
| SVM polynomial E1; C = 0.1 | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 0.9999 | 0.0003 | 0.9999 | 0.0003 |
| SVM polynomial E2; C = 0.1 | 99.9673 | 0.0687 | 0.9960 | 0.0084 | 0.9997 | 0.0007 | 1.0000 | 0.0000 | 0.9998 | 0.0004 | 0.9998 | 0.0004 |
| SVM polynomial E3; C = 0.1 | 99.9673 | 0.0687 | 0.9960 | 0.0084 | 0.9997 | 0.0007 | 1.0000 | 0.0000 | 0.9998 | 0.0004 | 0.9998 | 0.0004 |
| SVM polynomial E4; C = 0.1 | 96.1480 | 0.4815 | 0.1227 | 0.1305 | 0.9998 | 0.0005 | 0.0763 | 0.1190 | 0.5381 | 0.0594 | 0.9803 | 0.0025 |
| SVM polynomial E5; C = 0.1 | 96.0097 | 0.4765 | 0.0659 | 0.1237 | 0.9998 | 0.0005 | 0.0430 | 0.1171 | 0.5214 | 0.0585 | 0.9796 | 0.0024 |
| SVM RBF G = 0.01; C = 0.1 | 95.8488 | 0.0629 | 0.0000 | 0.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.5000 | 0.0000 | 0.9788 | 0.0003 |
| SVM RBF G = 0.25; C = 0.1 | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 0.9999 | 0.0003 | 0.9999 | 0.0003 |
| SVM RBF G = 0.5; C = 0.1 | 99.9689 | 0.0663 | 0.9961 | 0.0083 | 0.9998 | 0.0005 | 0.9964 | 0.0113 | 0.9981 | 0.0057 | 0.9998 | 0.0003 |
| SVM polynomial E1; C = 1 | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 0.9999 | 0.0003 | 0.9999 | 0.0003 |
| SVM polynomial E2; C = 1 | 99.9673 | 0.0687 | 0.9960 | 0.0084 | 0.9997 | 0.0007 | 1.0000 | 0.0000 | 0.9998 | 0.0004 | 0.9998 | 0.0004 |
| SVM polynomial E3; C = 1 | 99.9517 | 0.0816 | 0.9941 | 0.0100 | 0.9995 | 0.0009 | 1.0000 | 0.0000 | 0.9997 | 0.0004 | 0.9997 | 0.0004 |
| SVM polynomial E4; C = 1 | 99.9517 | 0.0816 | 0.9941 | 0.0100 | 0.9995 | 0.0009 | 1.0000 | 0.0000 | 0.9997 | 0.0004 | 0.9997 | 0.0004 |
| SVM polynomial E5; C = 1 | 99.9517 | 0.0816 | 0.9941 | 0.0100 | 0.9995 | 0.0009 | 1.0000 | 0.0000 | 0.9997 | 0.0004 | 0.9997 | 0.0004 |
| SVM RBF G = 0.01; C = 1 | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 0.9999 | 0.0003 | 0.9999 | 0.0003 |
| SVM RBF G = 0.25; C = 1 | 99.9684 | 0.0667 | 0.9960 | 0.0084 | 0.9998 | 0.0005 | 0.9963 | 0.0115 | 0.9980 | 0.0057 | 0.9998 | 0.0003 |
| SVM RBF G = 0.5; C = 1 | 99.9678 | 0.0671 | 0.9960 | 0.0084 | 0.9998 | 0.0005 | 0.9961 | 0.0117 | 0.9980 | 0.0058 | 0.9998 | 0.0003 |
| SVM polynomial E1; C = 10 | 99.9689 | 0.0676 | 0.9962 | 0.0083 | 0.9997 | 0.0007 | 1.0000 | 0.0000 | 0.9998 | 0.0004 | 0.9998 | 0.0004 |
| SVM polynomial E2; C = 10 | 99.9657 | 0.0711 | 0.9958 | 0.0087 | 0.9996 | 0.0007 | 1.0000 | 0.0000 | 0.9998 | 0.0004 | 0.9998 | 0.0004 |
| SVM polynomial E3; C = 10 | 99.9517 | 0.0816 | 0.9941 | 0.0100 | 0.9995 | 0.0009 | 1.0000 | 0.0000 | 0.9997 | 0.0004 | 0.9997 | 0.0004 |
| SVM polynomial E4; C = 10 | 99.9517 | 0.0816 | 0.9941 | 0.0100 | 0.9995 | 0.0009 | 1.0000 | 0.0000 | 0.9997 | 0.0004 | 0.9997 | 0.0004 |
| SVM polynomial E5; C = 10 | 99.9517 | 0.0816 | 0.9941 | 0.0100 | 0.9995 | 0.0009 | 1.0000 | 0.0000 | 0.9997 | 0.0004 | 0.9997 | 0.0004 |
| SVM RBF G = 0.01; C = 10 | 99.9839 | 0.0483 | 0.9980 | 0.0059 | 0.9998 | 0.0005 | 1.0000 | 0.0000 | 0.9999 | 0.0003 | 0.9999 | 0.0003 |
| SVM RBF G = 0.25; C = 10 | 99.9807 | 0.0540 | 0.9976 | 0.0067 | 0.9998 | 0.0005 | 0.9992 | 0.0054 | 0.9995 | 0.0027 | 0.9999 | 0.0003 |
| SVM RBF G = 0.5; C = 10 | 99.9684 | 0.0667 | 0.9960 | 0.0084 | 0.9998 | 0.0005 | 0.9963 | 0.0115 | 0.9980 | 0.0057 | 0.9998 | 0.0003 |